
sockets file descriptors

1

files
sockets file descriptors

12

files
sockets file descriptors

TCP

23

files
sockets file descriptors

TCP
UDP

34

files
sockets

IP

file descriptors

TCP
UDP

45

IP

IP is an addressing scheme and packet format

UDP TCP

IP

Ethernet WiFi Firewire

46

IP

• Each node has a 32-bit address written in four
parts, e.g.

192.168.1.100

• “Directly” connected to other addresses that
match within the netmask

netmask 255.255.255.0:

⇒ 192.168.1.100 on subnet of
 192.168.1.28

⇒ 192.168.1.100 not on subnet of
 192.168.2.100

47

Interfaces

A machine may have multiple IP interfaces

UDP TCP

IP

Ethernet WiFi Firewire

Try running ifconfig or ipconfig

48

Getting an Address

• Static addressing: user/administrator tells the OS
to use a particular address and netmask

• DHCP: machine gets address from a server to
which it is “directly” connected

Exploits IP netmask-constrained broadcast
without knowing the subnet address

• NAT makes multiple nodes look like one

49

UDP and TCP

Applications practically never create raw IP packets

An exception: ping

Primary two choices for layers over IP:

• UDP packet-based, not reliable

• TCP stream-based, reliable

50

IP Message

The destination of an IP message is

• a host address

• a protocol (e.g., TCP or UDP)

• a port number

Port numbers range from 1 to 65535

Port numbers below 1024 require special privilege

51

Creating a Socket

int socket(int domain, int type, int protocol);

• domains: PF_INET, PF_UNIX, ...

• types: SOCK_STREAM, SOCK_DGRAM, ...

• protocols: "tcp", "udp", ...
convert string to a number with getprotoent()

52

UDP

sockets file descriptors

UDP

53

Sending a UDP Message

ssize_t sendto(int socket,
 void *buffer, size_t length,
 int flags,
 struct sockaddr *dest_addr,
 socklen_t dest_len);

Need to build an address...

54

Binding a Socket

int bind(int socket,
 struct sockaddr *address,
 socklen_t address_len);

Need to build an address...

55

Receiving a UDP Message

ssize_t recv(int socket,
 void *buffer, size_t length,
 int flags);

56

Computing an IP Address

struct sockaddr_in addr;

• set serv_addr.sin_family to AF_INET

• set serv_addr.sin_port to a port number

• set serv_addr.sin_addr.s_addr to a
numerical IP address

Getting a numerical address:

• Convert a hostname string with
gethostbyname()

• Use INADDR_ANY with bind()

57-58

See udp_recv.c, udp_send.c,
udp_recvfrom.c, udp_lh_recv.c,
udp_sendfrom.c

59

Binding to a Destination

int connect(int socket,
 struct sockaddr *address,
 socklen_t address_len);

ssize_t send(int socket,
 const void *buffer, size_t length,
 int flags);

For UDP, connect() is just a convenience

See udp_many_send.c

60

UDP Summary

• About as simple as possible

• No guarantees about delivery

• No guarantees on order of messages

61

UDP in the OS

OS needs to maintain

• A mapping from port numbers to process+socket

Handle incoming messages

Disallow multiple uses of port numbers

• Little buffering for messages going our or coming
in

62

TCP

sockets file descriptors

TCP

63

Creating a TCP Connection

Client:

• socket() and connect() N times

socket works with send(), recv(), read(),
and write()

Server:

• socket(), bind(), and listen() once

socket works only with accept()

• accept() [implicitly creates new socket] N times

socket works with send(), etc.

64

Listening and Accepting TCP Connections

int listen(int socket, int backlog);

int accept(int socket,
 struct sockaddr *address,
 socklen_t *address_len);

See tcp_server.c, tcp_client.c

65

TCP Streams

A TCP connection allows both read and write

• close() ends both directions

• shutdown() ends one direction

shutdown output ⇒ other end recieves EOS

shutdown input ⇒ no message

See tcp_server2.c, tcp_client2.c

66

Reliable Data Delivery

When an IP packet is lost for a TCP connection,
TCP re-sends the data

• Requires an ACK from other end

• Messages have IDs for ACKs and ordering

Resending uses exponential backoff:

• Send message, wait N msecs for reply...

• Re-send message, wait 2N msecs for reply...

• Re-re-send message, wait 4N msecs for reply...

An ACK is needed even for a shutdown EOS

67

TCP in the OS

A program could make a TCP connection, send
data, close() the connection, and exit

• OS typically allows the close and exit immediately

• Some TCP work work may survice the process,
such as EOS ACKs

Absent an EOS, how does the OS know that no
more data will arrive on a TCP connection?

• OS hedges with connection in TIME_WAIT state

• SO_REUSEADDR truncates TIME_WAIT state on
listeners

See server.c from lecture15
68

