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IP

IP is an addressing scheme and packet format

UDP TCP

IP

Ethernet WiFi Firewire
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IP

• Each node has a 32-bit address written in four
parts, e.g.

192.168.1.100

• “Directly” connected to other addresses that
match within the netmask

netmask 255.255.255.0:

⇒  192.168.1.100 on subnet of
 192.168.1.28

⇒  192.168.1.100 not on subnet of
 192.168.2.100
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Interfaces

A machine may have multiple IP interfaces

UDP TCP

IP

Ethernet WiFi Firewire

Try running ifconfig or ipconfig
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Getting an Address

• Static addressing: user/administrator tells the OS
to use a particular address and netmask

• DHCP: machine gets address from a server to
which it is “directly” connected

Exploits IP netmask-constrained broadcast
without knowing the subnet address

• NAT makes multiple nodes look like one
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UDP and TCP

Applications practically never create raw IP packets

An exception: ping

Primary two choices for layers over IP:

• UDP packet-based, not reliable

• TCP stream-based, reliable
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IP Message

The destination of an IP message is

• a host address

• a protocol (e.g., TCP or UDP)

• a port number

Port numbers range from 1 to 65535

Port numbers below 1024 require special privilege
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Creating a Socket

int socket(int domain, int type, int protocol);

• domains: PF_INET, PF_UNIX, ...

• types: SOCK_STREAM, SOCK_DGRAM, ...

• protocols: "tcp", "udp", ...
convert string to a number with getprotoent()
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UDP
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Sending a UDP Message

ssize_t sendto(int socket,
               void *buffer, size_t length,
               int flags,
               struct sockaddr *dest_addr,
               socklen_t dest_len);

Need to build an address...
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Binding a Socket

int bind(int socket,
         struct sockaddr *address,
         socklen_t address_len);

Need to build an address...
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Receiving a UDP Message

ssize_t recv(int socket,
             void *buffer, size_t length,
             int flags);
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Computing an IP Address

struct sockaddr_in addr;

• set serv_addr.sin_family to AF_INET

• set serv_addr.sin_port to a port number

• set serv_addr.sin_addr.s_addr to a
numerical IP address

Getting a numerical address:

• Convert a hostname string with
gethostbyname()

• Use INADDR_ANY with bind()
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See udp_recv.c, udp_send.c,
udp_recvfrom.c, udp_lh_recv.c,
udp_sendfrom.c
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Binding to a Destination

int connect(int socket,
            struct sockaddr *address,
            socklen_t address_len);
 
ssize_t send(int socket,
             const void *buffer, size_t length,
             int flags);

For UDP, connect() is just a convenience

See udp_many_send.c
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UDP Summary

• About as simple as possible

• No guarantees about delivery

• No guarantees on order of messages
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UDP in the OS

OS needs to maintain

• A mapping from port numbers to process+socket

Handle incoming messages

Disallow multiple uses of port numbers

• Little buffering for messages going our or coming
in
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Creating a TCP Connection

Client:

• socket() and connect() N times

socket works with send(), recv(), read(),
and write()

Server:

• socket(), bind(), and listen() once

socket works only with accept()

• accept() [implicitly creates new socket] N times

socket works with send(), etc.
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Listening and Accepting TCP Connections

int listen(int socket, int backlog);

int accept(int socket,
           struct sockaddr *address,
           socklen_t *address_len);

See tcp_server.c, tcp_client.c

65



TCP Streams

A TCP connection allows both read and write

• close() ends both directions

• shutdown() ends one direction

shutdown output ⇒  other end recieves EOS

shutdown input ⇒  no message

See tcp_server2.c, tcp_client2.c
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Reliable Data Delivery

When an IP packet is lost for a TCP connection,
TCP re-sends the data

• Requires an ACK from other end

• Messages have IDs for ACKs and ordering

Resending uses exponential backoff:

• Send message, wait N msecs for reply...

• Re-send message, wait 2N msecs for reply...

• Re-re-send message, wait 4N msecs for reply...

An ACK is needed even for a shutdown EOS
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TCP in the OS

A program could make a TCP connection, send
data, close() the connection, and exit

• OS typically allows the close and exit immediately

• Some TCP work work may survice the process,
such as EOS ACKs

Absent an EOS, how does the OS know that no
more data will arrive on a TCP connection?

• OS hedges with connection in  TIME_WAIT state

• SO_REUSEADDR truncates TIME_WAIT state on
listeners

See server.c from lecture15
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