CS 4400

Computer Systems

LECTURE 7

Representing procedure calls

New to C?: structs, unions, and functions

Procedure Calls

A procedure call involves passing data (via procedure
arguments and return value) and control from one part of

the program to another.

Each invocation of a procedure must allocate and

deallocate memory 1in which to store its local variables.

For IA32, very simple instructions transfer control:

ecall,leave,ret

The compiler must generate additional instructions for

passing arguments and allocation/deallocation of locals.
CS 4400—Lecture 7 2

Run-Time Stack

* We use a stack as the LIFO data structure for holding local

variable instantiations.

e A “real” stack supports only push and pop operations.
 However, local variables may be pushed (upon function entry) and
popped (upon function exit) in large batches.
e Also, after pushing on many variables, we may want to continue
accessing variables deep in the stack.

* Thus, we treat the stack as a large array.

» The stack pointer 1s a special register (Y@€sp) that always

points to the “top” of the stack.

CS 4400—Lecture 7 3

Stack Frame

e A procedure's stack frame (or activation record) 1s the area
on the stack devoted to its local variables, arguments,

return address, and other temporaries.

e Usually, run-time stacks start at high memory addresses and

grow to low memory addresses.

 What addresses are “allocated”? What addresses are “garbage’?

* Often, each computer architecture has a standard stack
frame layout, making 1t possible for procedures written 1n

one language to call procedures written 1n another.

CS 4400—Lecture 7 4

Stack Frame Layout

» (Yebp + 4n + 4)

“Incoming
arguments
(Yebp + 8)
(Yebp +4)
(Yebp -4)
“outgoing”
arguments
stack pointer —
(Yesp -4)

T higher |
argument n addresses
areument 1 previous frame

return address “caller”
A

saved Yebp

local variables
temporaries

saved registers

argument m

argument 1

current frame
“callee”

1 lower
addresses

More on Stack Frames

e Because the stack pointer can move while a procedure 1s
executing, information 1s accessed using its address

relative to the frame pointer.

 When possible, local variables are stored in registers.

[Locals must reside in the stack when:
e there are not enough registers
e a local variable has its address taken

 a local variable 1s an array or structure

e The return address 1s the address of the next instruction

after the cal | instruction in the caller.
CS 4400—Lecture 7 6

Transferring Control

e cal | labeland cal | *operand
* push the return address on the stack (%ei p +4)

e jump to the instruction indicated by label (or operand)

* | eave
e prepare stack so that stack pointer points to return address

e equivalent to novl %ebp, Y%esp
popl %ebp

* ret

e pops return address from stack and jumps to that address

CS 4400—Lecture 7 7

Register Usage

All procedures must share a single set of registers.

It 1s critical that the callee does not overwrite the contents

of registers that the caller 1s still planning to use.

caller-save registers: Yeax, ¥edx, Yecx

callee-save registers: Yebx, Yesi , Yedi

Example: int P(int x) {

CS 4400—Lecture 7

}

int 'y =X
Int z = Q
returny +

y);
Z;

X,

In what ways can P
ensure that the value of
y 1s available after Q
returns? What 1s most

efficient? 8

I nt swap_add(int *xp, int *yp) { cal | er:
Int X = *Xp; .
int y = *yp; | eal -4(%bp), Yeax
pushl %eax
*Xp = Y; | eal -8(%bp), Y%eax
*yp = X; pushl %eax
return x + vy, call swap_add
} movl %eax, Yedx
Int caller() { Swap_add:
I nt argl = 534, pushl %ebp
int arg2 = 1057; novl %esp, Yebp
int sum = swap_add(&argl, &arg2); pushl %ebx
int diff = argl — arg2; novl 8(%bp), Yedx
novl 12(%bp), Yecx ——
return sum?* diff; novl (%edx), Yebx
} movl (%ecx), Yeax
nmovl %eax, (%edx)
0 nmovl %e&bx, (%ecx
0 saved %ebp < %€bp saved /‘éebp nodl ebx. Semx
-4 ar g2 arg popl %ebx
3 ar g1 argl novl %ebp, %esp
+12 &ar g2 popl %ebp
12 &ar g2 oar al r et
_16 &ar gl <« ogsp 18 arg
) +4 | return address
Jjust before call /ebp-»o | gaved %ebp
7esp »4 saved %ebx | in body of swap_add

onboroad

onboride

Exercise: Procedures

I nt proc(void) {
I nt X, V;
scanf (“ 9% %",
return x-vy;

}

&y, &X);

* Where are the locals stored?

* What 1s the value of ¥%&sp just

before the call?

» How does run-time stack look?

proc:
pushl %ebp
movl %esp, Yebp
subl $24, %esp
addl $-4, Y%esp
| eal -4(%bp), Yeax
pushl %eax
| eal -8(%bp), Yeax
pushl %eax
pushl $.LCO ;string
call scanf
nmovl -8(%bp), Yeax
nmovl -4(%bp), Yedx
subl %eax, Yedx
movl %edx, Yeax
movl Yebp, Yesp
popl %&bp
r et

e How are recursive procedure calls implemented?

CS 4400—Lecture 7

initially:
Yesp
0x800040

Y%ebp
0x800060

10

New to C?: Structures

In C, a user-defined type 1s accomplished with a st r uct .

Example: struct el ement {
char nane[10];
char synbol [5] ;
fl oat wei ght;
fl oat nass;

};

The new type 1s st ruct el enent.

Declaration of a structure variable
struct el enent el:

allocates contiguous storage for all structure members.

(10+5+2*sizeof (fl oat) bytes)
CS 4400—Lecture 7 11

More on Structures

e To access a member of the structure variable, use the

dot. operator. el. mass = 3.0;
strcpy(el. nane, “hydrogen”);

 Usetypedef to avoid the awkward two-word type.

t ypedef struct el enent {
char nane[10];
char synbol [5];
fl oat wei ght;
fl oat mass;
} ELT;

ELT el;

 What is the difference in a structure and an array?

CS 4400—Lecture 7 12

Pointers to Structures

e As with objects in C++, the pointer operator - > can be

used with pointers to structures.

ELT el;

ELT* elt ptr = ⪙

printf(“%”, (*elt _ptr).synbol);
printf(“%”, elt _ptr->synbol);

e A self-referential structure declaration has a member

that 1s a pointer to an instance of itself.

t ypedef struct node {
| nt dat a;
struct node* next:
} NODE;
X->next - >next - >data ...

CS 4400—Lecture 7 13

New to C?: Unions

Unions provide a way for a single object to be referenced

according to multiple types.

Example: uni on u {
char c;
int i[2];
doubl e v;
}oXx;
X.Vv = 4.5;
printf(“% %\n”, x.1[0], x.i[1]);

si zeof (uni on u) is the max size of any of its fields.

Technically, you should only read the variant you wrote.

CS 4400—Lecture 7 14

New to C?: Dynamic Memory Alloc

e For allocation of memory at run time, library routine

mal | oc 1s used.
e arguments specify number of bytes to be allocated

e return value 1s a pointer to the allocated memory or NULL

* mal | oc allocates one contiguous block (of specified size).

NODE* head mal | oc(si zeof (NCDE)); // inplicit
head- >next mal | oc(si zeof (NODE)); [// cast

e To release dynamically-allocated memory, the library

routine f r ee is used.
e argument 1s the pointer to the block of memory to be released

free(ptr):
CS 4400—Lecture 7 (p) 15

New to C?: Parameter Passing

e In C, parameters are passed by value.

» get the effect of call-by-reference by passing an address
e Array names are pointer constants.

e For a structure variable argument, 1ts value 1s 1ts content.
unlike Java, where a declaration ELT e means that the value

of e 1s a reference to an EL T object

e Which parameters may be modified from caller's view?
foo(char a, int b[], ELT c, float* d, NODE* e)

CS 4400—Lecture 7 16

New to C?: Function Pointers

e Like an array name, a function name 1s a pointer

constant.

 Why have function pointers? We can pass a function as

an argument to another function.

void sort(int (*fn)(int, int), int arr[], int size) {
I nt conmpare_incr(int a, int b) { return a < b; }
I nt conpare_decr(int a, int b) { return a > b; }

Int main(int argc, char* argv[]) {
int a[8] = {5, -8, 19 0, 2, 11, -90, 34},
I f(strcmp(argv[1], ascendlng or der”) == 0)
sort(conpare_incr, a,
el se
sort (conpare_decr, a, 8);
return O;

}

CS 4400—Lecture 7 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

