
CS 4400

Computer Systems

LECTURE 7

Representing procedure calls

New to C?: structs, unions, and functions

Procedure Calls

CS 4400—Lecture 7 2

● A procedure call involves passing data (via procedure

arguments and return value) and control from one part of

the program to another.

● Each invocation of a procedure must allocate and

deallocate memory in which to store its local variables.

● For IA32, very simple instructions transfer control:
● call, leave, ret

● The compiler must generate additional instructions for

passing arguments and allocation/deallocation of locals.

Run-Time Stack
● We use a stack as the LIFO data structure for holding local

variable instantiations.

● A “real” stack supports only push and pop operations.
● However, local variables may be pushed (upon function entry) and

popped (upon function exit) in large batches.

● Also, after pushing on many variables, we may want to continue

accessing variables deep in the stack.

● Thus, we treat the stack as a large array.

● The stack pointer is a special register (%esp) that always

points to the “top” of the stack.
CS 4400—Lecture 7 3

Stack Frame
● A procedure's stack frame (or activation record) is the area

on the stack devoted to its local variables, arguments,

return address, and other temporaries.

● Usually, run-time stacks start at high memory addresses and

grow to low memory addresses.
● What addresses are “allocated”? What addresses are “garbage”?

● Often, each computer architecture has a standard stack

frame layout, making it possible for procedures written in

one language to call procedures written in another.

CS 4400—Lecture 7 4

Stack Frame Layout

argument m

argument 1

..
.

argument n

argument 1
return address
saved %ebp

local variables

temporaries

saved registers
..
.

↑ higher
addresses

↓ lower
addresses

previous frame
“caller”

current frame
“callee”

“incoming”
arguments

“outgoing”
arguments

frame pointer →

stack pointer →

(%ebp + 4)
(%ebp + 8)

(%ebp + 4n + 4)

(%ebp - 4)

(%esp - 4)

More on Stack Frames

CS 4400—Lecture 7 6

● Because the stack pointer can move while a procedure is

executing, information is accessed using its address

relative to the frame pointer.

● When possible, local variables are stored in registers.

Locals must reside in the stack when:
● there are not enough registers

● a local variable has its address taken

● a local variable is an array or structure

● The return address is the address of the next instruction

after the call instruction in the caller.

Transferring Control

CS 4400—Lecture 7 7

● call label and call *operand
● push the return address on the stack (%eip + 4)

● jump to the instruction indicated by label (or operand)

● leave
● prepare stack so that stack pointer points to return address

● equivalent to movl %ebp,%esp
 popl %ebp

● ret
● pops return address from stack and jumps to that address

Register Usage

CS 4400—Lecture 7 8

● All procedures must share a single set of registers.

● It is critical that the callee does not overwrite the contents

of registers that the caller is still planning to use.

● caller-save registers: %eax, %edx, %ecx

callee-save registers: %ebx, %esi, %edi

● Example: int P(int x) {
 int y = x * x;
 int z = Q(y);
 return y + z;
}

In what ways can P
ensure that the value of
y is available after Q
returns? What is most
efficient?

p
ro
lo
g
u
e

int swap_add(int *xp, int *yp) {
 int x = *xp;
 int y = *yp;

 *xp = y;
 *yp = x;
 return x + y;
}

int caller() {
 int arg1 = 534;
 int arg2 = 1057;
 int sum = swap_add(&arg1, &arg2);
 int diff = arg1 – arg2;

 return sum * diff;
}

caller:
 ...
 leal -4(%ebp),%eax
 pushl %eax
 leal -8(%ebp),%eax
 pushl %eax
 call swap_add
 movl %eax,%edx
 ...
swap_add:
 pushl %ebp
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp),%edx
 movl 12(%ebp),%ecx
 movl (%edx),%ebx
 movl (%ecx),%eax
 movl %eax,(%edx)
 movl %ebx,(%ecx)
 addl %ebx,%eax
 popl %ebx
 movl %ebp,%esp
 popl %ebp
 ret

e
p
ilo

g
u
e

saved %ebp
arg2
arg1
&arg2
&arg1

0
-4

-8
-12
-16

%ebp

%esp

just before call

saved %ebp
arg2
arg1
&arg2
&arg1

+12
+8

%ebp

%esp in body of swap_add

return address+4
saved %ebp
saved %ebx

0
-4

Exercise: Procedures

CS 4400—Lecture 7 10

● Where are the locals stored?

● What is the value of %esp just

 before the call?

● How does run-time stack look?

● How are recursive procedure calls implemented?

int proc(void) {
 int x, y;
 scanf(“%x %x”, &y, &x);
 return x-y;
}

proc:
 pushl %ebp
 movl %esp,%ebp
 subl $24,%esp
 addl $-4,%esp
 leal -4(%ebp),%eax
 pushl %eax
 leal -8(%ebp),%eax
 pushl %eax
 pushl $.LC0 ;string
 call scanf
 movl -8(%ebp),%eax
 movl -4(%ebp),%edx
 subl %eax,%edx
 movl %edx,%eax
 movl %ebp,%esp
 popl %ebp
 ret

initially:
%esp
0x800040

%ebp
0x800060

New to C?: Structures

CS 4400—Lecture 7 11

● In C, a user-defined type is accomplished with a struct.

● Example: struct element {
 char name[10];
 char symbol[5];
 float weight;
 float mass;
};

● The new type is struct element.

● Declaration of a structure variable

struct element e1;

allocates contiguous storage for all structure members.
(10 + 5 + 2 * sizeof(float) bytes)

More on Structures

CS 4400—Lecture 7 12

● To access a member of the structure variable, use the

dot . operator. e1.mass = 3.0;
strcpy(e1.name, “hydrogen”);

● Use typedef to avoid the awkward two-word type.
typedef struct element {
 char name[10];
 char symbol[5];
 float weight;
 float mass;
} ELT;

ELT e1;

● What is the difference in a structure and an array?

Pointers to Structures

CS 4400—Lecture 7 13

● As with objects in C++, the pointer operator -> can be

used with pointers to structures.
ELT e1;
ELT* elt_ptr = &e1;
printf(“%s”, (*elt_ptr).symbol);
printf(“%s”, elt_ptr->symbol);

● A self-referential structure declaration has a member

 that is a pointer to an instance of itself.
typedef struct node {
 int data;
 struct node* next;
} NODE;
... x->next->next->data ...

New to C?: Unions

CS 4400—Lecture 7 14

● Unions provide a way for a single object to be referenced

according to multiple types.

● Example: union u {
 char c;
 int i[2];
 double v;
} x;
x.v = 4.5;
printf(“%d %d\n”, x.i[0], x.i[1]);

● sizeof(union u) is the max size of any of its fields.

● Technically, you should only read the variant you wrote.

● For allocation of memory at run time, library routine

malloc is used.
● arguments specify number of bytes to be allocated

● return value is a pointer to the allocated memory or NULL

● malloc allocates one contiguous block (of specified size).
NODE* head = malloc(sizeof(NODE)); // implicit
head->next = malloc(sizeof(NODE)); // cast

● To release dynamically-allocated memory, the library

routine free is used.
● argument is the pointer to the block of memory to be released

free(ptr);

New to C?: Dynamic Memory Alloc

CS 4400—Lecture 7 15

New to C?: Parameter Passing

● In C, parameters are passed by value.
● get the effect of call-by-reference by passing an address

● Array names are pointer constants.

● For a structure variable argument, its value is its content.

 unlike Java, where a declaration ELT e means that the value

 of e is a reference to an ELT object

● Which parameters may be modified from caller's view?
foo(char a, int b[], ELT c, float* d, NODE* e)

CS 4400—Lecture 7 16

New to C?: Function Pointers
● Like an array name, a function name is a pointer

constant.

● Why have function pointers? We can pass a function as

an argument to another function.
void sort(int (*fn)(int, int), int arr[], int size) { ... }
int compare_incr(int a, int b) { return a < b; }
int compare_decr(int a, int b) { return a > b; }

int main(int argc, char* argv[]) {
 int a[8] = {5, -8, 19, 0, 2, 11, -90, 34};
 if(strcmp(argv[1], “ascending_order”) == 0)
 sort(compare_incr, a, 8);
 else
 sort(compare_decr, a, 8);
 return 0;
}

CS 4400—Lecture 7 17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

