
CS 4400

Computer Systems

LECTURE 3

Representing integers

Integer arithmetic



Encoding Integers
●  Two different ways bits can be used to encode integers:

● unsigned – only nonnegative numbers represented

● signed – negative, zero, and positive values represented

●  Both encodings represent a finite range of integers.

  

  

type declaration (C)  min max

char -128 127
unsigned char 0 255

short -32768 32767
unsigned short 0 65535

int -2147483648 2147483647
unsigned int 0 4294967295
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Unsigned Integers
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●  Let vector x = [x
w-1

, x
w-2

,..., x
0
] denote a w-bit integer value.

●  Treat x as a number written in binary notation to obtain 

the unsigned interpretation.  B2U
w
( x ) = ∑ x

i 
2i

●  UMin
w 

= [00...00] = 0

●  UMax
w 

= [11...11] = 2w-1

●  B2U
w
: {0,1}w → {0, ..., 2w-1}

●  Bijection—associates a unique value to each w-bit vector.

w-1

i=0



Signed Integers
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●  The most common computer representation of signed 

integers is two's complement.
B2T

w
( x ) = –x

w-1 
2w-1 + ∑ x

i 
2i

●  Sign bit—the MSB, 1: negative and 0: nonnegative.

●  TMin
w 

= [10...00] = –2w-1

●  TMax
w 

= [01...11] = 2w-1 – 1

●  B2T
w
: {0,1}w → {–2w-1, ..., 2w-1 – 1}

●  Is B2T
w
 a bijection?

w-2

i=0



Exercises:  Encoding Integers
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Let w = 4.

Hex Binary B2U
w

B2T
w

A [1010] 23 + 21 = 10 –23 + 21 = –6

B

C  

D  

E 

F 



Clicker Question
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Let w = 8.  Compute B2T
w
 for hex AE.

A.    -84

B.    -82

C.    -62

D.    84

E.    174

F.     none of the above

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.



More on Two's Complement

CS 4400—Lecture 3      7

●  The two's complement range is asymmetric.  

●  UMax
w
 > 2 * TMax

w
 .  Why?

●  Both encodings represent numeric value 0 the same way.

●  The C standard does not require two's complement for 

signed integers.
● Nearly all machines use it anyway.  Does this affect portability?

● See limits.h for constants delimiting ranges of different          

integer data types for a particular compiler and machine.

● Other ways of representing signed integers?



Clicker Question

CS 4400—Lecture 3      8

Which of the following expressions is equivalent to ~x ?

A.    x

B.    -x

C.    x + 1

D.    -x + 1

E.    -x – 1

F.    none of the above



Signed-Unsigned Conversions
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●  Since both B2U
w
 and B2T

w
 are bijections, they have 

well-defined inverses, U2B
w
 and T2B

w
.

●  Consider  U2T
w
( x ) = B2T

w
(U2B

w
( x )).

● Takes number between 0 and 2w-1, yields number between –2w-1   
and 2w-1–1.

● Both numbers have identical bit representations.

●  Conversely, consider T2U
w
( x ) = B2U

w
(T2B

w
( x )).

●  Example (8-bit):  [10101010], 170 unsigned, -86 signed

●  How do these functions affect signed and unsigned in C?



Unsigned and Signed in C
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●  In C, values are signed unless
       - indicated with type (e.g., unsigned short)
       - U in constant (e.g., 1234U)
       - doesn't fit in signed long
       - starts 0x and doesn't fit in signed int

●  Use conversion codes %d (or %i), %u to print signed and 
unsigned decimal values, respectively.

●  When signed and unsigned values are mixed in 
expressions, the signed values are promoted to unsigned.

int x = -1;  

unsigned ux = (unsigned) x;  // ux is UMax_w



Example:  Unsigned and Signed
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unsigned_signed.c

#include <stdio.h>

int main(void) {
  int tx, ty;
  unsigned ux, uy;

  tx = -96;
  uy = 15;

  ux = (unsigned) tx;  // explicit cast to unsigned
  ty = uy;             // implicit cast to signed

  printf(“%d, %d, %u, %u\n”, tx, ty, ux, uy);

  printf(“%d\n”, ux + ty);  // WHY = -81?? 

  return 0;
}

unix> gcc unsigned_signed.c
unix> ./a.out
-96, 15, 4294967200, 15
-81



Clicker Question
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Assume x and y are arbitrary int values.

(x > 0) || (-x >= 0)

A.    always true

B.    sometimes true

C.    always false

D.    I don't know



Expanding Bit Representations
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●  A common operation is to convert between integers of 

different word sizes, retaining the same numeric value.

●  To convert from smaller word size to larger: 
●  for unsigned, simply add leading 0s – zero extension

●  for signed, add leading Xs such that X=MSB – sign extension

●  Example:  
short sx = 12345;   // 0x3039  

short sy = -12345;  // 0xCFC7

int x = sx;         // 0x00003039

int y = sy;         // 0xFFFFCFC7



Truncating Bit Representations
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●  To convert from larger word size to smaller (w-bit to 

k-bit, where w > k):

● drop high-order w-k bits – truncation

●  Truncation of a number can alter its value, a form of 

overflow.

●  For unsigned x, truncation to k-bit equivalent to x mod 2k. 

 For signed x?

short x = (int) 12345;  // 0x00003039, x is 12345 

short y = (int) 53191;  // 0x0000CFC7, y is -12345



Advice on Unsigned
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●  Implicit casts are tricky (because they are easy to 

overlook) and can lead to bugs.

●  To avoid such bugs, one might consider using only 

signed values.
●  Few languages other than C support unsigned values.

●  Java supports only signed values, requires two's complement,     

 and guarantees that >> is an arithmetic shift.

●  Unsigned values are very useful when thought of as 

a collection of bits (flags), with no math interpretation.



Unsigned Addition
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●  Consider w-bit unsigned values x and y, 0 ≤ x, y ≤ 2w-1.
●  Representing the sum could require w+1 bits, 0 ≤ x + y ≤ 2w+1-2

●  In math, we cannot place any bound on the word size 

required to fully represent the results of arithmetic ops.

●  Unsigned arithmetic is a form of modulo arithmetic.
●  Unsigned addition is equivalent to (x + y) mod 2w.

●  unsigned_add(x, y) = x + y, if x + y < 2w

●  unsigned_add(x, y) = x + y - 2w, if 2w ≤ x + y < 2w+1

●  Example:  unsigned short x = 65530 + 6;  // x is 0



Overflow
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●  An arithmetic operation is said to overflow when the full 

integer result cannot fit within the limits of the data type.

●  In C, overflow is not signaled as an error.
●  Some types of overflow may be signaled with a warning.

●  We know that overflow has occurred during unsigned 

integer addition s = x + y, if s < x (equivalently, if s < y).

●  Example:  unsigned x = ~0;

unsigned y = 2;

unsigned s = x + y;

if(s < x) { ... }    // overflow



Two's Complement Addition
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●  Consider w-bit values x and y, -2w-1 ≤ x, y ≤ 2w-1-1.
●  Representing the sum could require w+1 bits, -2w ≤ x + y ≤ 2w-2

●  We must truncate the result to w bits. 
●  However, this is not as familiar as modulo arithmetic.

●  The w-bit sum is the same as for unsigned addition.

U2T
w
( [(x + y) mod 2w] ) 

●  Both positive and negative overflow can occur.

●  Example:  int x = 1 << 30;

int y = x + x; // y is -2147483648

y = -++x -x; // y is 2147483646



Cases of Overflow
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●  Negative overflow—if -2w ≤ x + y < -2w-1. 
●  both x and y must be negative

●  a nonnegative integer is the result (counter to usual math)

●  twoscomp_add(x, y) = x + y + 2w

●  No overflow—if -2w-1 ≤ x + y < 2w-1. 
●  twoscomp_add(x, y) = x + y

●  Positive overflow—if 2w-1 ≤ x + y < 2w. 
●  both x and y must be positive

●  a negative integer is the result (counter to usual math)

●  twoscomp_add(x, y) = x + y - 2w



Unsigned Multiplication

●  Consider w-bit unsigned values x and y, 0 ≤ x, y ≤ 2w-1.
●  The product could require 2w bits, 0 ≤ x * y ≤ (2w-1)2

●  We must truncate the result to w bits. 
●  In C, the low-order w bits are retained as the result.

●  Equivalent to computing the product mod 2w.

●  Example: unsigned short x = 1 << 15;  // 32768

x *= 3;   // 32768
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Two's Complement Multiplication
●  Consider w-bit values x and y, -2w-1 ≤ x, y ≤ 2w-1-1.

●  The product could require 2w bits, -22w-2 + 2w-1 ≤ x * y ≤ 22w-2  

●  We must truncate the result to w bits. 
●  However, this is not as familiar as for unsigned multiplication.

●  The w-bit product is the same as for unsigned multiply.

U2T
w
( [(x * y) mod 2w] ) 

●  Example:

  

  

short x = 1 << 14;         // 16384

unsigned short y = x * 3;   // 49152

x *= 3;        // -16384
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Multiplication by Powers of Two
●  Integer multiplication used to be slow (≥ 12 cycles)

  compared to other integer operations. 
●  addition, subtraction, bit-level ops, and shifts—1 cycle each

●  An important (compiler) optimization was to replace 

multiplications by constant factors with shifts and adds.

●  Let x be an integer.  For any k ≥ 0, x * 2k is equivalent to 

adding k 0's to the right of the bit representation of x.

●  Example: unsigned int = 11 << 3; // 88

int = -11 << 3; // -88
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Division by Powers of Two
●  Integer division was also slow (≥ 30 cycles).

●  Let x be an unsigned integer.  For any k ≥ 0, x / 2k is 

equivalent to adding k 0's to the left of the bit rep for x.
●  logical shift

●  Let x be an signed integer.  For any k ≥ 0, x / 2k is 

equivalent to adding k b's to the left of the bit rep for x.
●  b is the value of x's MSB, arithmetic shift

●  What if x < 0?

●  Example:  
int x = 55 >> 3;     // 6

int y = -55 >> 3;    // -7 (should be -6)
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Biasing
●  If x < 0, integer division should round negative results up 

toward zero.  Right shifting does not accomplish this.

●  To correct for this improper rounding, we must “bias” the 

value before shifting.
●  First add 2k-1 to x.

●  For x, represented with two's complement and using

arithmetic shifts, x / 2k is equivalent to 
(x<0 ? (x + (1<<k)-1) : x) >> k

●  Example:  int y = (-55 + (1 << 3) – 1) >> 3;  // -6
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Clicker Question
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Assume x and y are arbitrary int values.

((y - x) << 3) - y - x == 7*y - 9*x

A.    always true

B.    sometimes true

C.    always false

D.    I don't know
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