
CS 4400

Computer Systems

LECTURE 3

Representing integers

Integer arithmetic

Encoding Integers
● Two different ways bits can be used to encode integers:

● unsigned – only nonnegative numbers represented

● signed – negative, zero, and positive values represented

● Both encodings represent a finite range of integers.

type declaration (C) min max

char -128 127
unsigned char 0 255

short -32768 32767
unsigned short 0 65535

int -2147483648 2147483647
unsigned int 0 4294967295

CS 4400—Lecture 3 2

Unsigned Integers

CS 4400—Lecture 3 3

● Let vector x = [x
w-1

, x
w-2

,..., x
0
] denote a w-bit integer value.

● Treat x as a number written in binary notation to obtain

the unsigned interpretation. B2U
w
(x) = ∑ x

i
2i

● UMin
w

= [00...00] = 0

● UMax
w

= [11...11] = 2w-1

● B2U
w
: {0,1}w → {0, ..., 2w-1}

● Bijection—associates a unique value to each w-bit vector.

w-1

i=0

Signed Integers

CS 4400—Lecture 3 4

● The most common computer representation of signed

integers is two's complement.
B2T

w
(x) = –x

w-1
2w-1 + ∑ x

i
2i

● Sign bit—the MSB, 1: negative and 0: nonnegative.

● TMin
w

= [10...00] = –2w-1

● TMax
w

= [01...11] = 2w-1 – 1

● B2T
w
: {0,1}w → {–2w-1, ..., 2w-1 – 1}

● Is B2T
w
 a bijection?

w-2

i=0

Exercises: Encoding Integers

CS 4400—Lecture 3 5

Let w = 4.

Hex Binary B2U
w

B2T
w

A [1010] 23 + 21 = 10 –23 + 21 = –6

B

C

D

E

F

Clicker Question

CS 4400—Lecture 3 6

Let w = 8. Compute B2T
w
 for hex AE.

A. -84

B. -82

C. -62

D. 84

E. 174

F. none of the above

If you have ResponseCard clicker, channel is 41.

If you are using ResponseWare, session id is CS1400U.

More on Two's Complement

CS 4400—Lecture 3 7

● The two's complement range is asymmetric.

● UMax
w
 > 2 * TMax

w
 . Why?

● Both encodings represent numeric value 0 the same way.

● The C standard does not require two's complement for

signed integers.
● Nearly all machines use it anyway. Does this affect portability?

● See limits.h for constants delimiting ranges of different

integer data types for a particular compiler and machine.

● Other ways of representing signed integers?

Clicker Question

CS 4400—Lecture 3 8

Which of the following expressions is equivalent to ~x ?

A. x

B. -x

C. x + 1

D. -x + 1

E. -x – 1

F. none of the above

Signed-Unsigned Conversions

CS 4400—Lecture 3 9

● Since both B2U
w
 and B2T

w
 are bijections, they have

well-defined inverses, U2B
w
 and T2B

w
.

● Consider U2T
w
(x) = B2T

w
(U2B

w
(x)).

● Takes number between 0 and 2w-1, yields number between –2w-1
and 2w-1–1.

● Both numbers have identical bit representations.

● Conversely, consider T2U
w
(x) = B2U

w
(T2B

w
(x)).

● Example (8-bit): [10101010], 170 unsigned, -86 signed

● How do these functions affect signed and unsigned in C?

Unsigned and Signed in C

CS 4400—Lecture 3 10

● In C, values are signed unless
 - indicated with type (e.g., unsigned short)
 - U in constant (e.g., 1234U)
 - doesn't fit in signed long
 - starts 0x and doesn't fit in signed int

● Use conversion codes %d (or %i), %u to print signed and
unsigned decimal values, respectively.

● When signed and unsigned values are mixed in
expressions, the signed values are promoted to unsigned.

int x = -1;

unsigned ux = (unsigned) x; // ux is UMax_w

Example: Unsigned and Signed

CS 4400—Lecture 3 11

unsigned_signed.c

#include <stdio.h>

int main(void) {
 int tx, ty;
 unsigned ux, uy;

 tx = -96;
 uy = 15;

 ux = (unsigned) tx; // explicit cast to unsigned
 ty = uy; // implicit cast to signed

 printf(“%d, %d, %u, %u\n”, tx, ty, ux, uy);

 printf(“%d\n”, ux + ty); // WHY = -81??

 return 0;
}

unix> gcc unsigned_signed.c
unix> ./a.out
-96, 15, 4294967200, 15
-81

Clicker Question

CS 4400—Lecture 3 12

Assume x and y are arbitrary int values.

(x > 0) || (-x >= 0)

A. always true

B. sometimes true

C. always false

D. I don't know

Expanding Bit Representations

CS 4400—Lecture 3 13

● A common operation is to convert between integers of

different word sizes, retaining the same numeric value.

● To convert from smaller word size to larger:
● for unsigned, simply add leading 0s – zero extension

● for signed, add leading Xs such that X=MSB – sign extension

● Example:
short sx = 12345; // 0x3039

short sy = -12345; // 0xCFC7

int x = sx; // 0x00003039

int y = sy; // 0xFFFFCFC7

Truncating Bit Representations

CS 4400—Lecture 3 14

● To convert from larger word size to smaller (w-bit to

k-bit, where w > k):

● drop high-order w-k bits – truncation

● Truncation of a number can alter its value, a form of

overflow.

● For unsigned x, truncation to k-bit equivalent to x mod 2k.

 For signed x?

short x = (int) 12345; // 0x00003039, x is 12345

short y = (int) 53191; // 0x0000CFC7, y is -12345

Advice on Unsigned

CS 4400—Lecture 3 15

● Implicit casts are tricky (because they are easy to

overlook) and can lead to bugs.

● To avoid such bugs, one might consider using only

signed values.
● Few languages other than C support unsigned values.

● Java supports only signed values, requires two's complement,

 and guarantees that >> is an arithmetic shift.

● Unsigned values are very useful when thought of as

a collection of bits (flags), with no math interpretation.

Unsigned Addition

CS 4400—Lecture 3 16

● Consider w-bit unsigned values x and y, 0 ≤ x, y ≤ 2w-1.
● Representing the sum could require w+1 bits, 0 ≤ x + y ≤ 2w+1-2

● In math, we cannot place any bound on the word size

required to fully represent the results of arithmetic ops.

● Unsigned arithmetic is a form of modulo arithmetic.
● Unsigned addition is equivalent to (x + y) mod 2w.

● unsigned_add(x, y) = x + y, if x + y < 2w

● unsigned_add(x, y) = x + y - 2w, if 2w ≤ x + y < 2w+1

● Example: unsigned short x = 65530 + 6; // x is 0

Overflow

CS 4400—Lecture 3 17

● An arithmetic operation is said to overflow when the full

integer result cannot fit within the limits of the data type.

● In C, overflow is not signaled as an error.
● Some types of overflow may be signaled with a warning.

● We know that overflow has occurred during unsigned

integer addition s = x + y, if s < x (equivalently, if s < y).

● Example: unsigned x = ~0;

unsigned y = 2;

unsigned s = x + y;

if(s < x) { ... } // overflow

Two's Complement Addition

CS 4400—Lecture 3 18

● Consider w-bit values x and y, -2w-1 ≤ x, y ≤ 2w-1-1.
● Representing the sum could require w+1 bits, -2w ≤ x + y ≤ 2w-2

● We must truncate the result to w bits.
● However, this is not as familiar as modulo arithmetic.

● The w-bit sum is the same as for unsigned addition.

U2T
w
([(x + y) mod 2w])

● Both positive and negative overflow can occur.

● Example: int x = 1 << 30;

int y = x + x; // y is -2147483648

y = -++x -x; // y is 2147483646

Cases of Overflow

CS 4400—Lecture 3 19

● Negative overflow—if -2w ≤ x + y < -2w-1.
● both x and y must be negative

● a nonnegative integer is the result (counter to usual math)

● twoscomp_add(x, y) = x + y + 2w

● No overflow—if -2w-1 ≤ x + y < 2w-1.
● twoscomp_add(x, y) = x + y

● Positive overflow—if 2w-1 ≤ x + y < 2w.
● both x and y must be positive

● a negative integer is the result (counter to usual math)

● twoscomp_add(x, y) = x + y - 2w

Unsigned Multiplication

● Consider w-bit unsigned values x and y, 0 ≤ x, y ≤ 2w-1.
● The product could require 2w bits, 0 ≤ x * y ≤ (2w-1)2

● We must truncate the result to w bits.
● In C, the low-order w bits are retained as the result.

● Equivalent to computing the product mod 2w.

● Example: unsigned short x = 1 << 15; // 32768

x *= 3; // 32768

CS 4400—Lecture 3 20

Two's Complement Multiplication
● Consider w-bit values x and y, -2w-1 ≤ x, y ≤ 2w-1-1.

● The product could require 2w bits, -22w-2 + 2w-1 ≤ x * y ≤ 22w-2

● We must truncate the result to w bits.
● However, this is not as familiar as for unsigned multiplication.

● The w-bit product is the same as for unsigned multiply.

U2T
w
([(x * y) mod 2w])

● Example:

short x = 1 << 14; // 16384

unsigned short y = x * 3; // 49152

x *= 3; // -16384

CS 4400—Lecture 3 21

Multiplication by Powers of Two
● Integer multiplication used to be slow (≥ 12 cycles)

 compared to other integer operations.
● addition, subtraction, bit-level ops, and shifts—1 cycle each

● An important (compiler) optimization was to replace

multiplications by constant factors with shifts and adds.

● Let x be an integer. For any k ≥ 0, x * 2k is equivalent to

adding k 0's to the right of the bit representation of x.

● Example: unsigned int = 11 << 3; // 88

int = -11 << 3; // -88

CS 4400—Lecture 3 22

Division by Powers of Two
● Integer division was also slow (≥ 30 cycles).

● Let x be an unsigned integer. For any k ≥ 0, x / 2k is

equivalent to adding k 0's to the left of the bit rep for x.
● logical shift

● Let x be an signed integer. For any k ≥ 0, x / 2k is

equivalent to adding k b's to the left of the bit rep for x.
● b is the value of x's MSB, arithmetic shift

● What if x < 0?

● Example:
int x = 55 >> 3; // 6

int y = -55 >> 3; // -7 (should be -6)

CS 4400—Lecture 3 23

Biasing
● If x < 0, integer division should round negative results up

toward zero. Right shifting does not accomplish this.

● To correct for this improper rounding, we must “bias” the

value before shifting.
● First add 2k-1 to x.

● For x, represented with two's complement and using

arithmetic shifts, x / 2k is equivalent to
(x<0 ? (x + (1<<k)-1) : x) >> k

● Example: int y = (-55 + (1 << 3) – 1) >> 3; // -6

CS 4400—Lecture 3 24

Clicker Question

CS 4400—Lecture 3 25

Assume x and y are arbitrary int values.

((y - x) << 3) - y - x == 7*y - 9*x

A. always true

B. sometimes true

C. always false

D. I don't know

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

