Study Group

* Mondays and Wednesdays 11:00 AM — 1.00PM

* Where: Undergraduate lounge near the CS off ce
iIn the MEB building.

* Questions contact Zach Lewisviae-mall:
Gonzogab6@gmail.com

* Even if you cannot make it for the whole time,
still feel free to stop by when you're free.

mailto:Gonzoga56@gmail.com

CS 4400

Computer Systems

LECTURE 2

Information storage

Bit-level operations

New to C?

Clicker Question

If you have ResponseCard clicker, channel is 41.
If you are using ResponseWare, session id is CS1400U.

What does the following bit pattern represent?
1000 1000 1000 1000 0001 0001 0001 0001

an unsigned integer > 2°'
a negative integer
a normalized floating-point value

four characters

mo 0w >

an x86 assembly-language instruction

T

I don't know

CS 4400—Lecture 2 3

Bits
e All information stored by computers reduces to groups of
two-valued signals, bits.

e Only when we apply some interpretation to the different

possible bit patterns does a group of bits have meaning.

e Three important encodings

e unsigned integers: x >0

e two's complement integers: X may be positive, negative, or 0

 floating-point numbers: approximate real values

* We can represent the values of any finite set.

CS 4400—Lecture 2

[Limitations

* Due to using a limited number of bits to encode a

value, overflow (or underflow) can occur.

Int x = 1000000000;
Int y = 2000000000;

il nt z

X +y; [l zis -1294967296

e Computer arithmetic does not follow every rule of

integer arithmetic.

* The sum of two positive integers is a positive integer. X

 However, computer arithmetic is consistent.

CS 4400—Lecture 2

Why Do We Care?

* By understanding

 the ranges of values that can be represented and
* the properties of arithmetic operations,

we can write programs that
e work correctly over the full range of values and

e are portable across different machines and compilers.

e Learning how to implement arithmetic operations by
directly manipulating the bits that represent numbers 1s
critical to understanding the machine-level code generated.

CS 4400—Lecture 2 6

Addressing Bytes

Bits are accessible in 8-bit blocks, bytes.

To a machine-level program, memory 1s simply a very

large array of bytes, virtual memory.

A unique number identifies each such byte, virtual

memory address.

The set of all possible addresses, the virtual memory

address space, 1s merely conceptual.

The sophisticated mapping of virtual memory addresses

to physical (i.e., real) addresses will be covered later.
CS 4400—Lecture 2 7

Binary Notation

Each binary digit has a position p, starting with the least-
significant bit (LSB) at p = 0 and proceeding to the most-
significant bit (MSB) at p = bitCount - 1.

Written with LSB on the right and MSB on the left.

If the bit at position p 1s 1, 1t contributes 2? to the decimal

value of the number being represented.

— i1 %k MHbitCount - 1 . % N1 > % N0
x=bit .~ *2 +..+bit *2'+bit *2

Decimal value 23 1n binary notation?

CS 4400—Lecture 2 8

Hexadecimal Notation

Base 16, using digits 0-9 and characters A-F to represent

the 16 possible values. hex decimal binary
0 0 0000
Easiest to convert from binary in ! 1 S
2 2 0010
4-bit groups. 3 3 0011
4 4 0100
) . 5 5 0101
In C, numeric constants starting 6 6 0110
i . 7 7 0111
with Ox or OX are interpreted as g g 1000
i i . 0 9 1001
being in hexadecimal. A 10 1010
. . B 11 1011
Decimal value 23 1n hex? C 12 1100
)] D 13 1101
Binary value 10011100 1n hex? E 14 1110
CS 4400—Lecture 2 F 15 1111

Conversions

e Seedecinal to hex.c
e Seehex to decimal.c
e See bl nary_conversi ons. c

(All sample code 1s provided on the class website.)

CS 4400—Lecture 2 10

Words

Every computer has a word size, which indicates the size

of integer and pointer data.

How does the word size determine the maximum of the

virtual address space?

For a machine with an n-bit word size, virtual addresses

can range from 0 to 2"-1.

For computers that are 32-bit, the virtual address space 1s

limited to 4 GB. What's the limit for 64-bit?

CS 4400—Lecture 2 11

Data Sizes

e Computers and compilers support multiple data formats

in different lengths.

e C supports data formats for both integers and floating-pt.

typical 32-bit | typical 64-bit
char 1 1
short 1 nt 2 2
| nt 4 4
| ong | nt 4 8
char * 4 8
fl oat 4 4
doubl e 8 8

CS 4400—Lecture 2 12

Portability

One aspect of portability 1s to make programs insensitive

to the exact sizes of different data types.

Because 32-bit machines have been the standard for so

long, older programs assume the “typical 32-bit” sizes.

With the increasing prominence of 64-bit machines,

hidden word dependences have surfaced as bugs.

For example, using an i nt to store a pointer can be
problematic.

CS 4400—Lecture 2 13

Addressing Multi-Byte Data

* For an object that spans multiple bytes, we must consider
e how to address the object and

* how the bytes are ordered.
e The object's address 1s that of the smallest of the bytes.

* For example, an i nt stored in four bytes at memory
locations 0x100, 0x101, 0x102, and 0x103 has
address 0x100.

CS 4400—Lecture 2 14

Two Byte Ordering Conventions

Consider a w-bit integer with bit representation

x X o ..x x, withMSBx andLSBx,

w-1 ""w-2 °

Assume w 1s a multiple of 8, to group the bits 1n bytes.

The most-significant byte hasbitsx x _..x _x ..

The least-significant byte has bits x_ x,_ ... x, x,.

Little endian—the least-significant byte comes first.

Big endian—the most-significant byte comes first.

CS 4400—Lecture 2 15

Example: Byte Order

o [ittle endian: X, X, o X X X X X X XX L XX

23 "22°° 17 716 °°°

e Bigendian: .. x X .X_ X X X, ..X X X X ..X X

23 M2 C 16 715 9 8 7 6 1 %0
e Consider I nt x = 0x01234567; [/ 19088743
Il nt* addr = &x; [/ 0x100

0x100 Ox101 0Ox102 0x103

2?9 endian . . . 01 23 45 67

?? endian | | . 67 45 23 01

 When is byte order an 1ssue for the programmer?

CS 4400—Lecture 2 16

Representing Strings
In C, a string 1s an array of characters terminated with a
special character ' \ 0' (the null character, value 0x0).

Each character is simply an integer code (usually ASCII).

Example 1: “hel | 0”
68 65 6C 6C 6F 00

Example 2: “ 1234567
31 32 33 34 35 36 37 00

These examples are independent of byte ordering and

word size. Why?

CS 4400—Lecture 2 17

Representing Code

* From the perspective of the machine, a program is simply

a sequence of bytes.

* Example: | . sun(int x, int y) {

return x + vy;

}

Linux 05 89 e5 8b 45 0Oc 03 45 08 89 ec 5d c3
Sun 8l ¢c3 e0 08 90 02 00 09

e Binary code is seldom portable across different machines.

CS 4400—Lecture 2 18

Clicker Question

Suppose that
I Nt X = OXAA
Int y = 0x55;
What is the result of the following C expression?
X &Y

E. 1don't know

CS 4400—Lecture 2

Clicker Question

Suppose that
I Nt X = OXAA
Int y = 0x55;
What 1s the result of the following C expression?
x |1y

P P O

, only the value of x is considered

OxXFF
E. Idon't know

CS 4400—Lecture 2

A.
B.
C.
D.

Boolean Algebra

By encoding values True and False as 1 and 0, Boolean

algebra captures the properties of prepositional logic.

- A0 Voo
0 1 0 0 0 0 0 1
10 10 1 L1
(NOT, ~ in C) (AND, & in C) (OR, | in C)

@ o

0 0 1

110

CS 4400—Lecture 2

21

(XOR, ” in C)

Boolean Algebra Properties (1)

Commutativity a |

Associativity

Distributivity

Identity

Annihilator (maps to zero)

Cancellation

CS 4400—Lecture 2

(a |

b)

b =b |

C

(a & b) &c

a & (b |

C)

al| (b &c)

al| o

~(~a)

a

a

a &b=Db&a
a| (b]| c)
a & (b & c)

(a &b) | (a & c)
(a] b) &(a | c)
a &l =a
a &0=20

22

Boolean Algebra Properties (2)

Complement a | ~a =1
Idempotency a & a = a
Absorption a| (a &b) =
a & (a| b) =
DeMorgan's laws ~(a & b) =

CS 4400—Lecture 2

~(a |

b)

~a & ~b

23

Operations in C

e Seebit | evel _ops.c

e Seel ogical _ops.c
» Be careful not to confuse bit-level and logical ops.

e What is short-circuit evaluation?

e Seeshift _ops.c
 Left shift always fills with Os.
e Right shift may be logical (fills w/0s) or arithmetic (fills
w/value of MSB).

CS 4400—Lecture 2 24

New to C?: Pointers

You are already familiar with accessing variables using

their names (same as in Java). Il nt num = 10;

We can also access numthrough a second variable that

holds the address of variable num

The pointer variable pt r holds the address of num

Int* ptr = &um

& immediately to the left of a variable gives an expression

whose value 1s the variable's virtual memory address.

CS 4400—Lecture 2 25

Pointers and Addresses

e Suppose the address of numis 0x9640.

* ptr “points to” num ptr = &nun
num ptr
a " 0x9640 T
0x9640 ‘!//

e To access the contents of a cell whose addresses 1s in

pt r, dereference the pointer using *ptr. *ptr = 3;

num ptr
e "10x9640 "
0x9640 ‘p/

CS 4400—Lecture 2 26

Declaring Pointers

* To declare pt r as a pointer variable that can hold the

address of an | nt variable: 1 nt* ptr;
e The data type is 1 nt *, the variable is pt r .

e Be careful when declaring multiple variables on the same

line. In
Int* ptrl, ptr2;

ptr 2 isaregular I nt. To declare two pointers:
Int *ptrl, *ptr?2;

CS 4400—Lecture 2 27

Example:

float numl = 1.5;
float nunk = 8. 3;
fl oat tenp;
float* flt ptr;
flt _ptr = &uni;
tenp = *flt _ptr;
*flt _ptr = nung;

nunk = tenp;

CS 4400—Lecture 2

Swapping Variables

28

Example. Swapping Variables

float numlL = 1.5; Tmﬂ
5

float nun = 8.3; %
fl oat tenp;

float* flt ptr;

flt ptr = &nunt;
tenp = *flt _ptr;

*flt _ptr = nunk;

nunk = tenp;

CS 4400—Lecture 2

Example. Swapping Variables

float numl = 1.5;
float nunk = 8. 3;
fl oat tenp;
float* flt ptr;
flt ptr = &nunt;
tenp = *flt _ptr;
*flt _ptr = nunk;

nunk = tenp;

CS 4400—Lecture 2

1293

num 1

1.5

7757

num?2

8.3

30

Example. Swapping Variables

float numl = 1.5;
float nunk = 8. 3;
fl oat tenp;
float* flt ptr;
flt ptr = &nunt;
tenp = *flt _ptr;
*flt _ptr = nunk;

nunk = tenp;

CS 4400—Lecture 2

1293

num1

1.5

7757

num?2

8.3

2131

temp

31

Example:

float numl = 1.5;
float nunk = 8. 3;
fl oat tenp;
float* flt ptr;
flt _ptr = &uni;
tenp = *flt _ptr;
*flt _ptr = nung;

nunk = tenp;

CS 4400—Lecture 2

Swapping Variables

1293

num 1

1.5

7757

num?2

8.3

2131

temp

flt ptr

4455

32

Example:

float numl = 1.5;
float nunk = 8. 3;
fl oat tenp;
float* flt ptr;
flt _ptr = &uni;
tenp = *flt _ptr;
*flt _ptr = nung;

nunk = tenp;

CS 4400—Lecture 2

Swapping Variables

1293

num 1

1.5

num?2

8.3

7757 2131

temp

4455

33

flt ptr

1293

Example:

float nunl = 1.5;
fl oat nun = 8. 3;

fl oat tenp;

float* flt ptr;

flt ptr = &nunt;
tenp = *flt _ptr;
*fIt_ptr = nun®;

nunk = tenp;

CS 4400—Lecture 2

Swapping Variables

1293

num| num?2 temp

1.5 8.3 1.5

7757 2131

4455

34

flt ptr

1293

Example:

float nunl = 1.5;
fl oat nun = 8. 3;

fl oat tenp;

float* flt ptr;

flt ptr = &nunt;
tenp = *flt _ptr;
*fIt_ptr = nun®;

nunk = tenp;

CS 4400—Lecture 2

Swapping Variables

1293

num I num?2 temp

8.3 8.3 1.5

7757 2131

4455

35

flt ptr

1293

Example:

float numl = 1.5;
float nunk = 8. 3;
fl oat tenp;
float* flt ptr;
flt _ptr = &uni;
tenp = *flt _ptr;
*flt _ptr = nung;

nunk = tenp;

CS 4400—Lecture 2

Swapping Variables

1293

numl num?2 temp

8.3 1.5 1.5

7757 2131

4455

flt ptr

1293

Example. Swapping Variables

float nunl = 1.5;

float nunt

fl oat tenp; Why do we have pointers? |t seems
float* flt like a more complicated way to

flt ptr = & do something we could already do!

tenp = *flt _ptr;
*flt _ptr = nung;

numl num?2 temp

nunk = tenp; 8.3 1.5 1.5

CS 4400—Lecture 2 1293 7757 2131

4455

flt ptr

1293

Pointers and Arrays

An array name 1s a pointer constant whose value 1s the
address of the first array element, and the value cannot be

changed.

A pointer variable has a value that 1s an address, and 1t can

be changed.

Example: fl oat rates|[100];
float *ptr;
ptr = rates; [/* needs no & */

Last line equivalentto ptr = &rat es[0] ;

CS 4400—Lecture 2 38

Dynamically-Allocated Arrays

 How do you deal with an array when you don't know at

compile time how large it should be?

Int my_array[100000]; //big enough?

* Allocate memory at run time, using library routine mal | oc.
Int X = count _of bytes given by user;
Int* nmy _array = mall oc(x);
[/ nmy _array Is address of first el enent
[/ ny _array+1l 1 s address of second

 Much more on dynamic memory allocation to come.

CS 4400—Lecture 2 39

Pointers and Strings

Recall that strings are really char arrays.
char ny _string[] = “hello”;

We can have a pointer to the array.
char *ptr = ny_string;

In fact, we can directly initialize the pointer with the
string.
char *ptr = “hell 0”;

What is the difference in ptr and my _stri ng?

CS 4400—Lecture 2

40

Pointer Arithmetic

Pointer arithmetic can access individual array elements.
Ops ++ and - - increment/decrement pointers.

The result of incrementing a pointer 1s that it points to the

next cell 1in the array (works regardless of the data size).
Other operations may be applied to pointers (+, -, <, >).

Example: float nunms[] ={ 1.2, 3.4, 5.6 };
float *pl = nuns,;
float *p2 = pl + 2;

Value of * p2? Is expression pl < p2 true or false?

CS 4400—Lecture 2 41

Exercise: Pointers

Write a function check with two parameters: char *

str andchar c.

Function check returns 1 ifc isinstr and O

otherwise.

(See check. c)

CS 4400—Lecture 2

42

New to C?: Formatted Output

Function pr i nt f performs formatted output, in that it

e controls where data 1s written,

e converts input into the desired type, and
e writes output in the desired manner.

printf(format _str, argl, ..., argN) prints to

standard output.

Functions for printing to file and to string also exist, and

are similar (f pri ntf and spri ntf, respectively).

Example: printf(“% %% is %", 1, '/', 2, 0.5);

CS 4400—Lecture 2 43

Format String and Address List

format _str and argument list (ar g1, . .. ar gN)

should correspond.

An item in the f or mat _st r specifies how the argument

should be converted for output.

The matching item in the argument list specifies what
value should be printed. This list may contain any valid C

expression, even function calls.

The format string may contain any ordinary characters and

conversion codes (denoting how to convert output).

CS 4400—Lecture 2 44

Conversion Codes

%, % decimal number

%<, %X unsigned hexadecimal number

%e single character
¥s characters from string until reaching ' \ O°
% floating-point number (default precision: 6)

See K&R for more conversion codes and options (field

width, max chars/digits printed, alignment, ...).

CS 4400—Lecture 2 45

New to C?: Casting

e In C, 1t 1s possible to explicitly convert one data type to

another (pointer types included).

e For example, suppose that X 1s of type | nt . The
expression (f | oat) X is the original value of X

converted to f | oat .
e Note that the actual value and type of X are unchanged.

» Casting may also be implicit. In mixed-type expressions,

the types of some values are (invisibly) changed.

CS 4400—Lecture 2 46

Example: Casting

casting.c

#i ncl ude <stdi o. h>

I nt mai n(void) {

Int ml es;
| nt hours;
fl oat nph;

“%\n”, nph);

t
n”, nph);

return O;

uni x> gcc casting.c

uni x> ./ a. out
151. 000000
151. 666672

) mles / (float) hours;

CS 4400—Lecture 2

47

Mixed-Mode Arithmetic

When variables of different types are included 1n a single
arithmetic expression, the values are converted to the

same type before the operation 1s performed.

For example, the value of | nt variable X is converted to

type f | oat before the division is performed.
X [4.0

Again, the actual type and value of X are unchanged.

Conversion to the same, more general type. E.g.,

converts| Nt tofl oat.,notf | oat tol nt.

CS 4400—Lecture 2 48

Type Promotion Hierarchy

Types are organized into a promotion hierarchy.

| ong doubl e
doubl e

f1 oat

unsi gned | ong
| ong

unsi gned 1 nt

| Nt

unsi gned short
short

unsi gned char
char

CS 4400—Lecture 2

more general

49

Example: Mixed-Mode Arithmetic

* Pay attention to when the type conversion occurs.

e Notice difference in implicit and explicit conversion.

o Example: loat a b

Int ¢, d

b =1.0;

c = -5;

d = 2;

a=>b* (c/ d); [* ais -2.0 */
a=Db* ((float)c / d); /* ais -2.5 */
a=>b/ c* d; [* ais -0.4 */
a=¢(nt)(b/ c) *d /[* ais 0.0 */

CS 4400—Lecture 2 50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

