
CS 4400

Computer Systems

LECTURE 19

Dynamic memory allocation

Clicker Question

CS 4400—Lecture 19 2

16-bit virtual addresses are translated to 13-bit physical

addresses. The page size is 256 bytes. The TLB is 8-way

set associative with 64 total entries. In which TLB set may

the PTE (page table entry) for virtual address 0x6CA4

reside?

CLICK your one-digit answer.

Clicker Question

CS 4400—Lecture 19 3

If a TLB miss occurs, the page corresponding to virtual

address 0x6CA4 must be transferred from disk to main

memory.

CLICK:

A. true

B. false

mmap Function

CS 4400—Lecture 19 4

void* mmap(void *addr, size_t size,

 int prot, int flags,

 int fd, off_t offset);

● Allocates a new page; size should be a multiple

 of the page size.

● Suggest a virtual address in addr.

● Control other details via prog and flags.

● Use fd and offset to connect the page to a file.

sbrk Function (older, simpler than mmap)

CS 4400—Lecture 19 5

void* sbrk(int incr);

● The heap is an area of memory that begins immediately
 after the .bss area and grows upward.
● the kernel maintains variable brk as a pointer to the top

● The sbrk function grows or shrinks the heap
 by adding incr to the kernel's brk pointer.

● If successful, the old value of brk is returned.

● Else, -1 is returned and errno is set to ENOMEM.

● To get the current value of brk, call with incr = 0.

Dynamic Memory Allocator

CS 4400—Lecture 19 6

● The sbrk and mmap functions are too primitive for most

 purposes.

● A dynamic memory allocator maintains the heap as a

collection of various sized blocks.
● each block is a contiguous piece of virtual memory

● Each block is designated as either allocated or free.
● allocated—explicitly reserved for use by the application and remains

so until explicitly freed (either by app or allocator)

● free—available to be allocated and remains so until explicitly

allocated by the application

Two Types of Allocators

CS 4400—Lecture 19 7

● Both require the application to explicitly allocate blocks.

● Explicit allocators—require the application to explicitly

free any allocated blocks.
● example: malloc package in C

● Implicit allocators—require the allocator to detect when

an allocated block is no longer being used by the

application and then free the block.
● AKA: garbage collectors (Java, C#, Racket, ...)

● For Lab 6, your task is to construct an explicit allocator.

malloc Function

CS 4400—Lecture 19 8

void* malloc(size_t size);

● Returns a pointer to a block of memory of at least size

bytes, suitably aligned for any kind of data object.
● typically, size_t is unsigned int and 8-byte alignment

● If malloc encounters a problem, it returns NULL and

sets errno appropriately.
● e.g., requested block is larger than the available virtual memory

● To swap a previously allocated block with a block that

 is a different size, an application can use realloc.

void* realloc(void* ptr, size_t size);

free Function

CS 4400—Lecture 19 9

void free(void* ptr);

● Frees the allocated block indicated by ptr.

● If ptr does not point to the beginning of an allocated

block (obtained from malloc), the behavior of free is

undefined.

● Because free returns nothing, there is no indication to

the application if something is wrong.

Example: malloc
16-word heap (initially one free block), each box is a 4-byte word, double-word alignment

p1

p1 p2

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p4 = malloc(2*sizeof(int))

p4

Example: Dynamic Mem Alloc

CS 4400—Lecture 19 11

#define MAXN 15213

int main() {
 int i, n;
 int array[MAXN];

 scanf(“%d”, &n);
 if(n > MAXN) {
 printf(“ERROR: too big\n”);

 exit(0);
}

 for(i = 0; i < n; i++)
 scanf(“%d”, &array[i]);

 exit(0);
}

int main() {
 int i, n, *array;

 scanf(“%d”, &n);
array = malloc(n*sizeof(int));

 for(i = 0; i < n; i++)
 scanf(“%d”, &array[i]);

 free(array);
 exit(0);
}

Explicit Allocator Requirements

CS 4400—Lecture 19 12

● Cannot make any assumptions about the ordering of

allocate and free requests.
● cannot assume all allocate requests have matching free requests

● Must respond immediately to allocate requests.
● cannot reorder or buffer requests to improve performance

● Must use the heap.

● Any allocated block must be aligned (typically 8-byte).

● Cannot modify or move blocks once they are allocated.

Explicit Allocator Goals

CS 4400—Lecture 19 13

● Maximize throughput, i.e., the number of requests the

allocator completes per unit of time.
● 500 allocate and 500 free requests in 1 sec = 1000 ops per sec

● minimize the average time to satisfy allocate and free requests

● reasonable: linear-time allocate (worst case), constant-time free

● Maximize memory utilization.
● virtual memory is limited

● it is a finite resource that must be used efficiently

● especially true if asked to allocate and free large blocks

● Finding the appropriate balance between these two goals

is a challenge.

Fragmentation

CS 4400—Lecture 19 14

● Internal fragmentation—occurs when an allocated block

is larger than the payload.
● because the allocator implementation imposes a minimum size

● quantified as: sizes of allocated blocks – their payloads

● External fragmentation—occurs when there is enough

free memory to satisfy an allocate request, but no single

free block is large enough to handle the request.
● depends on the pattern of previous request, as well as, the

pattern of future requests (and allocator implementation)

Naïve Allocator Implementation

CS 4400—Lecture 19 15

● Organize the heap as a large array of bytes and a pointer

p that initially points to the first byte of the array.

● malloc(size):
● old_p = p

● p += size

● return old_p

● free(ptr):
● do nothing

● Throughput is extremely good. Why?

● Memory utilization is extremely bad. Why?

Implementation Issues

CS 4400—Lecture 19 16

● Free block organization—how do you keep track of free

blocks?

● Placement—how do you choose an appropriate free

block in which to place a newly allocated block?

● Splitting—after placing newly allocated block in some

free block, what do you do with the remainder of the free

block?

● Coalescing—what do you do with a block that has just

been freed?

Block Format

CS 4400—Lecture 19 17

● An allocator needs a data structure for distinguishing

between allocated and free blocks (and boundaries).

● This info may be embedded in the blocks themselves.

● Examples:
● an allocated block with size 24 bytes has header 0x000000019

● a free block with size 40 byes has header 0x000000028

0 0 a

PAYLOAD
(number of bytes requested)

BLOCK SIZE

PADDING
(optional)

3 2 1 0

malloc returns
a pointer to the
beginning of the

payload

a = 1: allocated
a = 0: free

block size includes
header, payload
and any padding

Implicit Free List

CS 4400—Lecture 19 18

● Free blocks are linked implicitly by the size fields in the

headers.

● The allocator can indirectly traverse the entire set of free

blocks by traversing all of the blocks in the heap.

● Pro: simplicity, Con: cost of searching for a free block

start of
heap

8/0 16/1 32/0 16/1

specially-marked
end block

0/1

CS 4400—Lecture 19 19

Exercise: Block Format
● The minimum block size for an allocator is imposed by its

alignment requirement and its block format.

● Determine the block sizes and header values the would result

from the following malloc requests.

● Assume: double-word align, implicit free list, 4-byte headers
● malloc(1): 4 (header) + 1 (payload) + 3 (padding) = 8 bytes

 header = 0x8 | 0x1 = 0x9

● malloc(5)

● malloc(12)

● malloc(13)

CLICK the correct block header value:

A. 0x9 D. 0x10 G. 0x19
B. 0xC E. 0x11 H. 0x21
C. 0xD F. 0x18 I. none of above

Placing Allocated Blocks

CS 4400—Lecture 19 20

● When a k-byte block is requested, the allocator searches

the free list for a free block that is large enough.
● the placement policy determines the manner of this search

● First fit—start at the beginning of the free list and choose

first free block that fits.

● Next fit—start each search where previous search left off

and choose the next free block that fits.

● Best fit—examine every free block and choose the

smallest size that fits.

Placement Policies

CS 4400—Lecture 19 21

● First fit
● pro: tends to retain large free blocks at the end of the list

● con: tends to leave splinters of small free blocks at beginning of the

list (increasing the search time for large blocks)

● Next fit
● idea: if find fit in some block last time, good chance of finding fit in

the remainder of the block next time

● pro: can run significantly faster than first fit

● con: studies suggest that memory utilization is worse

● Best fit
● pro: studies show the memory utilization is the best

● con: requires exhaustive search of the heap

Other Allocation Decisions

CS 4400—Lecture 19 22

● Once a free block has been found that fits, how much of

the free block should be allocated?
● entire block—simple and fast, but introduces internal fragmentation

● split the free block into two parts, allocated block and new free block

● What if the allocator is unable to find a fit?
● create some larger free blocks by merging adjacent free blocks, if

possible

● ask the kernel for additional heap memory (sbrk), transform

additional memory into one large free block in free list

Coalescing Free Blocks

CS 4400—Lecture 19 23

● When an allocated block is freed, there might be other

free blocks that are adjacent to the newly freed block.

● False fragmentation—a lot of available free memory

chopped up into small, unusable free blocks.

● Coalescing—merging adjacent free blocks.
● immediate coalescing: performed each time a block is freed

● deferred coalescing: waiting until some later time

adjacent
free blocks

8/0 16/1 16/0 16/1 0/116/0

Boundary Tags

CS 4400—Lecture 19 24

● Suppose we've just freed a block (the current block).
● coalescing the next (free) block is straightforward

● coalescing the previous (free) block requires a search

● Add a footer (the boundary tag) at the end of each block.
● the footer is a replica of the header

● The allocator can determine the starting location and

status of the previous block by looking at its footer.
● only one word away from the start of the current block

● Is there a disadvantage to using boundary tags?
● do allocated blocks really need footers?

 m1 a

 m1 a
 n a

 n a
 m2 a

 m2 a

 m1 a

 m1 a
 n f

 n f
 m2 a

 m2 a

 m1 a

 m1 a
 n a

 n a
 m2 f

 m2 f

 m1 a

 m1 a
 n + m2 f

 n + m2 f

 m1 f

 m1 f
 n a

 n a
 m2 a

 m2 a

 n + m1 f

 n + m1 f
 m2 a

 m2 a

 m1 f

 m1 f
 n a

 n a
 m2 f

 m2 f

n+m1+m2 f

n+m1+m2 f

prev and next allocated prev allocated, next free

prev and, next freeprev free, next allocated

CS 4400—Lecture 19 26

Exercise: Minimum Block Size
Assume: implicit free list, headers/footers stored in 4-byte

words, and every free block has a header and footer.

min block size = MAX(min allocated block size, min free block size)

● single-word alignment, allocated block has header and footer
● alloc: 4-byte header, 1-byte payload, 4-byte footer – round up to 12
● free: 4-byte header, 4-byte footer – 8

● single-word align, header only

● double-word align, header and footer

● double-word align, header only

CLICK the correct
min block size:

A. 4 bytes
B. 8 bytes
C. 12 bytes
D. 16 bytes
E. none of the above

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

