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Dynamic memory allocation



Clicker Question
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16-bit virtual addresses are translated to 13-bit physical 

addresses.  The page size is 256 bytes.  The TLB is 8-way 

set associative with 64 total entries.  In which TLB set may 

the PTE (page table entry) for virtual address 0x6CA4 

reside?

CLICK your one-digit answer.



Clicker Question
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If a TLB miss occurs, the page corresponding to virtual 

address 0x6CA4 must be transferred from disk to main 

memory.

CLICK:

A.  true

B.  false



mmap Function
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void* mmap(void *addr, size_t size,

              int prot, int flags,

              int fd, off_t offset);

●  Allocates a new page; size should be a multiple

  of the page size.

●  Suggest a virtual address in addr.

●  Control other details via prog and flags.

●  Use fd and offset to connect the page to a file.



sbrk Function (older, simpler than mmap)
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void* sbrk(int incr);

●    The heap is an area of memory that begins immediately 
  after the .bss area and grows upward.
● the kernel maintains variable brk as a pointer to the top

●  The sbrk function grows or shrinks the heap
  by adding incr to the kernel's brk pointer.

●  If successful, the old value of brk is returned.

●  Else, -1 is returned and errno is set to ENOMEM.

●  To get the current value of brk, call with incr = 0.



Dynamic Memory Allocator
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●  The sbrk and mmap functions are too primitive for most 

   purposes.

● A dynamic memory allocator maintains the heap as a 

collection of various sized blocks.
● each block is a contiguous piece of virtual memory

●  Each block is designated as either allocated or free.
● allocated—explicitly reserved for use by the application and remains 

so until explicitly freed (either by app or allocator)

● free—available to be allocated and remains so until explicitly 

allocated by the application



Two Types of Allocators
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●  Both require the application to explicitly allocate blocks.

●  Explicit allocators—require the application to explicitly 

free any allocated blocks.
● example:  malloc package in C

●  Implicit allocators—require the allocator to detect when 

an allocated block is no longer being used by the 

application and then free the block.
● AKA:  garbage collectors (Java, C#, Racket, ...)

●  For Lab 6, your task is to construct an explicit allocator.



malloc Function
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void* malloc(size_t size);

●  Returns a pointer to a block of memory of at least size 

bytes, suitably aligned for any kind of data object.
● typically, size_t is unsigned int and 8-byte alignment

●  If malloc encounters a problem, it returns NULL and 

sets errno appropriately.
● e.g., requested block is larger than the available virtual memory

●  To swap a previously allocated block with a block that

  is a different size, an application can use realloc.

void* realloc(void* ptr, size_t size);



free Function
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void free(void* ptr);

●  Frees the allocated block indicated by ptr.

●  If ptr does not point to the beginning of an allocated 

block (obtained from malloc), the behavior of free is 

undefined.

●  Because free returns nothing, there is no indication to 

the application if something is wrong.



Example:  malloc
16-word heap (initially one free block), each box is a 4-byte word, double-word alignment

p1

p1 p2

p1 p2 p3

p1 p2 p3

p1 p2 p3

p1 = malloc(4*sizeof(int))

p2 = malloc(5*sizeof(int))

p3 = malloc(6*sizeof(int))

free(p2)

p4 = malloc(2*sizeof(int))

p4



Example:  Dynamic Mem Alloc

CS 4400—Lecture 19      11

#define MAXN 15213

int main() { 
  int i, n;
  int array[MAXN];

  scanf(“%d”, &n);
  if(n > MAXN) {
    printf(“ERROR: too big\n”);

  exit(0);
}

  for(i = 0; i < n; i++)
    scanf(“%d”, &array[i]);
  
  exit(0);
}

int main() { 
  int i, n, *array;

  scanf(“%d”, &n);
array = malloc(n*sizeof(int));

  for(i = 0; i < n; i++)
    scanf(“%d”, &array[i]);

  free(array);
  exit(0);
}



Explicit Allocator Requirements
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●  Cannot make any assumptions about the ordering of 

allocate and free requests.
● cannot assume all allocate requests have matching free requests

●  Must respond immediately to allocate requests.
● cannot reorder or buffer requests to improve performance

●  Must use the heap.

●  Any allocated block must be aligned (typically 8-byte).

●  Cannot modify or move blocks once they are allocated.



Explicit Allocator Goals
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●  Maximize throughput, i.e., the number of requests the 

allocator completes per unit of time.
● 500 allocate and 500 free requests in 1 sec = 1000 ops per sec

● minimize the average time to satisfy allocate and free requests

● reasonable: linear-time allocate (worst case), constant-time free

●  Maximize memory utilization.
● virtual memory is limited

● it is a finite resource that must be used efficiently

● especially true if asked to allocate and free large blocks

●  Finding the appropriate balance between these two goals 

is a challenge.



Fragmentation
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●  Internal fragmentation—occurs when an allocated block 

is larger than the payload.
● because the allocator implementation imposes a minimum size

● quantified as:  sizes of allocated blocks – their payloads

●  External fragmentation—occurs when there is enough 

free memory to satisfy an allocate request, but no single 

free block is large enough to handle the request.
● depends on the pattern of previous request, as well as, the            

pattern of future requests (and allocator implementation)



Naïve Allocator Implementation
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●  Organize the heap as a large array of bytes and a pointer 

p that initially points to the first byte of the array.

●  malloc(size):  
● old_p = p

● p += size

● return old_p

●  free(ptr):  
● do nothing 

●  Throughput is extremely good.  Why?

●  Memory utilization is extremely bad.  Why?



Implementation Issues
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●  Free block organization—how do you keep track of free 

blocks?

●  Placement—how do you choose an appropriate free 

block in which to place a newly allocated block?

●  Splitting—after placing newly allocated block in some 

free block, what do you do with the remainder of the free 

block?

●  Coalescing—what do you do with a block that has just 

been freed?



Block Format
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●  An allocator needs a data structure for distinguishing 

between allocated and free blocks (and boundaries).

●  This info may be embedded in the blocks themselves.

  

●  Examples:  
● an allocated block with size 24 bytes has header 0x000000019

● a free block with size 40 byes has header 0x000000028

0 0 a

PAYLOAD
(number of bytes requested)

BLOCK SIZE

PADDING
(optional)

3  2  1  0

malloc returns 
a pointer to the 
beginning of the 

payload

a = 1:  allocated
a = 0:  free

block size includes 
header, payload 
and any padding



Implicit Free List
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●  Free blocks are linked implicitly by the size fields in the 

headers.

●  The allocator can indirectly traverse the entire set of free 

blocks by traversing all of the blocks in the heap.

●  Pro: simplicity, Con: cost of searching for a free block

start of 
heap

8/0 16/1 32/0 16/1

specially-marked 
end block

0/1
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Exercise:  Block Format
●  The minimum block size for an allocator is imposed by its 

alignment requirement and its block format.

●  Determine the block sizes and header values the would result 

from the following malloc requests.

●  Assume:  double-word align, implicit free list, 4-byte headers
● malloc(1): 4 (header) + 1 (payload) + 3 (padding) = 8 bytes

  header = 0x8 | 0x1 = 0x9

● malloc(5)

● malloc(12)

● malloc(13)

CLICK the correct block header value:

A.  0x9 D.  0x10 G.  0x19
B.  0xC E. 0x11 H.  0x21
C.  0xD F.  0x18 I. none of above



Placing Allocated Blocks

CS 4400—Lecture 19      20

●  When a k-byte block is requested, the allocator searches 

the free list for a free block that is large enough.
● the placement policy determines the manner of this search

●  First fit—start at the beginning of the free list and choose 

first free block that fits.

●  Next fit—start each search where previous search left off 

and choose the next free block that fits.

●  Best fit—examine every free block and choose the 

smallest size that fits.



Placement Policies
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●  First fit
● pro:  tends to retain large free blocks at the end of the list

● con:  tends to leave splinters of small free blocks at beginning of the 

list (increasing the search time for large blocks)

●  Next fit
● idea:  if find fit in some block last time, good chance of finding fit in 

the remainder of the block next time

● pro:  can run significantly faster than first fit

● con:  studies suggest that memory utilization is worse

●  Best fit
● pro:  studies show the memory utilization is the best

● con:  requires exhaustive search of the heap



Other Allocation Decisions
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●  Once a free block has been found that fits, how much of 

the free block should be allocated?
● entire block—simple and fast, but introduces internal fragmentation

● split the free block into two parts, allocated block and new free block

●  What if the allocator is unable to find a fit?
● create some larger free blocks by merging adjacent free blocks, if 

possible

● ask the kernel for additional heap memory (sbrk), transform 

additional memory into one large free block in free list



Coalescing Free Blocks
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●  When an allocated block is freed, there might be other 

free blocks that are adjacent to the newly freed block.

●  False fragmentation—a lot of available free memory 

chopped up into small, unusable free blocks.

●  Coalescing—merging adjacent free blocks.
●  immediate coalescing:  performed each time a block is freed

●  deferred coalescing:  waiting until some later time

adjacent 
free blocks

8/0 16/1 16/0 16/1 0/116/0



Boundary Tags
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●  Suppose we've just freed a block (the current block).
● coalescing the next (free) block is straightforward

● coalescing the previous (free) block requires a search

●  Add a footer (the boundary tag) at the end of each block.
● the footer is a replica of the header

●  The allocator can determine the starting location and 

status of the previous block by looking at its footer.
● only one word away from the start of the current block

●  Is there a disadvantage to using boundary tags?  
● do allocated blocks really need footers?



      m1        a

      m1        a
       n          a

       n          a
      m2        a

      m2        a

      m1        a

      m1        a
       n          f

       n          f
      m2        a

      m2        a

      m1        a

      m1        a
       n          a

       n          a
      m2        f

      m2        f

      m1        a

      m1        a
   n + m2     f

   n + m2     f

      m1        f

      m1        f
       n          a

       n          a
      m2        a

      m2        a

   n + m1     f

   n + m1     f
      m2        a

      m2        a

      m1        f

      m1        f
       n          a

       n          a
      m2        f

      m2        f

n+m1+m2  f

n+m1+m2  f

prev and next allocated prev allocated, next free

prev and, next freeprev free, next allocated
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Exercise:  Minimum Block Size
Assume:  implicit free list, headers/footers stored in 4-byte 

words, and every free block has a header and footer.

min block size = MAX(min allocated block size, min free block size)

●  single-word alignment, allocated block has header and footer
● alloc: 4-byte header, 1-byte payload, 4-byte footer – round up to 12
● free:  4-byte header, 4-byte footer – 8

●  single-word align, header only

●  double-word align, header and footer

●  double-word align, header only

CLICK the correct 
min block size:

A.  4 bytes
B.  8 bytes
C.  12 bytes
D.  16 bytes
E.  none of the above
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