
CS 4400

Computer Systems

LECTURE 15

Static libraries

Relocation

Shared libraries and dynamic linking

Review

CS 4400—Lecture 15 2

● What is linking? when does it happen?

● What is an object file? types? sections?

● What is a symbol? types? symbol resolution?

● What is contained in the symbol table?

● What if there are multiple definitions of a global symbol?

Static Libraries

CS 4400—Lecture 15 3

● Static library—a collection of related object modules.
● linker copies only the object modules that the program refs

● C example: defs of printf, strcpy, rand are in libc.a

● > gcc main.c /usr/libm.a /usr/libc.a

● Why doesn't the compiler recognize calls to standard

functions and generate the appropriate code directly?

● Why not put all standard functions in a single module?

● Why not put each standard function in its own module?

● (See the text for how to create a static library.)

Resolving References

CS 4400—Lecture 15 4

● The way in which the Unix linker uses static libraries to

resolve external refs can be a source of confusion.

● During symbol resolution, the linker scans relocatable

objects left to right as they appear on the command line.
● driver automatically translates any .c files to .o files

● During the scan, the linker maintains
● E, a set of relocatable object files to be merged into executable

● U, a set of unresolved symbols (referred to but not yet defined)

● D, a set of symbols that have been defined (in previous files)

● initially sets E, U, and D are empty

Scanning Input Object Files

CS 4400—Lecture 15 5

For each input file f,

● if f is an object file: add f to E and update U and D to

reflect the symbol definitions and references in f

● if f is a library: if member m defines a symbol in U, add

m to E and update U and D to reflect defs and refs in m
● iterate over all members until U and D no longer change

● then discard any member object files not contained in E

● if U is nonempty when linker finishes scanning, ERROR

Example: Scanning Input Files

CS 4400—Lecture 15 6

● If the library (which defines a symbol) appears on the

command line before the object file (which references

the symbol), the reference cannot be resolved.

● Libraries can be repeated on the command line as needed

to satisfy dependencies.
● Suppose that foo.c calls a function in libx.a that calls a

function in liby.a that calls a function in libx.a.

unix> gcc ./libvector.a main2.c
/tmp/cc9XH6Rp.o: In function `main':
/tmp/cc9XH6Rp.o(.text+0x18): undefined reference to `addvec'

unix> gcc foo.c libx.a liby.a libx.a

Exercise: Scanning Input Files

CS 4400—Lecture 15 7

● Let a → b denote that a depends on b (i.e., b defines a

symbol that is referenced by a).

● Give the minimal command line that will allow the static

linker to resolve all symbol references.

● p.o → libx.a

● p.o → libx.a → liby.a

● p.o → libx.a → liby.a and liby.a → libx.a → p.o

Relocation

CS 4400—Lecture 15 8

● The linker merges the input modules and assigns run-

time addresses to each symbol.

● Step 1: relocate sections and symbol definitions
● merge all sections of the same type into a new aggregate section

● assign run-time addresses to new aggregate sections

● assign run-time addresses to each symbol defined

● Step 2: relocate symbol references within sections
● modify every symbol reference in bodies of the code and data sections

so that they point to the correct run-time addresses (linker relies on

relocation entries .rel.text and .rel.data to perform this step)

Relocating Symbol References

CS 4400—Lecture 15 9

typedef struct {
 int offset; /* offset of ref to relocate */
 int symbol:24, /* symbol ref should point to */
 type:8; /* relocation type */
} Elf32_Rel;

foreach section s
 foreach relocation entry r {
 refptr = s + r.offset; /* ptr to ref to be relocated */

 if(r.type == R_386_PC32) { /* relocate a PC-relative ref */
 refaddr = ADDR(s) + r.offset; /* ref's run-time addr */
 *refptr = (unsigned) (ADDR(r.symbol) + *refptr – refaddr);
 }

 if(r.type == R_386_32) /* relocate an absolute addr */
 *refptr = (unsigned) (ADDR(r.symbol) + *refptr);
 }

format of ELF
relocation entry

re
lo

ca
ti

on
 a

lg
or

it
hm

Assume: s is an array of bytes, r has type Elf32_Rel, and
linker has already chosen run-time addresses for
each section (ADDR(s)) and each symbol (ADDR(r.symbol))

Relocating PC-Relative References

6: e8 fc ff ff ff call 7 <main+0x7> swap();
7: R_386_PC32 swap relocation entry

disassembled call instruction (from main.o)

opcode reference (- 4) biased bc PC always points to next instruction

r.offset = 7, r.symbol = swap, r.type = R_386_PC32

Assume: ADDR(.text) = 0x80483b4, ADDR(swap) = 0x80483c8

First, linker computes run-time address of the reference:
refaddr = ADDR(s) + r.offset
 = 0x80483b4 + 0x7 = 0x80483bb

Then, linker updates the reference from its current value (-4) so that it will
point to the swap routine at run time:

*refptr = (unsigned)(ADDR(r.symbol) + *refptr – refaddr)
 = (unsigned)(0x80483c8 + (-4) – 0x80483bb)
 = 0x9

80483ba: e8 09 00 00 00 call 80483c8 <swap>

disassembled call instruction (from executable object file)

Relocating Absolute References

00000000 <bufp0>:
 0: 00 00 00 00 int* bufp0 = &buf[0];

0: R_386_32 buf relocation entry

disassembled listing of the .data section (from swap.o)
r.offset = 0, r.symbol = buf, r.type = R_386_32

Assume: ADDR(buf) = 0x8049454

Linker updates the reference:
*refptr = (unsigned)(ADDR(r.symbol) + *refptr)
 = (unsigned)(0x8049454 + 0) = 0x8049454

Linker decides that at run time bufp0 will be located at 0x804945c and
will be initialized to 0x8049454, the run-time address of the buf array.

int* bufp0 = &buf[0];
bufp0 will be stored in .data of swap.o,
initialized to the address of a global array.
Thus, the value of bufp0 must be relocated.

0804945c <bufp0>:
 804945c: 54 94 04 08

disassembled .data listing (from executable object file)

ELF Executable Object File Format

.text

ELF header

section header table

.rodata

.data

.bss

.symtab

.debug

.line

.strtab

.init

Segment header table

describes overall format, includes entry point (addr of 1st instruction)

**Notice the lack of .rel.text and rel.data sections. Why?

maps contiguous file sections to run-time memory sections

describes function _init, to be called by program's initialization code

read-only memory segment (code segment)

read/write memory segment (data segment)

symbol table, debug info not loaded into memory

Loading Executable Object Files

unix> ./p

● Because p is not a built-in shell command, the shell

assumes that p is an executable object file.

● The shell invokes loader (by calling function execve) to
● copy the code and data from p into memory and

● run the program by jumping to the “entry point”

● When the loader runs, it creates a memory image (next

slide) and copies chunks of the executable into the code

and data segments.
CS 4400—Lecture 15 13

Unix Run-Time Memory Image

CS 4400—Lecture 15 14

kernel virtual memory

user stack
(created at run time)

reserved for shared libs

memory invisible
to user code

%esp

run-time heap
(created by malloc)

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from
executable file

0xc0000000

0x40000000

0x08048000

Shared Libraries
● Static libraries must be updated periodically.

● programmer must be aware of change and explicitly relink

● Almost all C programs reference standard I/O functions,

and code for these functions appears in the text segment

of nearly every running program—waste of memory.

● Shared library—an object module that can be loaded and

linked with a program in memory, all at load or run time.
● The process of linking a shared library is called dynamic linking.

● AKA shared objects (.so Unix suffix, DLLs on Microsoft).

CS 4400—Lecture 15 15

Dynamic Linking
● Why “shared”?

● The code and data in exactly one .so file is shared by all executable

object files that reference the library. How is this different from static

libraries?

● A single copy of a shared library's .text section in memory can be

shared by different running processes.

● unix> gcc -o p2 main2.c ./libvector.so
● creates p2 in a form to be linked with libvector.so at load time

● Does some of the linking statically and then completes

linking process when the program is loaded.

CS 4400—Lecture 15 16

Dynamic Linking w/ Shared Libs

Translation
(ccp, cc1, as)

main2.c vector.h

main2.o

Linker (ld)

libvector.so

Loader (execve)

p2

Dynamic linker
(ld-linux.so)

libvector.so

relocatable
object file

relocation and
symbol table info

partially-linked
executable

code and data

fully-linked executable
in memory

● None of code and data from

libvector.so is copied into

p2, copies only some

relocation and symbol table

info to allow references to

be resolved at run time.

● Loader notices an .interp

section with the dynamic

linker's path. It passes

control there to finish

linking. Then passes control

to the program.

Run-Time Loading and Linking
● A program requests that the dynamic linker load and link

shared libraries while the program is running.
● without having to (partially) link in the libraries at compile time

● Microsoft uses shared libraries to distribute SW updates.
● users download updates and the next time their application runs, it

will automatically link and load the new shared library

● Web servers generate dynamic content.
● the appropriate function is loaded/linked at run time

● (See the text for a discussion of the simple interface for

the dynamic linker that is provided on Unix systems.)
CS 4400—Lecture 15 18

Summary
● Linkers manipulate object files at compile time (relocatable, static

 linking), load time or run time (shared libraries, dynamic linking).

● Two main tasks: symbol resolution and relocation.
● each global symbol in an object file is bound to a unique definition

● the ultimate memory address for each symbol is determined

● The rules linkers use for silently resolving multiple definitions can

introduce subtle bugs.

● The left-to-right scan of input object files can also be confusing.

● Static linkers combine multiple relocatable object files into a single

 executable object file at compile time.

● Dynamic linkers are invoked at load or run time to resolve

 references in user code with definitions in shared libraries.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

