
CS 4400
Computer Systems

LECTURE 10

Capabilities and limitations of compilers

Optimization blockers

Machine-independent optimizations

 Writing efficient programs requires
 selecting the best data structures and algorithms

 writing source code that the compiler can optimize

 Often there is a trade-off between readability and speed.
 one can program a simple insertion sort in minutes

 a highly-efficient sorting routine can take days to code, debug

 When should program performance be traded for ease of

implementation and maintenance?

 Optimizations are machine independent or dependent.

Optimization

CS 4400—Lecture 10 2

 By determining what values are computed and how they

are used, optimizing compilers can often generate faster

code than a compiler doing a direct translation.

 Optimizing compilers exploit opportunities
 to simplify expressions

 to use a single computation in several places

 to reduce the number of times a given computation is performed

 But, all of this must be done in addition to maintaining

the exact semantics of the original program.

Capabilities of Compilers

CS 4400—Lecture 10 3

1. The correct program behavior must be maintained.

2. Understanding of the program's behavior and the

environment in which it will be used is limited.

3. Optimizations must be performed quickly.

Limitations of Compilers

void twiddle1(int* xp, int* yp) {
 *xp += *yp;
 *xp += *yp;
}

void twiddle2(int* xp, int* yp) {
 *xp += 2 * *yp;
}

Which function is more
efficient?
 CLICK: 1 or 2

Is the behavior of each
identical?
 CLICK: 1-yes or 2-no

CS 4400—Lecture 10 4

 An optimization blocker is a feature of the program's

behavior that depends strongly on execution environment.

 Memory aliasing is when a single memory location can

be referenced with multiple identifiers.
 The compiler must assume that different pointers may designate the

same place in memory.

Optimization Blocker: Aliasing

void swap(int* xp, int* yp) {
 *xp = *xp + *yp; /* x+y */
 *yp = *xp - *yp; /* x+y-y=x */
 *xp = *xp - *yp; /* x+y-x=y */
}

What if xp and yp
are equal?

CS 4400—Lecture 10 5

 Function f has a side effect—modifying part of the

 global program state.

 Most compilers do not try to determine whether a

function is free of side effects.
 They simply assume the worst case.

Optimization Blocker: Function Calls
int counter = 0;

int f(int x) { return counter += x; }

int func1(int x) {
 return f(x) + f(x) + f(x) + f(x);
}

int func2(int x) { return 4 * f(x); }

How are func1 and
func2 different?

CS 4400—Lecture 10 6

typedef int data_t; /* change as needed for float, ... */

typedef struct {
 int len;
 data_t* data;
} vec_rec, * vec_ptr; /* typedefs struct, pointer to struct */

vec_ptr new_vec(int len) { /* create vector of specified length */
 vec_ptr result = (vec_ptr) malloc(sizeof(vec_rec));
 if(!result) return NULL; /* cannot allocate storage */
 result->len = len;
 if(len > 0) {
 data_t* data = (data_t*) calloc(len, sizeof(data_t));
 if(!data) { /* cannot allocate storage */
 free((void*) result);
 return NULL;
 }
 result->data = data;
 }
 else result->data = NULL;
 return result;
}

/* retrieve vector element and store at dest */
int get_vec_element(vec_ptr v, int index, data_t* dest) {
 if(index < 0 || index >= v->len) /* bounds checking */
 return 0;
 *dest = v->data[index];
 return 1;
}

int vec_length(vec_ptr v) { return v->len; };

Example: Vector ADT
#define IDENT 0 /* 0,+ sums elements of vector */
#define OPER + /* change to 1,* for product */

void combine1(vec_ptr v, data_t* dest) {
 int i;

 *dest = IDENT;
 for(i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OPER val;
 }
}

CPEs int float-pt

+ * + F * D *

gcc 29.01 29.21 27.40 27.90 27.36

gcc -O1 12.00 12.00 12.00 12.01 13.00

CS 4400—Lecture 10 8

 Among compilers, the optimization capabilities of gcc

are considered adequate (not exceptional).

 Unoptimized—code suitable for stepping through with

debugger, closely matches source code.
 -O1—enables basic optimizations

 CPE measures the number of clock cycles per element.
 appropriate for programs that perform a repetitive computation

(e.g., processing pixels, computing elts of matrix product)

 not necessarily cycles per iteration

 Why is CPE better than measuring actual running time?

Performance Measurements

CS 4400—Lecture 10 9

 Observe that combine1 calls vec_length as the test

condition on every iteration of the loop.

 However, the vector length does not change.
 As we know, the compiler will not move the function call.

 The programmer must explicitly perform this optimization.

 Code motion optimization:
 Identify a computation that is performed repeatedly, but whose

result does not change.

 Move the computation so that it does not get executed as often.

Loop Inefficiency

CS 4400—Lecture 10 10

Example: Loop Inefficiency
/* move call to vec_length out of loop */
void combine2(vec_ptr v, data_t* dest) {
 int i;
 int length = vec_length(v);

 *dest = IDENT;
 for(i = 0; i < length; i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OPER val;
 }
}

CPEs int float-pt

+ * + F * D *

combine1 (-O1) 12.00 12.00 12.00 12.01 13.00

combine2 (-O1) 8.03 8.09 10.09 11.09 12.08

CS 4400—Lecture 10 11

CS 4400—Lecture 10 12

What is the total number of function calls in this loop?

(Assume the x is 10 and y is 100.)

for(i = min(x, y); i < max(x, y); incr(&i, 1))

 t += square(i);

 A. 4

B. between 50 and 100

C. between 101 and 200

D. more than 200

Clicker Question

We express relative performance as a ratio of the form:

T
old

 = time of the original version

 T
new

 = time of the modified version

Which of the following is true?

 A. A ratio of 0 means no improvement, 1 means slight

 improvement, 2 means significant improvement.

B. The ratio will never be less than 1.

C. The CPEs is 12.00 for combine1 and 8.03 for combine2.

 Thus, the performance ratio is about 1.5.

D. None are true.

E. More than one of A-C is true.

Clicker Question

 Procedure calls incur overhead and block optimizations.
 get_vec_element is called on every loop iteration.

 especially costly procedure call because of bounds checking

 simple analysis shows all array references to be valid

Reducing Procedure Calls

data_t* get_vec_start(vec_ptr v) { return v->data; }

/* direct access to vector data */
void combine3(vec_ptr v, data_t* dest) {
 int i;
 int length = vec_length(v);
 data_t* data = get_vec_start(v);

 *dest = IDENT;
 for(i = 0; i < length; i++)
 *dest = *dest OPER data[i];
}

CS 4400—Lecture 10 14

Reducing Procedure Calls
CPEs int float-pt

+ * + F * D *

combine2 (-O1) 8.03 8.09 10.09 11.09 12.08

combine3 (-O1) 6.01 8.01 10.01 11.01 12.02

CS 4400—Lecture 10 15

 How does this transformation affect the modularity?

 The CPE improvement is up to a factor of 1.3X.

– ratio T
old

 / T
new

 = 8.03 / 6.01 = 1.34

– what is the factor if there is no improvement?

 Modest improvement, but call is bottleneck for future opts.

Compromise modularity and abstraction for speed, if performance is a
significant issue.

 The value being computed is accumulated in the location

designated by pointer dest, memory read/write required.

 Possible to avoid so many reads and writes of memory?
 value written is read on next iteration

Reducing Memory References
(x86-64 floating-pt code)
combine3, data_t is float, OPER is *
dest in %rbp, data in %rax, i in %rdx, length in %r12
.L498:
 movss (%rbp),%xmmo # read *dest
 mulss (%rax,%rdx,4),%xmm0 # multiply by data[i]
 movss %xmm0,(%rbp) # write *dest
 addq $1, %rdx # i++
 cmpq %rdx,%r12 # compare i to length
 jg .L498 # if i<length, goto loop

CS 4400—Lecture 10 16

Reducing Memory References
/* accumulate result in local variable */
void combine4(vec_ptr v, data_t* dest) {
 int i;
 int length = vec_length(v);
 data_t* data = get_vec_start(v);
 data_t acc = IDENT;

 for(i = 0; i < length; i++)
 acc = acc OPER data[i];
 *dest = acc;
}

combine4
data in %rax, acc in %xmm0,
i in %rdx, length in %rbp
.L488:
 mulss (%rax,%rdx,4),%xmm0
 addq $1, %rdx
 cmpq %rdx,%rdp
 jg .L488

(AKA “scalar replacement”)

CPEs int float

+ * + F * D *

combine3 (-O1) 6.01 8.01 10.01 11.01 12.02

combine4 (-O1) 2.00 3.00 3.00 4.00 5.00

Will Compiler Reduce Refs?
 Is scalar replacement an optimization the compiler will

perform automatically?
 not in this case (why not? because of potential memory aliasing)

 Consider vector v = [2,3,5], OPER is *, and calls
 combine3(v, get_vec_start(v)+2) results in [2,3,36]

 combine4(v, get_vec_start(v)+2) results in [2,3,30]

 An optimizing compiler cannot make a judgment about the

conditions under which a function might be used. Thus, it

is obliged to preserve its exact functionality.

CS 4400—Lecture 10 18

Loop Unrolling
 Some loops have such a small body that most of the

execution time is spent updating the loop-counter variable

and testing the loop-exit condition.

 It is more efficient to unroll such loops, putting two or

more copies of the loop body in a row.

 Then, avoid setting and testing the loop counter in every

loop body, reducing “loop overhead”.

 How should the new loop update/exit compare to original?

CS 4400—Lecture 10 19

Example: Loop Unrolling
 Will this work if the original loop

 iterated an odd number of times?

 How can we accommodate an odd

 number of iterations?

 How can we modify our strategy

 to unroll by a factor of K?

 Will the optimizing compiler

 perform loop unrolling automatically?

BEFORE

L
1
: x ← M[i]

 s ← s + x
 i ← i + 4
 if i < n goto L

1

L
2
:

AFTER

L
1
: x ← M[i]

 s ← s + x
 x ← M[i+4]
 s ← s + x
 i ← i + 8
 if i < n goto L

1

L
2
: goto L2

L2CS 4400—Lecture 10 20

 To effectively use optimizing compilers, programmers

must know the capabilities and limitations.

 Machine-independent optimizations:
 code motion

 reducing procedure calls

 reducing memory references

 loop unrolling (its machine dependence to be revisited)

 The programmer does have to help the optimizing

compiler by dealing with optimization blockers.

Summary

CS 4400—Lecture 10 21

Exercise: Loop Unrolling

CS 4400—Lecture 10 22

void inner_prod(vec_ptr u, vec_ptr v, data_t *dest) {
 int i;
 int length = vec_length(u);
 data_t *udata = get_vec_start(u);
 data_t *vdata = get_vec_start(v);
 data_t sum = (data_t) 0;

 for (i = 0; i < length; i++) {
 sum += udata[i] * vdata[i];
 }

 *dest = sum;
}

Perform 4-way loop unrolling.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

