;; Data definitions

i A burger is
;7 (make-burger bool bool)
(define-struct burger (cheese? onions?))

;; A side is either
i 'fries
;; onion-rings

;; A sinple-order is
;5 - (make-order burger side)
(define-struct sinple-order (burger side))

;; Afamily-order is
;5 - (meke-family-order |ist-of-sinple-order)
(define-struct fanily-order (orders))

;7 An order is either
7, - sinple-order
;- famly-order

;; To remnd us, for list-of-order and |ist-of-sinple-order

i Alist-of-Xis

either - enpty
;; - (cons X list-of-X)

7, Exanples for testing

; Burger with onions (no cheese), fries on the side

(define burger+f |(nake-sinple-order (nmake-burger false true) 'fries)

~

; Burger with onions (no cheese), onion rings on the side

(define burger+o |(nmake-sinple-order (nmeke-burger false true) 'onion-rings)

~

; Burger with cheese and onions, onion rings on the side

(define cheeseburger+o |(make-sinpl e-order (nake-burger true true) 'onion-rings)

; Burger with chese (no onions), fires on the side

(define hol d-the-oni ons |(make-sinpl e-order (make-burger true false) '"fries) |)

; An family order with no order inside (fam |y apparently changed its mi nd)

(define not-hungry |(make-famly-order enpty) |)

; Family of three: burger+o, cheeseburger+o, and hol d-the-oni ons

(rmeke-fam | y-order (list burger+o
cheesebur ger +o
(define trio hol d-t he-oni ons)) |)

; Family of three: hol d-the-onions, hold-the-onions, and hol d-the-oni ons
(define tri o/ hol d-the-onions

(make-fam |l y-order (list hold-the-onions
hol d-t he- oni ons
hol d-t he- oni ons)) |)

;7 Checking orders

;; Original functions, |ater abstracted to need-sonethi ng? and
; need- sonet hi ng- f or - or der ?:

; +; need-fries? : list-of-order -> boo

; ; Checks whether any order in | includes 'fries
; (define (need-fries? I|)

; (ormap (1 anmbda (0)

; (need-fries-for-order? 0))

; 1))

; ;; need-fries-for-order? : order -> bhoo

; ; Checks whether any order in o includes 'fries

; (define (need-fries-for-order? o)

; (cond

; [(sinple-order? o) (eq? 'fries (sinple-order-side 0))]

; [(fam | y-order? o) (need-fries? (famly-order-orders 0))]))

;5 need-sonething? : |(sinple-order -> bool) | |list-of-order | -> boo

; Return true if CHECK is produces true for every
; order in | (including each order within each fam |y order)
(define (need-sonething? CHECK |)
(ormap (1 anmbda (0)
(need- sonet hi ng-for-order? CHECK 0))

1))

;; need-sonething-for-order? : |(sinple-order -> bool) order | -> boo

; Return true if CHECK is produces true for every
; order in o (including each order within a famly order)
(define (need-sonethi ng-for-order? CHECK 0)
(cond
[(sinpl e-order? o) (CHECK 0)]

[(fam | y-order? o) |(need-sonething? CHECK (fam |y-order-orders 0)) |]))

;; Make sure that uses of ‘need-sonething? cover all cases in
;; both list-of-order and order..

;; need-fries? : list-of-order -> boo
; Checks whether any order in | includes 'fries
(define (need-fries? |)
(need- sonet hi ng? (lanbda (0) (eq? 'fries (sinple-order-side 0)))

1))

(need-fries? enpty) "should be" fal se

(need-fries? (list burger+f)) "should be" true
(need-fries? (list burger+o burger+o)) "should be" fal se
(need-fries? (list burger+o trio)) "should be" true
(need-fries? (list not-hungry)) "should be" false

;; need-cheese? : list-of-order -> boo
; Checks whet her any order in | includes cheese
(define (need-cheese? |)

(need- sonet hi ng? | (Il anbda (0) (burger-cheese? (sinple-order-burger

0)))

1))

(need-cheese? enpty) "should be" false

(need- cheese? (list cheeseburger+o)) "should be" true
(need-cheese? (list burger+f burger+o)) "should be" fal se
(need-cheese? (list burger+o trio)) "should be" true
(need- cheese? (list not-hungry)) "should be" false

;; need-onions? : list-of-order -> boo

; Checks whether any order in | includes onions (on burgers

; or as rings)
(define (need-onions? I|)

(lanbda (0)
(or (burger-onions? (sinple-order-burger 0))
(need- somet hi ng? (eq? 'onion-rings (sinple-order-side 0))))
1))

(need-oni ons? enpty) "should be" false
(need-oni ons? (list burger+f)) "should be" true
(need-onions? (list hold-the-onions)) "should be" fal se

(need-oni ons? (list hold-the-onions burger+f)) "should be" true
(need-onions? (list trio)) "should be" true
(need-onions? (list trio/hold-the-onions)) "should be" fal se
(need-oni ons? (list not-hungry)) "should be" false
;; Prioritizing orders
;; need-fries-nore? : list-of-order -> boo
;7 We need fries nore if, no matter how far we | ook ahead
;5 in the order list, the nunber of fries we need is never
;; less than the nunber of onions that we need.
(define (need-fries-nore? 1)
(need-fries-nmore/given-counts? | 0 0))
;; need-fries-nore/given-counts? : |ist-of-order num num -> boo
;; Like need-fries-nore?, but assunes that we’ve so far
;7 seen fr orders for fries and on orders for onion rings
;7 (with fr >= or)
(define (need-fries-nore/given-counts? | fr on)
(cond
[(enpty? |) true]
[else (local [(define n-fr (fr| (count-sides "fries |[(first

(define n-on (on| (count-sides ’'onion

(cond
[(< n-fr n-on) false]

[el se (need-fries-nore/given-counts? (rest 1)

;; count-sides : symorder -> num
;5 Counts the nunber of "which" sides ('fries or 'onion-ri
(define (count-sides which o)

(cond

N

-rings |[(first 1))))]

n-frjn-on)J)Nl))

ngs) in

(o]

(cond

[(sinple-order? o) [el se 0])

[(synbol =? which (sinple-order-side 0)) 1]

(lambda (o n)
(+ (count-sides which o) n))

0
(fanmily-order-orders 0))]))

[el se (foldl

(count-sides "fries burger+f) "should be" 1

(count-sides 'fries burger+o) "should be" 0

(count-sides "fries trio) "should be" 1

(count-sides "onion-rings trio) "should be" 2

(need-fries-nore/ given-counts? (list burger+f) 0 0) "should be" true
(need-fries-nore/ given-counts? (list burger+o) 0 0) "should be" false
(need-fries-nore/ gi ven-counts? (list burger+o) 1 0) "should be" true
(need-fries-nore/ given-counts? (list burger+f) 1 1) "should be" true
(need-fries-nore/ given-counts? (list burger+f burger+o) 0 0) "should be" true
(need-fries-nore/ gi ven-counts? (list burger+o burger+f) 0 0) "should be" fal se
(need-fries-nore/ given-counts? (list trio) 0 0) "should be" fal se
(need-fries-nore/ given-counts? (list trio) 1 0) "should be" true
(need-fries-nmore/ given-counts? (list trio burger+o) 1 0) "should be" false
(need-fries-more? (list burger+f)) "should be" true

(need-fries-nore? (list burger+f burger+o burger+f)) "should be" true
(need-fries-nore? (list burger+f burger+o burger+o)) "should be" false
(need-fries-nmore? (list trio)) "should be" false

(need-fries-nore? (list burger+f trio)) "should be" true

;, State

;; ORDERS : Iist-of-order

(defi ne ORDERS empty)

;7 FAM LY-ORDER : |ist-of-sinple-order
(define FAM LY- ORDERS empty)

add- si npl e- order! burger side -> void

Add an order for a burger and side to the end of the order I|ist
;; Effect: sets ORDERS to the new order 1ist

(define (add-sinple-order! b s)

(set! ORDERS (append ORDERS |(list (make-sinple-order b s)))))))
(set! ORDERS enpty)
(add- si npl e-order! (make-burger true true) 'fries) "should be" (void)

ORDERS "shoul d be" |(list burger+f)

(add-si npl e-order! (make-burger true false) 'onion-rings) "should be" (void)

(list
(rmeke- si npl e-order (neke-burger true true)
(make- si npl e-order (make-burger true false)

"fries)
"oni on-rings))

ORDERS "shoul d be"

add-fami | y-order! burger side drink -> void
Add an order for a burger and side to the end of the current
fam |y order Iist

;; Effect: sets FAMLY-ORDERS to the new order 1|ist
(define (add-famly-order! b s)
(set! FAM LY- ORDERS (append FAM LY- ORDERS |(list (make-sinple-order b s))) |)))

(set! FAM LY- ORDERS enpty)
(add-fanmi|ly-order! (make-burger true true) 'fries) "should be" (void)

(1ist

FAM LY- ORDERS "shoul d be" (make-si npl e-order (nmeke-burger true true) 'fries))
(add-fami|ly-order! (make-burger true false) ’onion-rings) "should be" (void)

(list

(make- si npl e-order (nmake-burger true true) 'fries)
FAM LY- ORDERS "shoul d be" (make- si npl e-order (meke-burger true false) 'onion-rings))

;; famly-order-conplete! : -> void
;7 Moves the current family order into the main order |ist

s Effect: add a famly order to ORDERS, resets FAM LY-ORDERS to enpty

(define (fam|ly-order-conplete!)

(begin
(set! ORDERS (cons (meke-fam|y-order FAM LY- ORDERS)
ORDERS))
(set! FAM LY- ORDERS enpty)))

(set! ORDERS enpty)
(set! FAM LY-ORDERS (list (nake-sinple-order (make-burger true false)

oni on-rings)

(make-si npl e-order (make-burger true true) 'fries)))

(fam ly-order-conplete!) "should be" void
ORDERS "shoul d be" (list (nake-fam|y-order

(l'ist (nmake-sinple-order (nmake-burger true false) ’onion-rings)

(make- si npl e-order (make-burger true t
FAM LY- ORDERS "shoul d be" enpty

rue) 'fries))))

