How to Design A Program (So Far)

Data Representation and Contract

\ 4
Examples
" 4 &
Maybe Abstract Template
4 4
Use Existing Body
& " 4
Test

Challenge Problem

¢ Implement the function odd- i t ens which takes alist-of-X and produces a
list-of-X containing every other item in the given list (including the first item)

Data Representation and Contract

Already done for us:

odd-itenms : list-of-X -> list-of-X

Examples

(odd-items enpty) "should be" enpty

(odd-items "(1 2 3 4 5))
"shoul d be" '(1 3 5)

(odd-items ' (appl e banana cherry))
"shoul d be" ' (apple cherry)

(odd-itenms (list true false))
"shoul d be" (list true)

Maybe Abstract Template
¥ or ¥
Use Existing Body

We know that f ol dr captures the template for | i st - of - X, so choose

the left branch O and abstraction is done already!

Maybe Abstract
A 4

Use Existing

(define (odd-itens |)
(foldr (lambda (item odd-rest)
)

enpty 1))
Problem: the odd items of the rest of the list are useless for the odd items
of the whole list
(odd-items ' (1 2 3 4)) "should be" " (1 3)
but

(odd-itens ' (2 3 4)) "should be" ' (2 4)

Template

¥ ?

Body

(define (odd-itens |)
(cond
[(enpty? I) enpty]
[(cons? |)
(first 1)
(odd-itens (rest 1))

Same problem O it's not just a reuse problem...

1))

Structural Recursion

¢ For recursively defined data, our recipe so far always produces
structurally recursive programs

® |[n a sense, it always works:

(define (odd-itens |)
(first
(foldr (lanbda (item odds+evens)
(list (cons item
(second odds+evens))
(first odds+evens)))

(list enpty enpty) 1)))

But making structural recursion work sometimes requires more creativity
than solving the problem a different way

Generative Recursion

Structural recursion is a powerful tool, but we need more tools
Our new tool is generative recursion:

(define (func v)
(cond
[(trivially-solvable? v) ...]
[el se ...
(func generated-v_1)

(func generated-v_n)

1))

Structural recursion is a special case of generative recursion that is
especially common

Back to Odd Items

When the list given to odd- i t ens has less than two items, the problem
is trivial to solve:

(define (odd-itemns |)
(cond
[(or (enpty? I)
(enpty? (rest 1)))
I
[else ...]))

Back to Odd Items

Otherwise, it's helpful to have the r est of the rest:

(define (odd-itens |)
(cond
[(or (enpty? I)
(enpty? (rest 1)))
I']
[el se (cons
(first 1)
(odd-itens (rest (rest 1))))]))

How to Design A Program

Data Representation and Contract

$

Examples

[4 4 |

Maybe Abstract Template Trivial Cases

\ A 4 ¥

Use Existing Body Recur on Smaller

| 2 " 4

Test

13-17

Guessing a Number

; make- secret-checker num -> (num -> syn)
(define (nmeke-secret-checker n)
(local [(define secret (randomn))]
(lanmbda (m
(cond

[(= msecret) 'perfect]

[(< msecret) '"too-snall]

[(> msecret) 'too-large]))))

® |mplement the function di scover - nunber which takesanumber n and a
function produced by (make- secr et - checker n), and returns the secret
number in the function

Data Representation and Contract

Apparently done already:

; di scover - nunber num (num -> sym -> num

Examples

(di scover-nunber 1 (make-secret-checker 1))
"shoul d be" 0

(di scover-nunber 3 (nmke-secret-checker 3))
"should be" "0 or 1 or 2"

Maybe Abstract Template Trivial Cases
£ or 4 or L 4
Use Existing Body Recur on Smaller

® Abstract/reuse: nothing obvious

® Template: nothing for num

.. butis it really nat ?

Yes, starting from 1

18- 26

Template

\ 4

Body

; discover-nunber : nat (nat -> syn)

-> nat
(define (discover-nunber n checker)

(cond
[(=n 1) ...]
[el se

(di scover-nunmber (subl n) checker)

1))

Template

4

Body

; discover-nunber : nat (nat -> syn) -> nat

(define (discover-nunber n checker)

(cond
[(=n1) 0]
[el se

(di scover-nunber (subl n) checker)

1))

Template
4
Body
; discover-nunmber : nat (nat -> syn) -> nat
(define (discover-nunber n checker)
(cond
[(=n1) 0]
[el se
(cond
[(synbol =? (checker n) ’'perfect) n]
[el se

(di scover-nunber (subl n) checker)])]))

Template
4
Body
; discover-nunber : nat (nat -> syn) -> nat
(define (discover-nunber n checker)
(cond
[(=n1) 0]
[el se
(cond
[(synbol =? (checker n) "perfect) n]
[el se

(di scover-nunber (subl n) checker)])]))

This works, but is there a better way?

27-30

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get’ perfect or’ i nperfect answers to guesses, there’s
no better way to find the number
|
I

0 5 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

and you only get’ perfect or’ i mperfect answers to guesses, there’s
no better way to find the number
|
I

0 5 9

" perfect

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-snall,or’too-|arge answers, it's
better to guess in the middle

0 5 9

Guessing a Number

If you know a number is between 0 and 9:

0 9

but you get’ perfect,’ too-small,or’ too-I| arge answers, it's
better to guess in the middle

0 5 9

" perfect

31-49

Trivial Cases

¥

Recur on Smaller

0 5 9

" perfect

 Trivially solvable if mid-pointis’ per f ect

e Otherwise, mid-point results cuts the range in half O try again

Guessing A Number with Generative Recursion

(define (discover-nunmber n checker)
(di scover-in-range 0 (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (inclusive)
(define (discover-in-range |o hi checker)
(cond
[trivial? ...]
[el se
(di scover-in-range ...)

1))

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (inclusive)
(define (discover-in-range o hi checker)
(local [(define md (quotient (+ 10 hi) 2))]
(cond
[trivial? ...]
[el se
(di scover-in-range ...)

1))

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range 0 (subl n) checker))

di scover-in-range : nat nat (nat -> bool) -> num
Fi nds the nunber between | o and hi (inclusive)
(define (discover-in-range lo hi checker)
(local [(define md (quotient (+ 1o hi) 2))]
(cond
[(synbol =? (checker mid) 'prefect) md]
[el se
(di scover-in-range ...)

1))

50-53

Guessing A Number with Generative Recursion

(define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

; discover-in-range : nat nat (nat -> bool) -> num
; Finds the nunber between | o and hi (inclusive)
(define (discover-in-range |Io hi checker)
(local [(define mid (quotient (+ 10 hi) 2))]
(cond
[(synbol =? (checker mid) 'prefect) md]
[el se
(di scover-in-range |lo nmid)
(discover-in-range hi hi) ...]1)))

Guessing A Number with Generative Recursion

(define (discover-nunmber n checker)
(di scover-in-range 0 (subl n) checker))

; discover-in-range : nat nat (nat -> bool) -> num
; Finds the nunber between | o and hi (inclusive)
(define (discover-in-range |o hi checker)
(local [(define md (quotient (+ 1o hi) 2))]
(cond
[(synbol =? (checker mid) 'prefect) md]
[el se
(cond
[(synbol =? (checker mid) ’'too-|arge)
(di scover-in-range lo mid)]
[el se
(di scover-in-range md hi)])])))

Running the Guesser

(di scover-nunber 10 check-7)

(discover-in-range 0 9 check-7)

using (define (discover-nunber n checker)
(di scover-in-range O (subl n) checker))

Running the Guesser

(di scover-in-range 0 9 check-7)

(cond

[(synbol =? (check-7 4) 'perfect) 4]

[el se

(cond
[(synmbol =? (check-7 4) ’too-large)
(di scover-in-range 0 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])1)

US|ng (define (discover-in-range | o hi checker)
(local [(define mid (quotient (+ lo hi) 2))]
(cond
[(synbol =? (checker mid) 'prefect) mid]
[el se
(cond
[(synbol =? (checker mid) 'too-large)
(discover-in-range lo nid)]
[el se
(discover-in-range nmid hi)])])))

54-59

Running the Guesser

(cond

[(synbol =? (check-7 4) 'perfect) 4]

[el se

(cond
[(symbol =? (check-7 4) 'too-large)
(di scover-in-range 0 4 check-7)]
[el se

(di scover-in-range 4 9 check-7)])])

—

(cond
[(synbol =? (check-7 4) ’too-large)
(di scover-in-range 0 4 check-7)]
[el se
(di scover-in-range 4 9 check-7)])

Running the Guesser

(cond
[(synbol =? (check-7 4) 'too-large)
(discover-in-range 0 4 check-7)]

[el se
(di scover-in-range 4 9 check-7)])

—

(di scover-in-range 4 9 check-7)

Running the Guesser

(di scover-in-range 4 9 check-7)

(cond

[(synbol =? (check-7 6) 'perfect) 6]

[el se

(cond
[(synbol =? (check-7 6) ’'too-large)
(di scover-in-range 4 6 check-7)]
[el se

(di scover-in-range 6 9 check-7)])])

Running the Guesser

(cond

[(symbol =? (check-7 6) 'perfect) 6]

[el se

(cond
[(synbol =? (check-7 6) ’too-large)
(di scover-in-range 4 6 check-7)]
[el se

(di scover-in-range 6 9 check-7)])])

—

(di scover-in-range 6 9 check-7)

60- 67

Running the Guesser

(di scover-in-range 6 9 check-7)

(cond

[(synbol =? (check-7 7) 'perfect) 7]

[el se

(cond
[(synbol =? (check-7 7) ’'too-large)
(di scover-in-range 6 7 check-7)]
[el se
(di scover-in-range 7 9 check-7)])])

Running the Guesser

(cond

[(synmbol =? (check-7 7) 'perfect) 7]

[el se

(cond
[(symbol =? (check-7 7) 'too-I|arge)
(di scover-in-range 6 7 check-7)]
[el se
(di scover-in-range 7 9 check-7)])1)

Running the Guesser Again

(di scover-nunber 3 check-2)

(di scover-in-range 0 2 check-2)

Running the Guesser Again

(di scover-in-range 0 2 check-2)

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synmbol =? (check-2 1) ’'too-large)
(di scover-in-range 0 1 check-2)]
[el se
(discover-in-range 1 2 check-2)])])

68- 75

Running the Guesser Again

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(symbol =? (check-2 1) 'too-large)
(di scover-in-range 0 1 check-2)]
[el se
(di scover-in-range 1 2 check-2)])])

(discover-in-range 1 2 check-2)

Running the Guesser Again

(discover-in-range 1 2 check-2)

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) 'too-snall)
(di scover-in-range 1 2 check-7)]
[el se
(di scover-in-range 1 2 check-2)])])

Running the Guesser Again

(cond

[(synbol =? (check-2 1) 'perfect) 1]

[el se

(cond
[(synbol =? (check-2 1) 'too-small)
(di scover-in-range 1 2 check-7)]
[el se
(di scover-in-range 1 2 check-2)])])

—

(discover-in-range 1 2 check-2)

Running the Guesser Again

(di scover-in-range 1 2 check-2)

(di scover-in-range 1 2 check-2)

76-83

Running the Guesser Again

(di scover-in-range 1 2 check-2)

(discover-in-range 1 2 check-2)

Infinite loop!

Generative Recursion and Termination

¢ \With structural recursion, a program always terminates

o Every value is finite

¢ With generative recursion, termination becomes more tricky

© You have to argue that the problem size definitely gets smaller for
every recursive call

Guessing a Number, Corrected

(define (discover-in-range |o hi checker)
(local [(define mid (quotient (+ lo hi) 2))]
(cond

[(synbol =? (checker md) 'prefect) md]

[el se

(cond
[(synbol =? (checker mid) ’'too-|arge)
(di scover-in-range 1o (subl md))]
[el se
(di scover-in-range (addl md) hi)])])))

Algorithms

Our di scover -i n-range function is an example of a general
algorithm called binary search

Many algorithms are less obvious than binary search

Mostly you'll use general algorithms, not invent them

¢ Algorithm textbooks are like "recipe" books

® Few people design new general algorithms

Generative recursion is far more common than general algorithms, and
it's often merely structural recursion

84-90

