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Abstract— We present a measurement study analyzing DDoS
attacks from multiple data sources, relying on both direct
measurements of flow-level information, and more traditional
indirect measurements using backscatter analysis. Understand-
ing the nature of DDoS attacks is critically important to the
development of effective counter measures to this pressing
problem. While much of the community’s current understand-
ing of DDoS attacks result from indirect measurements, our
analysis suggests that such studies do not give a comprehensive
view of DDoS attacks witnessed in today’s Internet. Specif-
ically, our results suggest little use of address spoofing by
attackers, which imply that such attacks will be invisible to
indirect backscatter measurement techniques. Further, at the
detailed packet-level characterization (e.g., attack destination
ports), there are significant differences between direct and
indirect measurements. Thus, there is tremendous value in
moving towards direct observations to better understand DDoS
attacks. Direct measurements additionally provide information
inaccessible to indirect measurements, enabling us to better
understand how to defend against attacks. We find that for
70% of the attacks fewer than 50 source ASes are involved and
a relatively small number of ASes produce nearly 72% of the
total attack volume. This suggests that network providers can
reduce a substantial volume of malicious traffic with targeted
deployment of DDoS defenses.

I. INTRODUCTION

Internet distributed denial of service (DDoS) attacks are
becoming increasingly prevalent [1]. To prevent the discovery
of attack sources, attackers have been known to spoof the
source IP addresses of packets in DDoS attack traffic. These
spoofed addresses were often chosen randomly from the
IPv4 space, which allowed a technique called backscatter
analysis [2] to be used to infer the prevalence of such
spoofed DDoS attacks on the Internet. This technique works
by measuring the amount of unwanted traffic sent to unused
address blocks. Backscatter traffic originates from attack tar-
gets responding to the attack packets by replying to spoofed
source addresses. Indeed, much of the current understanding
of the nature of DDoS attacks is a result of analyzing such
backscatter data by monitoring lightly used or unused address
blocks [3], [2].

Relying on backscatter analysis does not provide a com-
plete picture of all possible DDoS attacks. Ingress filter-
ing [4] at interfaces to customer networks can block randomly
spoofed traffic by only permitting traffic with addresses

known to belong to the customers1. Backscatter data might
also be unavailable if the attacked IP address is not re-
sponding to the attack packets. This can be due to the fact
that the attacker attacks a target IP address which is not
assigned to any host; the attacked host is down; the Internet
access link of the attack target is unavailable; or, the attack
traffic is filtered. In addition, not all DDoS attacks employ
address spoofing. For example, it is known that botnets [6]
consisting of thousands of compromised machines can be
used to launch DDoS attacks, frequently through public
IRC channels, without source address spoofing. From the
attacker’s point of view, this is an attractive alternative, as
attackers do not need to be concerned with ingress filtering
which thwarts the use of random source address spoofing.
Furthermore, attack sources are not owned by attackers and
thus, do not reveal their identity.

Our first contribution in this paper is a first-of-its-kind
analysis of DDoS attacks that uses two independent data
sources — namely, indirectly measured DDoS activity using
backscatter data from a mostly unused /8 network, as well
as directly measured DDoS activity in an ISP network. For
the latter source, we use a combination of independently
collected Netflow data and alarms from a commercial DDoS
detection system, as well as LADS, a recently developed
large-scale automated DDoS detection system to indicate
the presence of flow anomalies [7]. Using simple heuristics
we were able to verify that most of the flow anomalies
were indeed DDoS attacks. We compare the DDoS attack
characteristics from these data sets and find that almost all
the attacks in the directly measured data set are not present
in the backscatter data. If indeed large spoofed attacks were
present, a monitored address space as large as ours (an unused
/8 network) is highly likely to witness backscatter traffic.
Also, such large attacks would register volume-based hits
on at least the LADS detection system if not the commercial
detection system as well. Therefore, the very minimal overlap
suggests that most DDoS attacks in today’s networks are
unlikely to be detected using the backscatter approach, and
direct measurements are needed.

Our second contribution, and to our knowledge the first of

1A recent study [5] shows that a large number of networks still do not
deploy ingress filtering, thus allowing spoofed attacks to originate from
them.
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its kind to be published, is a characterization of DDoS attacks
using the directly measured attack data. In particular, we
analyze DDoS packet-level properties and attack sources and
targets. Such analysis is beneficial in designing more effective
and practical defense mechanisms, understanding mitigation
deployment in large networks, as well as developing defense
strategies deployable at end-hosts.

The paper is organized as follows. In Section II, we
describe our data sets and the methodology we used to filter
the data sets to allow a fair comparison. In Section III we
present a characterization of DDoS attacks for the data sets
we use. Also, we determine the extent to which attacks in our
data set use randomly spoofed IP packets, and subsequently
analyze the sources and targets of attacks in our data sets.
We then conclude with a concise summary of contributions
and their implications.

II. DATA AND METHODOLOGY

We now describe the three data sources used in our
study, as well as our approach to validate the presence
of DDoS attack traffic in the flow based data. To allow
direct comparisons across the data sets, we preprocess them
by focusing only on large attacks targeting address ranges
advertised by the tier-1 ISP under study. We expect large
randomly spoofed attacks to generate sufficient number of
packets to be observed in the /8 backscatter data set.

A. DDoS Data Sources

Flow Data from commercial anomaly detection system:
We used a commercial flow based DDoS detection system
deployed within a tier-1 ISP and collected large DDoS alarms
generated by this system over 4 weeks in March 2006.
Since the algorithms used in this system are proprietary in
nature, we used separately collected Netflow data, pertaining
to the same time duration as the alarms, to study and
verify the alarms generated by the DDoS detection system.
We use the following steps to derive the flow-based attack
traces: (1) Collect alarms for significant flow anomalies from
commercial flow based network anomaly detectors deployed
in key locations in a large ISP. (2) Correlate the flow anomaly
alarms to give attack instances, where alarms are combined if
they target the same set of destination prefixes and occur with
no more than 15 minutes idle time in between. (We focus on
targeted attacks.) (3) Retrieve all sampled Netflow records
covering the entire network destined to the attack destination
during the attack period.

Flow Data from a custom anomaly detection system:
The other data source we have for analyzing DDoS attacks is
a home-grown DDoS detection system called LADS – Large-
scale Automated DDoS detection System [7] — deployed in
the tier-1 provider. LADS is based on a triggered multi-stage
architecture for scalable, accurate, and cost-effective large-
scale attack detection. Conceptually, the initial stages consist
of low-cost anomaly detection mechanisms that provide in-
formation to traffic collectors and analyzers to reduce the

search space for further traffic analysis. Successive stages of
the triggered framework, invoked on demand and therefore
much less frequently, then operate on data streams of pro-
gressively increasing granularity (e.g., flow or packet header
traces), and perform more fine-grained analysis. Our system
makes use of two data sources: SNMP and Netflow, both
of which are readily available in commercial routers today.
We adopt a two-stage approach in LADS. In the first stage,
we detect volume anomalies using low-cost SNMP data feeds
(packets per second counters). These anomalies are then used
to trigger flow-collectors that obtain Netflow records for the
appropriate routers, interfaces, and time periods. For this
stage, we build a traffic prediction model, using packet rate as
the metric, for each customer egress interface using historical
traffic data over a 5-week period. This prediction model is
then used to identify traffic anomalies over the observation
period. In the second stage, we then perform automated anal-
ysis of the flow records, using uni-dimensional aggregation
and clustering techniques, to generate alarm reports indicative
of DDoS attacks targeted at customer networks. Here, flow-
records are partitioned into 4-different categories (All, ICMP,
SYN, RST), and we identify destinations receiving a large
traffic flood within the duration specified by the coarse-
grained volume anomaly. More details about the system
design and implementation can be found in [7].

The bandwidth thresholds depend on the type of flow
data and the capacity of the customer’s access interface. For
high-capacity interfaces ( � 5Mbps) we set the threshold to
be 10Mbps for aggregate attacks, and 2.5Mbps for specific
attacks (SYN, RST, ICMP). For low-capacity interfaces, the
thresholds are set to be equal to the access-link capacity.
These thresholds are selected to focus on attacks that would
impact customers. Our current deployment of LADS mon-
itors in excess of 50,000 customer egress interfaces and
collects flow data from over 500 routers in the provider’s
backbone for analysis. For the dataset used in this paper, we
collected ���
	��� alarms generated by LADS over a four-week
period in March 2006.

Backscatter Data: The backscatter data consist of traffic
logs detailing the timestamp, packet type, source and desti-
nation IP address and port numbers obtained from a mostly
unused /8 network over the same time period as the flow
data. There are very few address blocks from the /8 actively
used. Thus, traffic received at the unused addresses is most
likely illegitimate – a result of replies to attack packets,
measurement probing, worm scanning, misconfiguration etc.
To exclude packets that are not replies of DDoS attack
packets, we take the same set of steps as suggested by prior
work on backscatter analysis [2] — that is, we only consider
flows with more than 100 packets and lasting more than 60
seconds. We define flows to be consecutive packets with the
same source IP address and protocol, based on a 5-minute
time out to achieve resilience to temporary outages while
not combining unrelated traffic flows [2]. This data set is
called the Backscatter set in the remainder of this paper,
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and consists of ������� events that originate from IP addresses
belonging to the tier-1 ISP network. Note that we only focus
on backscatter events originating from addresses of the tier-1
ISP and its customers, as we can observe the corresponding
attacks targeted to such addresses using the above-mentioned
anomaly detection systems.
B. Data Processing

Flow Data: To ensure a sufficient number of samples in
our data, we therefore focus our analysis on large DDoS
attacks which during the time period of the DDoS alarm,
transmitted at least 10 million packets through the ISP
guaranteeing us at least 25 sampled flow records per attack2.
Furthermore, we only consider attacks with an average packet
rate of at least 6666 packets per second, ensuring that at
least one sample per minute is received, given on average
20MB per sample flow record. Considering both attacks that
target destinations within the ISP and attacks that originate
from customers connected to the ISP gives us a filtered set
comprising of ��	 potential attacks. This set is referred to as
the LargeFlow data set. We apply the same filtering to the
flow data from the LADS system, giving the LADS data set
comprising of in ����	 attack instances.

Backscatter Data: To allow direct comparison between
the Netflow based data (consisting of large DDoS attacks)
and the backscatter based data, we filtered the backscatter
data based on the same criteria used to classify large ISP
DDoS attacks, i.e., with at least 10 million packets total, and
average packet rate of at least 6666 packets per second. Note
that we scale the above packet rate and packert count by 256
given that we monitor a /8 block, roughly ������ of the IPv4
address space. This filtered set, comprising of ����� events will
be referred to as the LargeBackscatter data set.
C. Validation of Flow Anomalies of the Commercial System

Unlike the backscatter data, which are most likely a result
of attacks or misconfigurations, the flow anomaly based
DDoS data can contain false positives, especially given the
proprietary nature of the commercial DDoS detection mech-
anism. Note that the flow anomalies from the LADS system,
a public DDoS detection system, have already been validated
independently [7]. We now describe how we validate, with
high probability, that the data produced by the commercial
system is indeed the result of DDoS attacks. Specifically,
from the LargeFlow data set, we created a filtered data
set, called the SureFlow set, for which we independently
validated the flow records as being part of a DDoS attack
by using the following heuristics. We assume a flow based
attack trace is a real attack if, considering all flows associated
with the trace, any of the following holds true:� More than 95% of packets in the flows are UDP packets

originating from a large number of source IPs (potential
UDP flooding attacks).

2Given 10 million packets, assuming 100Byte average packet sizes,
the probability of observing at least one sample based on the sampling
algorithm [8], [9] is calculated to be very close to 1 using the formula of��� �"!$#&%('*)�+-,/.*.*.*.*.*.*.10

with T being the total number of bytes.

� More than 95% of packets in the flows are ICMP packets
(potential ICMP flooding attacks).� More than 90% traffic is TCP and all TCP packets have
only a single flag. (Most of these flags are SYN, RST,
ACK, an indication of SYN flooding attacks or reflector
attacks)3

The SureFlow set consists of ��� events, containing a little
more than 89% of the original LargeFlow data set of ��	
events. Using the independent Netflow data we therefore are
able to verify that at least 89% of the large attack alarms
are real DDoS attacks. Note that this does not imply that the
remaining 11% of the attacks are not real DDoS attacks, it
just means we could not verify them as attacks using our
simple heuristics.

Although the SureFlow set provides an upper bound of
11% on the number of false positives (the case in which the
commercial DDoS detection system marks non-DDoS traffic
as a DDoS attack), it is substantially harder to provide a
bound on false negatives (no alarms are generated while a
DDoS attack was present). Although false negatives do not
introduce false data in our analysis, they might bias the analy-
sis of our results. This appears to be a fundamental problem
with any DDoS detection mechanism. However, given that
the characteristics of large DDoS attacks (compared to small
DDoS attacks) are quite unusual and, therefore, easy to
detect, we expect the number of false negatives of the
commercial DDoS detection system to be low for large
DDoS attacks. Furthermore, we also use LADS, a recently
developed DDoS detection system with a publicly known
algorithm that focuses on flooding attacks on customer inter-
faces to improve detected attack coverage.

III. DATA ANALYSIS RESULTS

We now detail the data analysis using the four data sets
previously mentioned: Backscatter (BS), the backscatter set
corresponding to the 100 packet, 60 second rule [2]; Large-
Backscatter (LBS), the backscatter set filtered to correspond
to large DDoS attacks; SureFlow (SF), the flow-based set for
which we were able to verify the existence of DDoS traffic
in the flow records; and LADS, the flow data using custom
volume-based anomaly detection. We compare the data sets
whenever possible and correlate them to infer the prevalence
of random address spoofing.

A. Attack Characterization

We present a detailed characterization of the attack traffic
captured from the four data sets above. In the process,
we also point out important network properties and traffic
characteristics of the attack traffic that make them stand out
from regular traffic.

3It is possible that the complete failure of a busy server might cause an
increase in the number of SYN packets being sent to a particular IP address
as clients attempt to re-establish connectivity. This might cause the resulting
traffic flows to be incorrectly classified as a SYN flooding attack. Since our
study is limited to large DDoS attacks, we do not expect this to be a problem.
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(a) Attack duration distribution (b) Attack packet count distribution
Fig. 1. Attack duration and packet count properties

Traffic properties: We first focus on general traffic prop-
erties in terms of attack durations, packet counts, and packet
rate. Figure 1(a) depicts the distribution of attack duration for
four data sets described above. About 86% of the SureFlow
attacks last less than one hour, but some persist as long
as 12 hours. The attack duration for both the Backscatter
and LargeBackscatter data sets appear to be slightly longer,
with about 67% of the LargeBackscatter attacks lasting less
than one hour. This could be due to our conservative way
of classifying attacks in the backscatter data: as long as
there are no idle periods of longer than 5 minutes, data
packets are grouped into the same attack flow. This may result
in unrelated events grouped together. The attack duration
distribution for LADS alarms matches very closely to that for
LargeBackscatter attacks. Note that the overall distribution
among the four data sets are quite similar.

We find strong correlation between attack duration and the
amount of attack traffic in both packet and byte count for the
SureFlow data set, and similarly strong correlation for the
LADS data set. This means that long-lived attacks usually
have more attack traffic. The correlation is much weaker
for the Backscatter data set. This is probably an artifact of
the 5 minute idle time used to define flows for backscatter
data. This implies it is possible that several separate flows are
classified as a single flow, resulting in overall lower attack
rate for longer-lived attack. The distributions of the total
number of packets in each attack are shown in Figure 1(b).
Given that our detector uses large traffic volume as one of the
criteria to generate alarms, it is not surprising that the attacks
in the SureFlow, Largebackscatter, and LADS data set on
average have at least 40 Mega packets, very likely aggregated
from many traffic flows. The packet count distribution across
these data sets match very well. The Backscatter data set has
a wider distribution including many smaller attacks with an
average of 130K packets. This shows that the majority of the
backscatter events, likely caused by the use of spoofed IPs,
are quite small in size.

Directly related to the traffic volume metric is the traffic
rate. To have a first order estimate, we plot the distribution
of the average packet rate for individual attacks. Figure 2(a)
shows the distribution. Again the data points for the three data

sets consisting of SureFlow, Largebackscatter, and LADS
match reasonably well with medians ranging between �2� K
and 	�� K packets per second. The attacks in SureFlow have
the highest rate followed by LADS and then Largebackscat-
ter. These rates can be sustained without noticeable impact
by today’s core ISP networks, but may impact servers or
even firewalls [2]. Based on the Backscatter data, the largest
attack has an estimated rate of 280K packets per second.
The largest attack observed in the anomalous flow data set is
close to 1 million packets per second. This difference might
be due to the fact that very large attacks may not be randomly
spoofed, thus not visible in the backscatter data. We confirm
this conjecture later.

The traffic properties described above are fairly coarse-
grained, and according to these properties there is a strong
similarity between attacks observed from LargeBackscatter
and those from the anomalous flow data sets: SureFlow and
LADS.

Packet details: We now examine the packet header and
the packet type to study properties such as distribution of
port numbers, protocol types, and packet sizes. We do not
have information on packet payload due to the aggregate
nature of our traffic data, but we can speculate on the
application type based on port numbers. Again, we highlight
properties of attack traffic that make it stand out from
regular traffic. Figure 2(b) displays the distribution of the
number of destination ports in attacks. In the case of the
backscatter data, if the data is a result of spoofed attack,
the source port of the backscatter packets correspond to
the destination port of the attack targets. Only about 27%
SureFlow attacks target a single port, indicative of a single
application under attack, the corresponding number is 43%
for LADS, 57% for Backscatter, and close to 90% for
LargeBackscatter data set. The distribution of the number
of destination ports varies significantly across the four data
sets, with the LargeBackscatter having the smallest number
of destination ports and both LADS and Backscatter data
having the largest number of destination ports on average. In
fact, the actual values of the destination ports are also quite
different across the data sets. The destination ports receiving
most packets or highest average packet rate often include
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Fig. 2. Attack packet rate and destination port count properties

service ports for applications such as HTTP, SSH, DNS, IRC.
Other popular ports are not well-known and are suspected to
be used by peer to peer applications.

Protocol SF- SF- LADS- LADS- LBS- LBS-
PPS BPS PPS BPS Pkts Attacks

TCP 73.06 72.48 49.98 72.15 99.93 99.60
UDP 17.08 17.08 46.18 15.11 0.07 0.40
ICMP 9.86 10.44 2.45 0.52 0.00 0.00

TABLE I
PCTG CONTRIBUTION OF PROTOCOLS TO ATTACK TRAFFIC

(SF: SUREFLOW,PPS: PACKETS/SEC,BPS: BYTES/SEC,

LBS: LARGEBACKSCATTER,PKTS: PACKETS COUNT, ATTACKS: ATTACK COUNT)

Next we characterize the distribution of IP protocols by
examining the protocol field in the IP header of the traffic in
Netflow data and by inference from the backscatter packet
types using previously described techniques [2]. Table I
shows the average traffic contribution in bytes per second
and packets per second across all attacks for all the pro-
tocols found for the SureFlow and LADS data set. For
the LargeBackscatter data set, the table shows the corre-
sponding percentages for the number of packets and the
number of attacks respectively. Not surprisingly, similar to
regular traffic, TCP is the dominant protocol, UDP being
the second highest contributor. Interestingly, the percentage
of UDP attacks detected in the SureFlow and LADS data
is significantly higher than in the LargeBackscatter data.
A possible explanation is that UDP data on random ports
are typically blocked by firewalls, which might reduce the
potential amount of UDP traffic generating backscatter.

Protocol BS-Pkts BS-Attacks BSAll-Pkts BSAll-Attacks
TCP 98.99 95.76 98.68 25.45
UDP 0.25 0.78 0.40 59.50
ICMP 0.03 0.90 0.03 0.26

TABLE II
PCTG CONTRIBUTION OF PROTOCOLS TO ATTACK TRAFFIC IN

BACKSCATTER DATA

(BS: BACKSCATTER USING 60 SEC 100 PACKET FILTER,
BSALL: ALL BACKSCATTER DATA WITHOUT FILTERING,

PKTS: NUMBER OF PACKETS, ATTACKS: NUMBER OF ATTACKS )

A recent work in progress presented by Nazario [10]

also based on backscatter data from a mostly unused /8
network suggested that attacks are shifting from TCP to the
UDP protocol. However, our analysis did not confirm this.
One possible explanation for this discrepancy is explained
by Table II where the data set is not filtered based on
source addresses belonging to the customer of the tier-1
ISP. Here, BSALL refers to all backscatter instances without
any filtering, and BS is the 60 second 100 packet filtered
Backscatter set. Surprisingly, for BSALL, we observe a large
number of UDP based attacks contributing little traffic, i.e.,
59.5% of the attacks which contribute only 0.4% of the
number of packets. (Recall that for this data set we did not
filter out smaller attacks.) We believe that such events are
unlikely caused by real DDoS attacks and more likely due
to probing into the dark address space.

Given that TCP is the dominant protocol in attack traffic,
we analyze the distribution of TCP flags as shown in Ta-
ble III. The table shows the average contribution of particular
TCP flags only for the flags contributing to more than 1% of
the attack traffic in all SureFlow and LADS attacks. To our
surprise, we found significantly large amounts of packets in
SureFlow and LADS are due to ACK packets, contributing
to more than 60% of packet rate and data rate. This implies
that these packets may result from reflector attacks targeting
the host. Such traffic will not be visible in the backscatter
data, as it only consists of packets destined to the unused
address block. We also observe the prevalence of SYN-
flooding based attacks, as SYN packets contribute to more
than 20% of the packet and bit rate. The most popular packet
types in the LargeBackscatter data confirms the presence of
a large number of SYN flooding attacks, as the most popular
packet type is SYNACK. We observe much fewer ICMP
port unreachable and echo reply packets which is possibly
resulting from UDP and ping flooding attacks.

Finally, we examine the distribution of packet sizes in at-
tack traces for SureFlow. Note, it is impossible to understand
this property by using backscatter data alone. We found many
attacks purely consisting of packets smaller than 100 Bytes.
In about 6% of attacks, no packets were smaller than 100
Bytes. However, in about 83% of attacks, all traffic consist
of these small packets. Such properties clearly can be used
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SureFlow LADS LargeBackscatter
TCP flag PPS BPS TCP flag PPS BPS Packet type attack freq packet cnt
ACK 65.75 66.62 ACK 72.67 63.09 SYNACK 95.56 91.88
SYN 29.13 27.60 PSH,ACK 18.54 35.31 ICMP UNREACH PORT 1.21 0.07
PSH,ACK 2.64 3.16 SYN 5.83 0.70 ICMP ECHOREPLY 0.40 0.00
RST,PSH,ACK 2.42 2.42 SYN,ACK 1.36 0.15

TABLE III
AVERAGE CONTRIBUTION BY PACKETS WITH PARTICULAR TCP FLAGS (FLAGS CONTRIBUTING AT LEAST 1% OF TRAFFIC)

to identify DDoS attacks.

B. Spoofing Analysis Results

Given the discrepancies of some of the packet and traffic
properties between the backscatter data and the DDoS data
from the ISP, we correlate them further to understand their
common subset, which would indicate the use of source
address spoofing.

Random spoofing: Given the ��� large attacks using the
commercial detection system and ���2	 large attacks using the
LADS system observed at the large ISP over our measure-
ment period, we found only ��3(4�57628:9 such alarms matching
the backscatter data. Note that all these attack targets belong
to customers of the ISP. We use the following simple method
to perform the correlation: if there exists some backscatter
packets coming from the detected attack target identified in
the DDoS alarm during the duration of the alarm (with 5
minutes time window), then we consider this a match. Note
that here we do not filter out backscatter attacks based on the
size. In fact, among the four matching attack instances, in the
backscatter data none of them generated sufficient number
of packets and at high enough rate to be considered a large
attack.

Another way to determine if an attack used random IP
address spoofing is to check if it contains flow records with
private nonroutable source IP addresses. Even though the
flow records in the SureFlow set are sampled, some flow
records with nonroutable source IPs should still be present
in our data for attacks which use purely random IP address
spoofing. This is due to the fact that a large fraction of the
IP address space is not routable and our analysis is limited
to attacks which produced at least 25 sampled flow records.
Among the �;� large attacks in the SureFlow set, we found
� attacks with at least one flow record using nonroutable
source IPs. Interestingly, these attacks are not visible in the
backscatter data. One explanation is that these attacks are
indeed using randomly spoofed source addresses, however,
the attack target either didn’t generate the backscatter packets
or the packets were filtered. Combining these two results we
therefore conclude, with high likelihood, that less than 1% of
the attacks in the flow-based data set use random IP address
spoofing.

Local spoofing: Note that the above discussion focuses
on random address spoofing which is much more likely to
be detected using backscatter data or nonroutable source IPs.
To overcome ingress filtering, attack tools can perform local
spoofing or spoof addresses from the local network based on

the knowledge of the routing address block. It can also be the
case that the attackers were in fact performing random spoof-
ing but ingress filtering somewhere in the network dropped all
but a subset of the attack packets. To understand the possible
occurrence of local spoofing, we perform simple clustering
at the /24 granularity and count the number of unique source
IPs in each /24 for each attack in the SureFlow data set. We
found some indication of possible local spoofing in 4 attacks
(which are not the ones found in the backscatter data) where
there are more than 200 IP addresses participating in the
attack from the same /24 network. We believe these events
very likely result from local spoofing, as it is unlikely for an
attacker to own an entire /24.

Our results also indicate that even though it is possible for
compromised machines in botnets to spoof source addresses,
they do not appear to be doing so in large numbers.

C. Sources and Targets of Attacks

We now provide an initial characterization of the network
elements involved in DDoS attacks as observed in our data
sets. In particular, we analyze attack sources and targets, and
their implications for effective network defense.

1) Source Analysis: To our knowledge, there has been
no systematic study on understanding DDoS attack sources
to date, as backscatter data inherently do not have such
information. Some related work examined hosts infected by
particular worms. For example, Kumar et al. [11] recently
characterized Witty-infected hosts by exploiting the worm’s
structures to determine properties such as the number of
disks. Although worm-infected hosts can participate in DDoS
attacks, there has been no study directly examining the DDoS
attack sources. We fill this important gap by taking a first look
at the network properties of DDoS attack sources. Given the
disjoint nature between attacks observed in backscatter data
and the attacks directly observed in the large ISP in our study,
we are confident that most attack sources we discovered
correspond to actual IP addresses of hosts that took part in
DDoS attacks.

We first seek to understand “how distributed” these attacks
are, i.e., how many network entities are taking part in
an attack? Second, we attempt to understand whether the
same network entities are repeatedly involved in attacks. We
perform this analysis at two levels of granularity. First we
study the ASes from which attacks originate, indicating the
ultimate attack sources. Second, we examine the network
ingress interfaces where attacks enter the ISP under our
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Fig. 3. Distributed nature of attack sources

observation, which is important from a network management
and mitigation perspective.

Distributed nature of attack sources: In Figure 3, we
show the distributed nature of attack sources from three data
sets - the SureFlow data set; the LADS data set; and the
SureFlow extended data set which is an extended verion of
the SureFlow data set covering an 11-month period up to
March 2006. From the figure, it is clear that a sizable number
of attacks originate from few sources and ingress interfaces
for all three data sets. For instance, for SureFlow data set,
there are fewer than 100 source IPs and 50 ASes that were
involved in about 70% of attacks, and similarly fewer than
0.1% of ingress interfaces were involved in all attacks. This
indicates that DDoS attacks are much less distributed than
their name implies.

Topological predictability of attack sources: Tables IV
and V capture the volume contributions of ASes and network
interfaces to attacks — originating from a particular AS
and entering the ISP network via a particular interface. The
former table represents the SureFlow data set while the latter
the SureFlow extended data set. The tables show results
for three different “bins” corresponding to the individual
contribution of each entity (AS or ingress interface). As
shown in the tables, attacks tend to originate from the same
set of networks, and for the ISP under observation enter
through the same set ingress interfaces. For example, for the
SureFlow data set, just 2 ASes, each individually contributing
at least 1% of total attack traffic, together contribute more
than 72% of attack traffic observed. Similarly, 0.01% of
the ingress interfaces will carry more than 90% of the
attack traffic by volume, while each such interface carries
at least 1% attack traffic. Even more interestingly, from the
SureFlow extended, we find that less than 1.1% of all ingress
interfaces participated in any DDoS activity over a 11-month
period. Note that, due to smart sampling of Netflow records,
our source analysis considers a subset of the actual distinct
number of sources involved in the attacks. However, the
numbers stated above are not expected to be significantly
different. Hence, such predictability is very useful for attack
detection and mitigation purposes. For example, an ISP only
has to deploy mitigation equipment at about 2% of its ingress

interfaces to be able to mitigate all DDoS traffic within our
observation period before it enters the ISP’s backbone.

2) Target Analysis: We analyzed the targets of attacks
from all three data sets. Across all three data sets, we find that
many attacks target customers of service providers. These in-
clude end-users of broadband Internet Service Providers (ca-
ble and DSL), network service providers for small businesses,
webhosting services, providers of network telecommunica-
tions like VoIP, and network customer care services. In fact,
for the SureFlow data set, we found that more than 90% of all
targets were likely end-users or small businesses, who leased
network connectivity from lower tiered service providers. The
numbers for the SureFlow extended and LADS data sets were
80% and 73% respectively. There were very few university-
based users in the targets attack data sets. Likewise, there
were very few of the Fortune 500 corporations targeted.

In terms of frequency, most targets were victims of a single
or a small number of attacks. For the SureFlow data set,
about 99% of targets featured in 1 or 2 attacks; while for
the SureFlow extended and LADS data sets, these numbers
were 91% and 83% respectively. Moreover, the more frequent
targets in all three data sets were clustered fairly close
together with no single target being the most favored over
an extended period. Small businesses were the most favored
amongst all targets across all 3 data sets.

D. Result Summary and Implications

Here we summarize the main observations from our study.
For the analysis using both direct and indirect measurements
we found that at a coarse-grained aggregate level, large
attacks observed in backscatter data match well with those
in direct measurements from Netflow data. These similarities
do not hold when more fine-grained attack properties, such
as the type of service under attack and IP protocols used,
are being considered. We list some specific results: (i) Most
attacks (at least 70%) last for less than an hour. (ii) Packet
rates are in the tens of thousands per second, maximum
close to 1 million packets per second. (iii) Most attacks use
TCP. Here we saw some difference with LADS data showing
much higher UDP involvement (46% by packets for LADS
versus less than 1% for backscatter). (iv) Most TCP based
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Individual volume Number of AS volume Percent of Interface volume
contribution ASes contribution ingress interfaces contribution< �>= ?A@ 2 72.08 0.01 93.26B&C �>= ?A@ and < ?
= ��@ 54 13.56 0.027 6.38B&C ?
= �-@ 1901 14.36 0.087 0.36

TABLE IV
DISTRIBUTION OF ORIGIN ASES AND INGRESS INTERFACES FOR THE SUREFLOW DATA SET.

Individual volume Number of AS volume Percent of Interface volume
contribution ASes contribution ingress interfaces contribution< �>= ?A@ 18 32.08 0.02 89.80B&C �>= ?A@ and < ?
= ��@ 126 30.58 0.042 8.53B&C ?
= �-@ 15743 37.34 1.083 1.67

TABLE V
DISTRIBUTION OF ORIGIN ASES AND INGRESS INTERFACES OF THE SUREFLOW EXTENDED DATA SET.

attacks are ACK or SYN only floods. (v) Less than 1% of
the directly measured attacks produced backscatter. Using the
direct measurements we found that: (i) Most attacks (83%)
consist only of packets smaller than 100 Bytes. (ii) We saw
evidence of local spoofing in a small number (4) of the
attacks. (iii) Attacks are only mildly distributed (fewer than
50 ASes were involved in about 70% of the attacks as attack
sources, and less 0.1% of ingress interfaces were involved in
all attacks). (iv) There is significant predictability in attacks
both in terms of their originating AS as well as from which
interface they enter a large ISP network. (v) Small businesses
seem to be the most common targets of attacks.

These results have significant implications for attack de-
fense. With respect to attack detection and understanding
attacks, relying on indirect measurements is clearly not
sufficient given current trends in attacks, since very few if any
of attacks appear to be using spoofed source addresses. As a
corollary, we also find that direct measurements can provide
significantly more diagnostic capability that can better guide
the design and deployment of attack defenses. In fact, there
are positive implications for attack defense. We find that
from the perspective of service providers DDoS attacks are
really not as distributed as they are made out to be. Since
the vast majority of malicious traffic arises from a small set
of ASes and network ingress points, providers can ensure
significant protection for their customers with even limited
(but intelligently targeted) deployment of DDoS defense
mechanisms (e.g. [12]).

IV. CONCLUSION

Our work is a first study at combining multiple inde-
pendent data sources to study large DDoS attacks. We
examined backscatter data from a mostly unused /8 network
along with flow anomaly based DDoS data from a tier-1
ISP network. The attack characterization indicates that most
properties such as attack duration, packet count, packet rate,
and dominant protocol type match fairly well in the two
data sets. However, we do observe strong discrepancies in
other properties such as the number of attack destination
ports. One possible explanation for such differences is that
they cover different types of DDoS attacks as shown by the

very small overlap between them: one consists entirely of
spoofed attacks, the other are mostly unspoofed. Using direct
DDoS attack measurements, we performed a first analysis of
several DDoS properties which is impossible using indirect
measurements.
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