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Abstract
Gaussian process regression networks (GPRN) are
powerful Bayesian models for multi-output regres-
sion, but their inference is intractable. To address
this issue, existing methods use a fully factorized
structure (or a mixture of such structures) over all
the outputs and latent functions for posterior ap-
proximation, which, however, can miss the strong
posterior dependencies among the latent variables
and hurt the inference quality. In addition, the up-
dates of the variational parameters are inefficient
and can be prohibitively expensive for a large num-
ber of outputs. To overcome these limitations, we
propose a scalable variational inference algorithm
for GPRN, which not only captures the abundant
posterior dependencies but also is much more ef-
ficient for massive outputs. We tensorize the out-
put space and introduce tensor/matrix-normal vari-
ational posteriors to capture the posterior correla-
tions and to reduce the parameters. We jointly
optimize all the parameters and exploit the inher-
ent Kronecker product structure in the variational
model evidence lower bound to accelerate the com-
putation. We demonstrate the advantages of our
method in several real-world applications.

1 Introduction
Multi-output regression is an important machine learning
problem where the critical challenge is to grasp the complex
output correlations to enable accurate predictions. Gaussian
process regression networks (GPRN) [Wilson et al., 2012]
are promising Bayesian models for multi-output regression,
which exploit both the structure properties of neural net-
works and the flexibility of nonparametric function learn-
ing by Gaussian processes (GP) [Williams and Rasmussen,
2006]. In GRPNs, the outputs are an adaptive linear projec-
tion of a set of latent functions; both the latent functions and
projection weights are sampled from independent GPs. In this
way, GPRNs can capture input-dependent, highly nonlinear
correlations between the outputs, provide heavy-tail predic-
tive distributions and resist overfitting.

However, a critical bottleneck of GPRN is the inference
intractability. To address this issue, existing methods use a

fully factorized posterior approximation over the latent func-
tions and projection weights to conduct mean-field variational
inference [Wilson et al., 2012]. In light of the alternating up-
dates, the posterior covariance matrix for each function and
weight can be further parameterized by N (rather than N2)
parameters (N is the number of training samples) [Nguyen
and Bonilla, 2013]. In addition, Nguyen and Bonilla (2013)
developed nonparametric variational inference that uses a
mixture of diagonal Gaussian distributions as the variational
posterior of all the latent variables.

Despite the success of the aforementioned approaches,
they can suffer from applications with very high-dimensional
outputs, which are common in real world, e.g., MRI imaging
prediction and physical simulations. First, the fully factorized
posterior (and the mixture of diagonal Gaussian) can miss
the strong posterior dependencies within the weights and la-
tent function values, resulting in suboptimal quality. Second,
the alternating mean-field updates and the optimization of
non-parametric inference haveO(NK2D) andO(QN2KD)
time complexity respectively, where D, K and Q are the
number of the outputs, latent function and mixture compo-
nents. When D is very large, say, millions, the computational
cost can be prohibitively expensive even for moderated N
and/or K, say, hundreds.

To overcome these problems, we propose a scalable vari-
ational inference algorithm that not only better captures the
posterior dependency but also is much more efficient for mas-
sive outputs. Specifically, we tensorize the output space so
that the projection matrix can be converted into a tensor,
based on which we propose a tensor-normal distribution as
a joint variational posterior for the projection weights. The
tensor-normal posterior not only captures the strong poste-
rior dependencies of the weights, but also requires much
less covariance parameters — orders of magnitude less than
the output dimension. Similarly, we incorporate a matrix-
normal variational posterior for all the latent function values
to capture their posterior dependency and save the parame-
ters. Finally, we jointly optimize the variational evidence
lower bound (EBLO), where we use the Kronecker product
properties to decompose the expensive log determinant and
matrix inverse to further accelerate the computation. As the
result, our algorithm can linearly scale to all N , D and K,
i.e., O(NDK).

For evaluation, we first examined our method on three



small datasets where the existing GPRN inference approaches
are available. Our method shows not only better predic-
tive performance but also a great speed-up. Then we tested
our method in two real-world applications with thousands
of outputs and the existing GPRN inference algorithms are
not feasible. Compared with several state-of-the-art scalable
multi-output regression methods, our method almost always
achieves significantly better prediction accuracy. Finally, we
applied GPRN in a large-scale physical simulation applica-
tion for one million output prediction. Our method often im-
proves upon the competing approaches by a large margin.

2 Gaussian Process Regression Networks
Let us first introduce the notations and background. Sup-
pose we have a set of N multi-output training examples
D = {(x1,y1), . . . (xN ,yN )}, where each output yn (1 ≤
n ≤ N ) is D dimensional and D can be much larger than N .
To model multiple outputs, Gaussian process regression net-
works (GPRNs) [Wilson et al., 2012] first introduce a small
set of K latent functions, {f1(·), . . . , fK(·)}. Each latent
function fk(·) is sampled from a GP prior [Williams and
Rasmussen, 2006], a nonparametric function prior that can
flexibly estimate various complex functions from data by in-
corporating (nonlinear) covariance or kernel functions. Next,
GPRN introduces a D×K projection matrix W, where each
element wij(1 ≤ i ≤ D, 1 ≤ j ≤ K) is also considered as
a function of the input, and sampled from an independent GP
prior. Given an input x, the outputs are modelled by

y(x) = W(x)[f(x) + σfε] + σyz (1)

where f(x) = [f1(x), . . . , fK(x)]>, and ε and z are random
noises sampled from the standard normal distribution.

If we view each latent function fk(x) as an input neuron,
GPRN generates the outputs in the same way as neural net-
works (NNs). Hence GPRN enjoys the structure properties
of NNs. Furthermore, GPRN accommodates input-dependent
(i.e., non-stationary) correlations of the outputs. Given W(·),
the covariance of arbitrary two outputs yi(xa) and yj(xb) is

kyi,yj
(xa,xb) =

K∑
k=1

wik(xa)κf̂k(xa,xb)wjk(xb) + δabσ
2
y

where δab is 1 if a = b and 0 otherwise, κf̂k(xa,xb) =

κfk(xa,xb) + δabσ
2
f , and κfk(·, ·) is the covariance (kernel)

function for the latent function fk(·). The output covari-
ance are determined by the inputs via the projection weights
wik(xa) and wjk(xb). Therefore, the model is able to adap-
tively capture the complex output correlations varying in the
input space. This is more flexible than many popular multi-
output regression models [Alvarez et al., 2012] that only im-
pose stationary correlations invariant to input locations.

Now we look into the joint probability of GPRN on the
aforementioned training dataset D. Following the orig-
inal paper [Wilson et al., 2012], we assume all the la-
tent functions share the same kernel κf (·, ·) and param-
eters θf , and all the projection weights the same kernel
κw(·, ·) and parameters θw. For a succinct representa-
tion, we consider a noisy version of each latent function,

f̂k(x) = fk(x) + εkσf where εk ∼ N (0, 1). Since fk is
assigned a GP prior, f̂k also has a GP prior and the ker-
nel is κf̂ (xa,xb) = κf (xa,xb) + δab · σ2

f . We denote the

values of f̂k at the training inputs X = [x1, . . . ,xN ]>by
f̂k = [f̂k(x1), . . . , f̂k(xN )]> and projection weight wij by
wij = [wij(x1), . . . , wij(xN )]>. Since f̂k(·) is sampled
from the GP prior, its finite projection follow a multivari-
ate Gaussian prior distribution, p(f̂k|θf , σ

2
f ) = N (f̂j |0,Kf̂ )

where Kf̂ is a kernel matrix and each element [Kf̂ ]ij =

κf̂ (xi,xj). Similarly, the prior of each wij is p(wij |θw) =

N (wij |0,Kw) where each [Kw]ij = κw(xi,xj). Ac-
cording to (1), given {wij}1≤i≤D,1≤j≤K and {f̂k}1≤k≤K ,
the observed outputs Y = [y1, . . . ,yN ]> are sampled
from p(Y|{wij}, {f̂k}) =

∏N
n=1N (yn|Wnhn, σ

2
yI) where

Wn is D × K, each [Wn]ij = wij(xn), and hn =

[f̂1(xn), . . . , f̂K(xn)]
>. The joint probability then is

p(Y, {wij}, {f̂k}|X,θf ,θw, σ
2
f , σ

2
y) =

K∏
k=1

N (f̂k|0,Kf̂ )

·
D∏
i=1

K∏
j=1

N (wij |0,Kw)

N∏
n=1

N (yn|Wnhn, σ
2
yI). (2)

The inference of GPRN, namely, calculating the exact pos-
terior distribution of the latent function values and projection
weights, {wij} and {f̂k}, and other parameters, is infeasible
due to the intractable normalization constant. While we can
use Markov-chain Monte-Carlo sampling, it is known to be
slow and hard to diagnose the convergence. For more effi-
cient and tractable inference, current approaches [Wilson et
al., 2012; Nguyen and Bonilla, 2013] introduce approximate
posteriors that are fully factorized over the projection matrix
and latent functions and then conduct mean-field variational
inference [Wainwright et al., 2008]. Typically, the approxi-
mate posterior takes the following form,

q({wij}, {f̂k}) =
K∏

k=1

q(f̂k)

D∏
i=1

K∏
j=1

q(wij) (3)

where each marginal posterior is an N dimensional Gaus-
sian distribution. The mean-field inference enjoys analyti-
cal, alternating updates between each q(f̂k) and q(wij). In
light of the structure of the updates, the covariance of each
posterior can be parameterized by just N rather than N2 pa-
rameters [Nguyen and Bonilla, 2013]. The hyper-parameters
{θf ,θw, σ

2
f , σ

2
y} are then estimated by gradient-based opti-

mization of the variational evidence lower bound (ELBO).
In [Nguyen and Bonilla, 2013], a nonparametric variational
inference approach is also developed to better capture multi-
modality, where the variational posterior is a mixture of diag-
onal Gaussian distribution,

q(u) =
1

Q

Q∑
j=1

N (u|µj , vjI) (4)



where u is a vector that concatenate all {wij} and {f̂k}. The
variational parameters {µj , vj} and the hyper-parameters are
jointly optimized by maximizing the variational ELBO.

3 Scalable Variational Inference
Despite the success of the existing GPRN inference methods,
their performance can be limited by oversimplified poste-
rior structures and they can be computationally too costly for
high-dimensional outputs. First, the fully factorized poste-
rior (3) essentially assumes the projection weights and latent
functions are mutually independent as in their prior, and com-
pletely ignores their strong posterior dependency arising from
the coupled data likelihoods. Although the Gaussian mixture
approximation (4) alleviates this issue, the diagonal covari-
ance of each component can still miss the abundant posterior
correlations. Second, the alternating mean-field updates for
(3) and the optimization for (4) in the nonparametric infer-
ence take the time complexity O(NK2D) and O(QN2KD)
respectively in each iteration. WhenD is very large, say, mil-
lions, the computation can be prohibitively expensive even
for moderated N or K, e.g, hundreds.

To improve both the inference quality and computational
efficiency to massive outputs, we develop a scalable varia-
tional inference algorithm for GPRN, presented as follows.

3.1 Matrix and Tensor Normal Posteriors
First, to capture the posterior dependency between the la-
tent functions, we use a matrix normal distribution as the
joint variational posterior for the N × K function values
F = [f̂1, . . . , f̂K ]>,

q(F) =MN (F,M,Σ,Ω)

= N (vec(F)|vec(M),Σ⊗Ω) (5)

where ⊗ is the Kronecker product, Σ and Ω are N ×N row
covariance and K ×K column covariance matrices, respec-
tively. To ensure the positive definiteness, we further parame-
terize Σ and Ω by their Cholesky decomposition, Σ = UU>

and Ω = VV>. The matrix Gaussian posterior not only cap-
tures the dependency of the function values, but also reduces
the number of parameters and computational cost. If we use a
factorized posterior over each f̂k, the number of parameters is
NK +KN(N +1)/2, including the mean and Cholesky de-
composition of the covariance for each k, while our approxi-
mate posterior only needsNK+N(N+1)/2+K(K+1)/2
parameters.

Next, we consider the variational posterior of the projec-
tion weights {wij}. To obtain a joint posterior yet with com-
pact parameterization, we tensorize theD dimensional output
space into an M -mode tensor space, d1 × . . . × dM where
D =

∏M
m=1 dm. For simplicity, we set d1 = . . . = dM =

d = M
√
D. Then we can organize all the weights into an

N ×K × d1 × . . .× dM tensorW . To capture the posterior
dependencies between all the weights, we introduce a tensor
normal distribution — a straightforward extension of the ma-
trix normal distribution — as the variational posterior forW ,

q(W) = T N (W|U ,Γ1, . . . ,ΓM+2)

= N (vec(W)|vec(U),Γ1 ⊗ . . .⊗ ΓM+2) (6)

where U is the mean tensor, {Γ1, . . . ,ΓM+2} are covariance
matrices in each mode, Γ1 is N × N , Γ2 is K × K, and
Γ3:M+2 are d × d. To ensure positive definiteness, we pa-
rameterize each covariance matrix by its Cholesky decom-
position, Γm = LmL>m. Note that to represent the entire
NKD × NKD covariance matrix of q(W), we only need
N(N + 1)/2 + K(K + 1)/2 + Md(d + 1)/2 parameters
which can be even far less than NDK. Take D = 106, N =
100,K = 10 as an example, the number of the covariance
parameters is 0.2%NKD (for M = 3). For the mean-field
posterior in (3), the number of covariance parameters for all
the projection weights is NKD even with the compact rep-
resentation. Therefore, our tensor normal posterior not only
preserves the strong correlations among all the weights, but
also saves much more parameters and so computation cost.

Finally, we choose our variational posterior as q(F,W) =
q(F)q(W). While it stills factorizes over F andW , the strong
correlations of many variables within F andW are captured,
and hence still improves upon the fully factorized posterior.

3.2 Simplified Variational Evidence Lower Bound
Now, we derive the evidence lower bound (ELBO) with our
proposed variational posterior,

L = Eq[log
p(Y,F,W|θf ,θw, σ

2
f , σ

2
y)

q(F,W)
]

We will maximize the ELBO to jointly optimize the varia-
tional parameters and hyper-parameters. To accelerate the
computation, we further use the properties of the Kronecker
product [Stegle et al., 2011] in our variational posteriors ((5)
and (6)) to dispose of their full covariances and derive a much
simplified bound,

L = −KL
(
q(W)‖p(W)

)
−KL

(
q(F)‖p(F)

)
+ Eq[log p(Y|X,W,F)] (7)

where

KL
(
q(W)‖p(W)

)
=

1

2

[
tr(K−1w Γ1)

M+2∏
m=2

tr(Γm) +DK log |Kw|

+ tr(K−1
f̂

U1U
>
1 )−

M+2∑
m=1

NDK

tm
log |Γm|

]
,

KL
(
q(F)‖p(F)

)
=

1

2

[
tr(K−1

f̂
Σ)tr(Ω) + tr(K−1

f̂
MM>)

+K log |Kf̂ | − (K log |Σ|+N log |Ω|)
]
,

and

Eq[log p(Y|X,W,F)] = −ND log σy −
N∑

n=1

1

2σ2
y

[
y>n yn

− 2y>nEq[Wn]Eq[hn]
]
+ tr(Eq[W

>
n Wn]Eq[hnh>n ])

]
.

Here U1 is an N × DK matrix, obtained by unfolding the
mean tensor U at mode 1, tm is the dimension of mode m
of the tensorW , Eq[Wn] is obtained by taking the n-th slice
of U at mode 1 and then reorganize it into a D × K matrix,



Eq[hn] the n-th row vector of M, and the remaining moments
are calculated by

Eq[W
>
n Wn] = Γ2

M+2∏
m=3

tr(Γm) + Eq[Wn]
>Eq[Wn],

Eq[hnh>n ] = Ω · diag(Σ) + Eq[hn]Eq[hn]
>.

As we can see, the computation of the ELBO (7) only in-
volves the covariance matrices at each mode ofW , F and the
kernel matrices: {Γ1:M+2,Σ,Ω,Kf̂ ,Kw}, which are small
even for a very large number of outputs. Hence the compu-
tation is much simplified. In addition, due to the compact
parameterization, optimizing the ELBO is much easier. We
then use gradient-based optimization methods to jointly es-
timate the parameters of the variational posteriors and the
hyper-parameters {σ2

f , σ
2
y,θf ,θw}.

3.3 Prediction
Given a new input x∗, we aim to use the estimated
variational posterior to predict the output y∗. The
posterior mean of y∗ is computed by E[y∗|x∗,D] =

E[W(x∗)]E[f̂(x∗)] where f̂(x∗) = [f̂1(x
∗), . . . , f̂K(x∗)]>.

Each [E[W(x∗)]]ij is computed by k∗wK−1w vij where k∗w =
[κw(x

∗,x1), . . . , κw(x
∗,xN )] and vij is obtained by first re-

organizing U (the posterior mean ofW) to anN×K×D ten-
sor Û and then taking the fiber Û(:, i, j). Each E(f̂k(x∗)) =
k∗
f̂
K−1

f̂
M(:, k) where k∗

f̂
= [κf̂ (x

∗,x1), . . . , κf̂ (x
∗,xN )].

The predictive distribution, however, does not have a close
form, because the likelihood is non-Gaussian w.r.t the pro-
jection weights and latent functions. To address this issue,
we can use Monte-Carlo approximations. We can generate
a set of i.i.d posterior samples of W(x∗) and f̂(x∗), de-
noted by {W̃t, f̃t}Tt=1, and then approximate p(y∗|x∗,D) ≈
1
T

∑T
t=1N (y∗|W̃tf̃t, σ

2
yI). Note that when the output di-

mension is large, the posterior sample of W(x∗) can be too
costly to generate. We can instead approximate the predictive
distribution of each single output y∗j with the same method.

3.4 Algorithm Complexity
The overall time complexity of our inference algorithm is
O(N3 + K3 +Md2 + NDK). When D � {N,K} and
Md2 ≤ D, the complexity is O(NDK). It is trivial to show
that when 3 ≤ M ≤ 3

√
D, we always have Md2 ≤ D. The

space complexity isO(NKD+ND+N2+K2+Md2) in-
cluding the storage of training data, kernel matrices, the vari-
ational posterior parameters and the other parameters.

4 Related Work
Many multi-output regression approaches have been pro-
posed and most of them are based on GPs; see an excel-
lent review in [Alvarez et al., 2012]. A classical method
is the linear model of coregionalization (LMC) [Goulard and
Voltz, 1992], which projects a set of latent functions to the
multi-output space; each latent function is sampled from
an independent GP. PCA-GP is a popular LCM [Higdon et
al., 2008] that identifies the projection matrix by Singular

Value Decomposition (SVD). The variants of PCA-GP in-
clude KPCA-GP [Xing et al., 2016], IsoMap-GP [Xing et
al., 2015], etc. GPRN [Wilson et al., 2012] is another in-
stance of LMC. However, since the projection weights are
also sampled from GPs, the prior of the outputs is no longer a
GP. Other approaches include convolved GPs [Higdon, 2002;
Boyle and Frean, 2005; Alvarez et al., 2019] and multi-task
GPs [Bonilla et al., 2007; 2008; Rakitsch et al., 2013]. Con-
volved GPs generate each output by convolving a smooth-
ing kernel and a set of latent functions. Multi-task GPs de-
fine a product kernel over the input features and task depen-
dent features (or free-from task correlation matrices). De-
spite their success, both types of models might be too costly
(O((ND)3) or O(N3 + D3) time complexity) for high-
dimensional outputs. To mitigate this issue, several sparse
approximations have been developed [Alvarez and Lawrence,
2009; Álvarez et al., 2010]. Recently, Zhe et al. (2019) in-
troduced latent coordinate features in the tensorized output
space to model complex correlations and to predict tensorized
outputs. Their method essentially constructs a product kernel
with which to simplify the inference. By contrast, our work
introduces tensor/matrix-normal variational posteriors to im-
prove GPRN inference and does not assume any special ker-
nel structure in GPRN.

5 Experiment
5.1 Predicting Small Numbers of Outputs
We first evaluated the proposed GPRN inference on five real-
world datasets with a small number of outputs: (1) Jura 1, the
heavy-metal concentration measurements of 349 neighbour-
ing locations in Swiss Jura. Following [Wilson et al., 2012],
we predicted 3 correlated concentrations, cadmium, nickel
and zinc, given the locations of the measurements. (2)Eq-
uity 2 [Wilson et al., 2012], a financial datasets that include
643 records of 5 equity indices — NASDAQ, FTSE, TSE,
NIKKEI and DJC. The inputs are the 5 indices, and the goal
is to predict their 25 pair-wise correlations. (3) PM2.53, 100
spatial measurements (i.e., outputs) of the particulate matter
pollution (PM2.5) in Salt Lake City in July 4-7, 2018. The in-
puts are time points of the measurements. (4) Cantilever [An-
dreassen et al., 2011], material structures with the maximum
stiffness on bearing forces from the right side. The input of
each example is the force and the outputs are a 3,200 dimen-
sional vector that represents the stress field that determines
the optimal material layout in a 80 × 40 rectangular domain.
(5) GeneExp4, expressions of 4,511 genes (outputs) measured
by different microarrays, each of which is described by a 10
dimensional input vector.

Competing methods. We compared our inference algo-
rithm, denoted by SGPRN, with the following approaches.
(1) MFVB — mean-field variational Bayes inference for
GPRN [Wilson et al., 2012], and (2) NPV — nonparamet-
ric variational Inference for GPRN [Nguyen and Bonilla,

1https://rdrr.io/cran/gstat/man/jura.html
2https://github.com/davidaknowles/gprn
3http://www.aqandu.org/
4https://www.synapse.org/#!Synapse:syn2787209/wiki/70350
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Figure 1: Training speed of three GPRN inference algorithms.

2013]. In addition, we compared with three other multi-
output GP models that are scalable to high-dimensional out-
puts: (3) PCA-GP [Higdon et al., 2008] that uses PCA to find
the projection matrix in the LMC framework [Goulard and
Voltz, 1992] for multi-output regression, (4) KPCA-GP [Xing
et al., 2015] and (5) IsoMap-GP [Xing et al., 2016] that use
KPCA [Schölkopf et al., 1998] and (5) IsoMap [Balasubra-
manian and Schwartz, 2002] respectively to identify the pro-
jection matrix. We also compared with (5) HOGP [Zhe et
al., 2019], high-order GP for regression that introduces latent
coordinate features for tensorized output prediction (see Sec.
4 Related Work).
Parameter settings. We implemented our method SG-
PRN with TensorFlow [Abadi et al., 2016]. We used
Adam [Kingma and Ba, 2014] algorithm for gradient-based
optimization and the learning rate was set to 10−3. All
the competing methods were implemented with MATLAB.
For MFVB and NPV, we used the efficient implementa-
tion (https://github.com/trungngv/gprn) of the paper [Nguyen
and Bonilla, 2013]. We used 2 mixture components for the
variational poster in NVP (see (4)). The competing methods
used L-BFGS for optimization and the number of iterations
was set to 100. We used RBF kernel for all the methods. The
input features of all the datasets were normalized, and the
kernel parameters (i.e., the length-scale) were initialized to 1.
We varied the number of latent functions/features/bases from
{2, 5, 15, 50}.
Comparison with state-of-the-art GPRN inference. We
first compared with MFVB and NPV on the three smallest
datasets, Jura, Equity and PM2.5, with 2, 25 and 100 outputs
respectively. We tested SGRPN, MFVB and NPV on a work-
station with 2 Intel(R) Xeon(R) E5-2697 CPUs, 28 cores and
196GB memory. Note that MFVB and NPV are not avail-
able on the other datasets (i.e., Cantilever and GeneExp) —
our test shows that they will take extremely long time (weeks
or months) to train with 15 and 50 latent functions. We fol-
lowed the setting of the original paper [Wilson et al., 2012]
and [Nguyen and Bonilla, 2013] to only use 2 latent func-
tions. On Jura, we randomly split the data into 249 examples
for training and 100 for test, on Equity 200 for training and
200 for test, and on PM2.5 256 for training and 32 for test. In

Jura

SGPRN 0.5127±0.002
MFVB 0.5237±0.001
NPV 0.6088±9e-06

Equity

SGPRN 2.5759e-05±2e-07
MFVB 4.4530e-05±6e-07
NPV 4.7267e-05±9e-18

PM2.5

SGPRN 1.07089±0.02
MFVB 1.3916±0.06
NPV 14.7101±0.14

Table 1: The mean absolute error(MAE) of the three GPRN infer-
ence methods. The results were averaged over 5 runs.

our algorithm, for Jura and Equity, we used the original out-
put space, and for PM2.5 we tensorized the output space to
be 10× 10. We ran our algorithm for 2, 000 epochs to ensure
convergence; both MFVB and NPV converged after 100 iter-
ations. We repeated for 5 times and reported the average of
the mean absolute error (MAE) and the standard deviation in
Table 1. As we can see, our method SGPRN significantly out-
performs (p-value < 0.05) both MFVB and NPV on all the
three datasets, showing superior inference quality. Note that
NPV obtains much bigger MAEs on PM2.5. This might be
because the optimization of the variational ELBO converged
to inferior local maximums.

Next, we compared with MFVB and NPV in terms of the
speed. We reported the per-iteration running time of MFVB
and NPV in Fig. 1. Since our algorithm ran 2, 000 epochs
while MFVB and NPV 100 iterations, we used the average
running time of 20 epochs of SGPRN as the per-iteration
time for a fair comparison. As we can see, the speed of
SGPRN is close to that of MFVB and NPV for very a few
latent function (2 and 5). However, with more latent func-
tions, SGPRN becomes much faster. For example, on PM2.5
with 50 latent functions, SGPRN gains 200x and 785x speed-
up as compared with MFVB and NPV. This is consistent
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Figure 2: The normalized root-mean-squared error(NRMSE) of all the methods on three datasets. The results were averaged over 5 runs. The
x-axis represents the number of latent functions of SGPRN, features of HOGP, and bases of IsoMap-GPR, KPCA-GPR, and PCA-GPR.

with their time complexities, {MFVB: O(NK2D), NPV:
O(QN2KD), SGPRN:O(NKD)}.

Comparison with other methods. Next, we compared
with other scalable multi-output GP regression models. To
this end, we used Cantilever and GeneExp datasets. For our
algorithm and HOGP, we tensorized the output space of Can-
tilever to 80× 40 and GeneExp to 347× 13. On each dataset,
we randomly chose {128, 256} examples for training and 100
from the remaining set for test. We repeated this procedure
for 5 times and reported the average normalized root-mean-
square error (NRMSE) and the standard deviation of each
method in Fig. 2. As we can see, SGPRN significantly out-
performs the competing methods (p-value < 0.05) in all the
cases except when training on Cantilever with 128 examples
and 50 latent functions , SGPRN was a little worse than PCA-
PG (Fig. 2a). Therefore, it demonstrates the advantage of
GPRN in predictive performance, which might be due to its
capability of capturing non-stationary output dependencies.

5.2 Large-Scale Physical Simulations for
Lid-Driven Cavity Flows

Finally, we applied SGPRN in a large-scale physical simu-
lation application. Specifically, we trained GPRN to predict
a one-million dimensional pressure field for lid-driven cav-
ity flows [Bozeman and Dalton, 1973], which include tur-
bulent flow inside the cavity. The simulation of the field is
done by solving the Navier-Stoke equations [Chorin, 1968]
that are known to have complicated behaviours under large
Reynolds numbers. We used a fine-grained mesh to ensure

the numerical solver to converge. The input of each sim-
ulation example is a 5 dimensional vector that represents a
specific boundary condition. The computation for each sim-
ulation is very expensive, so we only collected 96 examples.
Hence, this is a typical “large D, small N” problem. We ran-
domly split the dataset into 64 training and 32 test examples,
and then ran SGPRN, PCA-GP, KPCA-GP and IsoMAP-GP.
For SGPRN, we tensorized the one million outputs into a
100×100×100 tensor. We varied the number of latent func-
tions from {2, 5, 10}. We repeated the training and test pro-
cedure for 5 times and showed the average normalized root-
mean-square error (NRMSE) of each method in Fig.2(e). As
we can see, our method significantly outperforms all the com-
peting approaches, by a large margin especially when using
5 and 10 latent functions. The results further demonstrate the
advantage of GPRN for large-scale multi-out regression tasks
when it is available.

6 Conclusion
We have proposed a scalable variational inference algo-
rithm for GPRN, a powerful Bayesian multi-output regres-
sion model. Our algorithm not only improves the inference
quality upon the existing GPRN inference methods but also
is much more efficient and scalable to a large number of out-
puts. In the future work, we will continue to explore GPRN
in large-scale multi-output regression applications.
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