
J Sci Comput
DOI 10.1007/s10915-015-0076-6

To CG or to HDG: A Comparative Study in 3D

SergeyYakovlev1 · DavidMoxey2 · RobertM.Kirby3 ·
Spencer J. Sherwin4

Received: 25 June 2014 / Revised: 8 June 2015 / Accepted: 15 July 2015
© Springer Science+Business Media New York 2015

Abstract Since the inception of discontinuous Galerkin (DG)methods for elliptic problems,
there has existed a question of whether DG methods can be made more computationally effi-
cient than continuous Galerkin (CG) methods. Fewer degrees of freedom, approximation
properties for elliptic problems together with the number of optimization techniques, such as
static condensation, availablewithinCG frameworkmade it challenging forDGmethods to be
competitive until recently. However, with the introduction of a static-condensation-amenable
DG method—the hybridizable discontinuous Galerkin (HDG) method—it has become pos-
sible to perform a realistic comparison of CG and HDG methods when applied to elliptic
problems. In this work, we extend upon an earlier 2D comparative study, providing numerical
results and discussion of the CG and HDG method performance in three dimensions. The
comparison categories covered include steady-state elliptic and time-dependent parabolic
problems, various element types and serial and parallel performance. The postprocessing
technique, which allows for superconvergence in the HDG case, is also discussed. Depend-
ing on the direct linear system solver used and the type of the problem (steady-state vs.
time-dependent) in question the HDG method either outperforms or demonstrates a compa-
rable performance when compared with the CG method. The HDG method however falls

B Sergey Yakovlev
sergeyyak@gmail.com

David Moxey
d.moxey@imperial.ac.uk

Robert M. Kirby
kirby@cs.utah.edu

Spencer J. Sherwin
s.sherwin@imperial.ac.uk

1 Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, USA

2 Department of Aeronautics, Imperial College London, London, UK

3 School of Computing and Scientific Computing and Imaging (SCI) Institute, University of Utah,
Salt Lake City, UT, USA

4 Department of Aeronautics, Imperial College London, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0076-6&domain=pdf

J Sci Comput

behind performance-wise when the iterative solver is used, which indicates the need for an
effective preconditioning strategy for the method.

Keywords High-order finite elements · Spectral/hp elements · Discontinuous Galerkin
method · Hybridization · Parallel computing · Postprocessing · Superconvergence

1 Introduction

Due to the large number of numerical methods for solving partial differential equations
(PDEs), computational scientists and engineers are often faced with a choice of method to
solve a given scientific problem. Typically, this choice is not based purely on numerical
properties of a given method such as its asymptotic convergence rates, ability to handle com-
plicated geometry or specific feature-capturing properties, but also on other more practical
aspects such as robustness, time-to-implement and computational cost. In previous work
[30] the authors presented a comparative study of the performance of the continuous and
discontinuous Galerkin methods in the context of symmetric second-order elliptic PDEs,
with the goal of providing guidance as to why one may select one versus the other based on
these criteria. The performance results and comparison were based on the data obtained from
two-dimensional numerical simulations. In this paper we significantly extend the scope of
the aforementioned 2D study by comparing the performance of CG and DG methods both
in serial and parallel in three dimensions.

The CG method has a rich history, having been utilised in a large number of numerical
studies, and so we refer the interested reader to [25,50–52] for a comprehensive discussion
of the formulation and implementation of the method. Whilst DG methods are a more recent
development, they too are now widely used as a spatial discretisation and are especially
popular when considering convection dominated systems, as a DG discretisation often results
in beneficial properties such as local conservation [11]. However, in recent years there has
beenmuch interest in creating efficient implicit DG discretisations of elliptic operators, given
that DG methods do not need to necessarily enforce a continuous solution function as is the
case in CG, which makes them more amenable to applications such as shock capturing when
coupled with appropriate stabilisation.

The discretisation of elliptic operators has traditionally fallen into the realm of the CG
method, where the size of the matrix system is substantially smaller than the equilvalent DG
system since degrees of freedom associated with vertices, edges and faces which connect
elements only appear once in the global system. Furthermore, through the application of the
lesser-known static condensation (or substructuring) technique, the size of the matrix system
can be further reduced. In this approach, given an appropriate choice of basis functions which
make a distinction between boundary and interior modes, the CG system can be condensed by
taking the Schur complement of the boundary system one (or indeed multiple) times. Whilst
this reduced boundary system has no special structure in general, the interior system is block
diagonal and can be trivially inverted. At higher orders, and particularly in three dimensions,
this dramatically reduces execution time, and has meant that implicit DG methods have
struggled to compete from the perspective of computational efficiency.

Recently however, the hybridized DG (HDG) method, introduced by Cockburn et al. [15]
attempts to address this issue by reducing the size of the linear system to be solved in exchange
for an additional cost incurred during its construction. In essence, the HDG method applies
a static condensation technique within the DG framework, so that the only globally coupled

123

J Sci Comput

degrees of freedom are those located on the mesh skeleton or trace space, greatly reducing
the global system size. One additional benefit of the HDG method is its superconvergence
property, whereby a solution obtained at polynomial order p can converge with order p + 2
through the application of a local post-processing technique on each element.

The HDG method has proven to be a popular method and has, in recent years, been
applied in the context of steady-state diffusion [9,10,16,18], Maxwell’s equations [32,33,
36], convection-diffusion problems [7,13,34,35], linear elasticity [45], Timoshenko beam
model [4,5], elastodynamics [37], Stokes equations [12,17,19,34], compressible [26,49]
and incompressible Navier-Stokes, and Oseen equations [6,37,39,40]. We note, however,
that the majority of these works focus either on the theoretical aspects of the method such
as formulation and analysis for a specific equation type, or the specific benefits such as
accurately captured solution features that the HDG method can offer.

The goal of our work is to perform an assessment of the performance of the HDGmethod
in 3D and compare it with the CG method, which can be considered the performance “meter
stick” in the realm of numerical methods for elliptic PDEs. On one hand, such a comparison
will provide scientific computing practitioners with the HDG method performance informa-
tion and guide them in the choice of the method to solve a given problem; on the other hand,
our work will serve as a feedback for numerical computing theoreticians by improving the
understanding of the benefits and shortcomings of the theoretically proven properties under
a set of specific implementation choices.

To our knowledge, this is the first work that encompasses a broad set of factors and
comparison categories: this study (a) is performed in 3D; (b) uses various element types;
(c) accounts for the use of local postprocessing in the HDG method; (d) accounts for static
condensation in the CG discretisation; and (e) discusses large-scale parallel performance and
implementation choices.

We note that there is a limited amount of published work which documents some of these
features. Of the few published studies that discuss performance-related topics, most focus on
one particular aspect of the points above. For example, [41] measures scalability of the 2D
HDG method for the compressible Navier-Stokes equations up to 32 cores, and [24] derives
theoretical floating point operation counts for CG, DG and HDG schemes in 2D and 3D.
However, from a practical perspective, there is still a pressing need to examine how these
methods perform through directly measuring their execution times, in both the setting of
large-scale computational resources that are needed for real-world 3D simulations, and in a
manner that provides a fair comparison against existing benchmark CG discretisations.

As we see it, there are two main aspects of the “fair comparison” of two numerical
methods: the “fairness” and the scope and depth of the comparison. In our case, we strive
towards fairness by using the same object-oriented spectral element framework Nektar++
[3] as the foundation for the implementation of both methods, which guarantees that both
solvers will have the same basic underlying functionality in terms of numerical quadrature,
elemental matrix operations and linear system solvers.

In terms of the scope of this work, our intention is to study problems that are likely to
arise in common use cases. We therefore focus on elliptic steady-state and parabolic time-
dependent problems, as these often form the building blocks of more complex systems and
can therefore give a good indicator as to the performance of each method in a wider range
of applications. In particular, the following aspects are covered:

– serial performance for smaller test cases using direct solvers;
– parallel performance up to 4096 cores for larger test cases using iterative solvers;
– the effect of structured meshes of hexahedra and tetrahedra in serial and parallel;

123

J Sci Comput

– the effect of unstructured meshes in parallel to assess scalability of each method; and
– the effect of HDG postprocessing to achieve superconvergence of the solution field (for

the cases where superconvergence property holds).

The scope of this work therefore encompasses a wide range of potential application areas
and significantly builds upon the two-dimensional results that have been previously presented.

The results presented in this paper demonstrate that, for steady-state second-order elliptic
problems, the HDG method (with postprocessing and resulting superconvergence) outper-
forms the CG method starting at a polynomial order between one and three, depending on
mesh size and elements shape. The HDG method demonstrates at worst competitive and at
best superior performance (depending on the linear system solver chosen) when compared
to the CGmethod in a time-dependent parabolic PDE setting. In parallel execution, where an
iterative linear system solver is used, the HDG method is significantly outperformed by the
CG method even when postprocessing is utilised. This performance gap indicates the need
for the robust preconditioners developed specifically for the HDG method, a research area
that is beginning to be addressed (see [14,41]). The additional degrees of freedom that are
present in the HDG system between common edges and vertices of faces have an additional
effect on performance. However, on a per-iteration basis (with the use of postprocessing in
HDG case) both methods have approximately the same performance characteristics up to
large core counts.

We also note that not all of these parameters are relevant to a given application area. Super-
convergence of the HDG method may not always be easily achievable, or indeed achievable
at all, particularly in case of nonlinear problems. In the interests of fairness, we base our
conclusions here on the best case scenario for each method. Wherever possible, we also
discuss relative performance when superconvergence is not taken into account.

The paper is organized as follows. In Sect. 2 we describe domain partitioning, finite
element spaces and polynomial expansions. This is followed by the formulations of the CG
and HDG methods in Sect. 3. We give an outline of our parallelization strategy in Sect. 4.
Section 5 contains numerical comparison of the CG and HDG methods performance in both
serial and parallel settings. The paper is concluded by the contribution summary in Sect. 6.

2 Domain Partitioning, Finite Element Spaces and Polynomial Expansions

In this section we introduce the preliminaries that will be used for the CG and HDGmethods
formulation in Sect. 3.We define the partitioning of the domain in Sect. 2.1, the finite element
spaces in Sect. 2.2 and the polynomial expansions used in Sect. 2.3.

2.1 Partitioning of the Domain

We begin by discretizing our domain.We assume T (Ω) is a three-dimensional tessellation of
Ω . LetΩe ∈ T (Ω) be a non-overlapping element within the tessellation such that if e1 �= e2
then Ωe1

⋂
Ωe2 = ∅. We denote the number of elements (or cardinality) of T (Ω) by Nel.

Let ∂Ωe denote the boundary of the elementΩe (i.e. Ω̄e \Ωe) and ∂Ωe
i denote an individual

face of ∂Ωe such that 1 ≤ i ≤ Ne
b where Ne

b denotes the number of faces of element e. We
then denote by Γ the set of boundaries ∂Ωe of all the elements Ωe of T (Ω). Finally, we
denote by NΓ the number of faces (or cardinality) of Γ .

For simplicity, we assume that the tessellation T (Ω) consists of conforming elements.
We say that Γ l is an interior face of the tessellation T (Ω) if there are two elements of the

123

J Sci Comput

tessellation, Ωe and Ω f , such that Γ l = Ωe ∩ Ω f and the area of Γ l is not zero. We say
that Γ l is a boundary face of the tessellation T (Ω) if there is an element of the tessellation,
Ωe, such that Γ l = Ωe ∩ ∂Ω and the area of Γ l is not zero.

As it will be useful later, let us define a collection of indexmapping functions, that allow us
to relate the local faces of an elementΩe, namely, ∂Ωe

1 , . . . , ∂Ωe
Ne
b
, with the global faces ofΓ ,

that is, with Γ 1, . . . , Γ NΓ . Thus, since the j-th face of the element Ωe, ∂Ωe
j , is the l-th face

Γ l of the set of edges Γ , we set σ(e, j) = l so that we can write ∂Ωe
j = Γ σ(e, j). Similarly,

since the interior face Γ l is the intersection of the boundaries of the two elements Ωe and
Ω f , we set η(l,+) = e and η(l,−) = f so that we can write Γ l = ∂Ωη(l,+) ∩ ∂Ωη(l,−).
Here the ± convention is arbitrary.

2.2 The Finite Element Spaces

Next, we define the finite element spaces associated with the partition T (Ω). To begin, for
a three-dimensional problem we set

Vh := {v ∈ L2(Ω) : v|Ωe ∈ P(Ωe) ∀ Ωe ∈ T (Ω)}, (1a)

Σh := {τ ∈ [L2(Ω)]3 : τ |Ωe ∈ Σ(Ωe) ∀ Ωe ∈ T (Ω)}, (1b)

Mh := {μ ∈ L2(Γ) : μ|Γ l ∈ P(Γ l) ∀ Γ l ∈ Γ }, (1c)

where P(Γ l) = TP (Γ l), P(Ωe) = NP (Ωe) are the spaces of polynomials of total degree
P defined on a standard triangular and tetrahedral regions, and P(Γ l) = QP (Γ l), P(Ωe) =
HP (Ωe) are the spaces of tensor-product polynomials of degree P defined on a standard
quadrilateral and hexahedral regions correspondingly. The above polynomial spaces are
defined as

TP (Γ l) = {ξ p
1 ξ

q
2 ; 0 ≤ p + q ≤ P; (x1, x2) ∈ Γ l ;−1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 1},

QP (Γ l) = {ξ p
1 ξ

q
2 ; 0 ≤ p, q ≤ P; (x1, x2) ∈ Γ l ;−1 ≤ ξ1, ξ2 ≤ 1},

NP (Ωe) = {ξ p
1 ξ

q
2 ξ r3 ; 0 ≤ p + q + r ≤ P; (x1, x2, x3) ∈ Ωe;−1

≤ ξ1, ξ2, ξ3; ξ1 + ξ2 + ξ3 ≤ 1},
HP (Ωe) = {ξ p

1 ξ
q
2 ξ r3 ; 0 ≤ p, q, r ≤ P; (x1, x2, x3) ∈ Ωe;−1 ≤ ξ1, ξ2, ξ3 ≤ 1},

where xi = xi (ξ1, ξ2) for TP (Γ l) and QP (Γ l) and xi = xi (ξ1, ξ2, ξ3) for NP (Ωe) and
HP (Ωe). Similarly Σ(Ωe) = [NP (Ωe)]3 or Σ(Ωe) = [HP (Ωe)]3.
2.3 Elemental Polynomial Expansion Bases

In our numerical implementation, we have applied a spectral/hp element discretization which
is described in detail in [28]. Here we briefly describe the C0-continuous hexahedral and
tetrahedral expansions within the standard regions which we have adopted in this work. We
have chosen this type of basis since it provides the C0 continuity required for the CGmethod
as well as allows the decomposition of these expansions into an interior and boundarymodes
[28,43], which is also beneficial to the HDG method implementation.

A commonly used hierarchical C0 polynomial expansion [28,42] is based on the tensor
product of the integral of Legendre polynomials or equivalently generalized Jacobi polyno-
mials P1,1

p (ξ) such that

φi(pqr)(x(ξ)) = ψa
p(ξ1)ψ

a
q (ξ2)ψ

a
r (ξ3) 0 ≤ p, q, r ≤ P

123

J Sci Comput

where

ψa
p(z) =

⎧
⎨

⎩

1−z
2 p = 0

1−z
2

1+z
2 P1,1

p (z) 0 < p < P
1+z
2 p = P

,

ξ = (ξ1, ξ2, ξ3), x = (x1, x2, x3) and x(ξ) represents the mapping from the standard region
Ωst = {−1 ≤ ξ1, ξ2, ξ3 ≤ 1} to Ωe.

Within a tetrahedral domain a compatibleC0 expansion can also be developed and is based
on an orthogonal expansion described by Sherwin and Karniadakis [43]. This C0 expansion
takes the form of a generalized tensor product

φi(pqr)(x(ξ)) = ψa
p(η1)ψ

b
pq(η2)ψ

c
pqr (η3)

where

ψb
pq(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψq(z) p = 0, 0 ≤ q ≤ P
(1−z

2

)p+1
1 ≤ p < P, q = 0

(1−z
2

)p+1 (1+z
2

)
P2p+1,1
q−1 (z) 1 ≤ p < P, 1 ≤ q + p < P

ψq(z) p = P, 0 ≤ q ≤ P

ψc
pqr (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ψb
qr (z) p = 0, 0 ≤ q, r ≤ P

ψb
pr (z) q = 0, 0 ≤ p, r ≤ P

(1−z
2

)p+q+1
1 ≤ p, q ≤ P, r = 0

(1−z
2

)p+q+1 (1+z
2

)
P2p+2q+1,1
r−1 (z) 1 ≤ p < P, 1 ≤ p + q + r < P

ψb
pr (z) q = P, 0 ≤ p, r ≤ P

ψb
qr (z) p = P, 0 ≤ q, r ≤ P

and we use a collapsed coordinate system

η1 = 2
(1 + ξ1)

(1 − ξ2)
− 1, η2 = 2

1 + ξ2

1 − ξ3
− 1, η3 = ξ3.

Once again, x(ξ) represents a mapping from Ωst = {−1 ≤ ξ1, ξ2, ξ3; ξ1 + ξ2 + ξ3 ≤ 1}
to Ωe. This expansion is the extension of the triangular C0 expansion, originally proposed
by Dubiner [21] and is detailed in [28,43]. The expansion used on the element faces, corre-
sponding to the finite element spaceMh , is denoted by ζi(pq). Just as in the 3D case described
above, ζi(pq) is the tensor product expansion on the quadrilateral faces and the generalized
tensor product expansion on the triangular faces.

3 The CG and HDG Methods

We will formulate the CG and HDG methods for the following elliptic diffusion problem
with mixed Dirichlet and Neumann boundary conditions:

−∇2u(x) = f (x), x ∈ Ω,

u(x) = gD(x), x ∈ ∂ΩD,

n · ∇u(x) = gN (x), x ∈ ∂ΩN , (2)

where ∂ΩD
⋃

∂ΩN = ∂Ω and ∂ΩD
⋂

∂ΩN = ∅. The formulation above can be general-
ized in many ways and lead to a variety of different systems. In light of the comprehensive

123

J Sci Comput

implementation discussion of both methods in 2D setting, presented in [30], and considering
that the extension to 3D is a trivial task we limit ourselves to a rather basic formula-
tion/implementation discussion in this section and refer an interested reader to the original
2D paper for more details.

Both the statically condensed CG method and the HDG method can be viewed as fol-
lowing the same pipeline: construction of a collection of elemental (local) operators which
are then judiciously assembled through a static-condensation-aware procedure to yield a
global system whose solution determines the degrees of freedom on the boundary of the
elements. This boundary system is significantly smaller than the full system one would solve
without employing the Schur complement (the linear algebra underpinning of the static-
condensation procedure) of the corresponding assembled global system. Once the solution
has been obtained on the boundaries of the elements, the primary solution over each element
can be determined independently through a forward-application of the elemental operators.

It is well known that the approximation uCG given by the CG method is an element of the
space of continuous functions in Vh satisfying

uCG = Ih(gD) on ∂ΩD,
∫

Ω

∇v · ∇uCGdx =
∫

∂ΩN

v gNds +
∫

Ω

v f dx, (3)

for all test functions v ∈ V 0
h where

V 0
h = {v ∈ Vh | v = 0 on ∂ΩD}.

Here Ih is a suitably defined interpolation operator whose image is the space of traces on
∂ΩD of functions in V 0

h .
In order to define the HDGmethodwe have to start by rewriting the original problem (2) in

auxiliary or mixed form as two first-order differential equations by introducing an auxiliary
flux variable q = ∇u. This gives us:

−∇ · q = f (x) x ∈ Ω,

q = ∇u(x) x ∈ Ω,

u(x) = gD(x) x ∈ ∂ΩD,

q · n = gN (x) x ∈ ∂ΩN . (4)

The HDGmethod seeks an approximation to (u, q), (uHDG, qHDG), in the space Vh ×Σh ,
and determines it by requiring that

∑

Ωe∈T (Ω)

∫

Ωe
(∇v · qHDG) dx −

∑

Ωe∈T (Ω)

∫

∂Ωe
v (ne · q̃HDG) ds =

∑

Ωe∈T (Ω)

∫

Ωe
v f dx,

(5a)
∑

Ωe∈T (Ω)

∫

Ωe
(w · qHDG) dx = −

∑

Ωe∈T (Ω)

∫

Ωe
(∇ · w) uHDG dx

+
∑

Ωe∈T (Ω)

∫

∂Ωe
(w · ne) ũHDG ds, (5b)

for all (v,w) ∈ Vh(Ω) × Σh(Ω), where the numerical traces ũHDG and q̃HDG are defined
in terms of the approximate solution (uHDG, qHDG).

123

J Sci Comput

The remainder of this sectionwill be split in three parts: local problems, global formulation
and postprocessing. In the first two parts we will present the formulation of the two methods
side by side to highlight the similarities between the statically condensed CG method and
the HDG method. In the third part we will outline the local postprocessing procedure for the
HDG method.

3.1 Local Problems

By a local problem we mean the procedure through which we express the numerical solu-
tion on an element through the solution on its boundary. In other words, we want to solve
the original Eq. (2) on a single element under the assumption that the Dirichlet boundary
conditions for that element are known.

3.1.1 The CG Method

We begin by noting that, if we assume that the function λ, which belongs to the space
M0

h = {v ∈ Mh | v ∈ C0} of continuous functions in Mh , is known, the equation satisfied
by the restriction of uCG to an arbitrary element Ωe ∈ Th is the solution of the following
local problem:

uCG = λ on ∂Ωe,
∫

Ωe
∇v · ∇uCGdx =

∫

Ωe
v f dx for all v ∈ P(Ωe) such that v = 0 on ∂Ωe. (6)

This formulation follows from the standard global formulation of the CGmethod by taking
the test functions v different from zero only on the elementΩe . This implies that, if we define
by Uλ and by U f the local solutions to (6) when f = 0 and when λ = 0, respectively (i.e.
the homogeneous and heterogeneous solutions), we can write

uCG = Uλ +U f . (7)

The discrete problem represented by Eq. (6) can also be recast into an elemental matrix
problem. To do so, we first define

uCG =
∑

n

φe
n(x) ûCG[n] =

∑

n

φb
n (x) ûb[n] +

∑

n

φi
n(x) ûi [n] (8)

where the φi
n are functions which are defined to be zero on the element boundary ∂Ωe and

φb
n are functions that have support on the element boundaries. The array ûCG[n] holds the

degrees of freedom (modes) of the solution; ûb[n] and ûi [n] holds the degrees of freedom
(modes) on the boundaries and in the interior, respectively. We next introduce

L[n,m] =
∫

Ωe
∇φn · ∇φmdx,L =

[
L
b,b

L
b,i

L
i,b

L
i,i

]

, f [n] =
∫

Ωe
φn f dx (9)

where the superscripts on the matrix L correspond to the decomposition of the functions φe
n

into the sets φb
n and φi

n . We can now restate equation (6) as

v̂
T
Lû = v̂

T f (10)

where v = ∑
n φe

n(x) v̂[n]. Considering Eq. (7), we can express Uλ and U f in terms of

their approximating expansions as follows: Uλ = ∑
n φe

n(x)Ûλ[n] = ∑
n φb

n (x)Û
b
λ[n] +

123

J Sci Comput

∑
n φi

n(x)Û
i
λ[n] and U f = ∑

n φe
n(x)Û f [n] = ∑

n φb
n (x)Û

b
f [n] + ∑

n φi
n(x)Û

i
f [n]. Let

λ = ∑
n φb

n (∂Ωe)λ̂[n]. By substituting these expressions into Eq. (10) and solving for Ûλ

assuming f = 0 with known boundaries based upon λ, and solving for Û f assuming λ = 0
with known right-hand-side f , we arrive at (respectively):

Ûλ =
[

I

−(Li,i)−1
L
i,b

]

λ̂, Û f =
[
0 0
0 (Li,i)−1

]

f . (11)

If we know f and λ (or equivalently f and λ̂) we would be able to construct the solution

uCG, and so it therefore remains to find a way to characterize λ.

3.1.2 The HDG Method

We begin by assuming that the function λ := ũHDG ∈ Mh is known, for any element Ωe,
from the global formulation of the HDG method. The restriction of the HDG solution to the
element Ωe, (ue, qe) is then the function in Vh(Ωe) × Σh(Ω

e) and satisfies the following
equations:

∫

Ωe
(∇v · qe) dx −

∫

∂Ωe
v (ne · q̃e) ds =

∫

Ωe
v f dx, (12a)

∫

Ωe
(w · qe) dx = −

∫

Ωe
(∇ · w) ue dx +

∫

∂Ωe
(w · ne)λ ds, (12b)

for all (v,w) ∈ Vh(Ωe) × Σ(Ωe). To allow us to solve the above equations locally, the
numerical trace of the flux is chosen in such a way that it depends only on λ and on (ue, qe):

q̃e(x) = qe(x) − τ(ue(x) − λ(x))ne on ∂Ωe (12c)

where τ is a positive function. For the HDG method taking τ to be positive ensures that the
method is well defined. The results in [9] indicate that a reasonable choice of τ is to be of
order one. Note that τ is a function of the set of borders of the elements of the discretization;
hence, it is allowed to be different per element and per edge. Thus, if we are dealing with the
element whose global number is e, we denote the value of τ on the edge whose local number
is i by τ e,i .

Similar to the CG formulation in Sect. 3.1.1 we denote by (Uλ, Qλ) and (U f , Q f) the
solution of the (12a) and (12b) local problem when f = 0 and when λ = 0, respectively,
and define our approximation to be

(uHDG, qHDG) = (Uλ, Qλ) + (U f , Q f).

We note that for the HDG decomposition, unlike in the CG case, the local problem involve
an approximation over ∂Ωe. However similar to the CG problem solution to (12a) and (12b)
when f = 0 allows us to express Uλ, Qλ in terms of λ.

Let us start by defining

ue(x) =
Ne
u∑

j=1

φe
j (x) ûe[j], qek (x) =

Ne
q∑

j=1

φe
j (x) q̂e

k
[j], λ

l(x) =
Nl

λ∑

j=1

ζ lj (x) λ̂
l [j],

where ue(x) : Ωe → R, qe(x) : Ωe → R
3 and λl(x) : Γ l → R.

123

J Sci Comput

After inserting the finite expansion of the trial functions into Eqs. (12a) and (12b), and
using the hybridized definition of the flux given in Eq. (12c), the equations for the local
solvers can be written in matrix form as:

[
(De

1)
T (De

2)
T (De

3)
T

]
⎡

⎣
q̂e
1

q̂e
2

q̂e
3

⎤

⎦−
Ne
b∑

l=1

[
Ẽ
e
1l Ẽ

e
2l Ẽ

e
3l

]
⎡

⎣
q̂e
1

q̂e
2

q̂e
3

⎤

⎦+
Ne
b∑

l=1

τ e,l
[
E
e
l û

e − F
e
l λ̂

σ(e,l)
]

= f e

(13a)

M
eq̂e

k
= −(De

k)
T ûe +

Ne
b∑

l=1

F̃
e
kl λ̂

σ(e,l)
k = 0, 1, 2 (13b)

where f e[i] = (φe
i , f)Ωe and the matrices are defined as follows:

D
e
k[i, j] =

(

φe
i ,

∂φe
j

∂xk

)

Ωe

, E
e
l [i, j] =

〈
φe
i , φ

e
j

〉

∂Ωe
l

, F
e
l [i, j] =

〈
φe
i , ζ

σ(e,l)
j

〉

∂Ωe
l

,

M
e[i, j]=

(
φe
i , φ

e
j

)

Ωe
, Ẽ

e
kl [i, j]=

〈
φe
i , φ

e
j n

e
k

〉

∂Ωe
l

, F̃
e
kl [i, j] =

〈
φe
i , ζ

σ(e,l)
j nek

〉

∂Ωe
l

.

Note, that the choice of the trace expansion thatmatches the elemental expansion restricted
to particular face, that is ζ σ(e,l)

i (s) = φk(i)(s) (which is typical of aC0 expansion basis defined
in Sect. 2.3), insures that Ee

l contains the same entries as Fel and, similarly, Ẽe
kl contains the

same entries as F̃ekl .
Finally, if we concatenate all the unknowns into one vector v̂

e = (ûe, q̂e
1
, q̂e

2
, q̂e

3
)T and

introduce we = (f e, 0, 0, 0)T , we can write equations (13) as:

A
ev̂

e + C
e
λ̂
e = we. (14)

From Eq. (14) it follows that:

[Ûλ, Q̂
λ
]T = −(Ae)−1

C
e
λ̂
e
and [Û f , Q̂ f

]T = (Ae)−1we.

Again, just like in the CG method formulation, once we know λ and f , we can find uHDG

and qHDG.

3.2 Global Formulation

In Sects. 3.1.1–3.1.2 we have expressed the solution within an element through the solution
on its boundary for both numerical methods. Now we need to find a way to characterize λ

globally in order to obtain the statically condensed trace system. Our goal here is to derive
a restriction of the global equation for λ to one element of the following form: Keλ̂

e = Fe,
where Fe contains the local contributions (such as forcing terms and Neumann boundary
condition terms) to the right-hand-side of the global linear system. Once we have the local
K
e matrices, we can either assemble them into the global linear system matrix or keep

them “as is” together with the global-to-local map, depending on the choice of the linear
system solver. If we choose to assemble the global system matrix, we can do so using the
global-to-local spreading operator A, that takes the unique trace space coefficient values
Λ and “spreads” them to the local (elemental) face coefficients vector Λl . If we denote
the “portion” of A that corresponds to the particular element by Ae (AeΛ = λ̂

e
) then

the assembled system matrix can be expressed as K = ∑|T (Ω)|
e=1 (Ae)TKeAe and the right

123

J Sci Comput

hand side as F = ∑|T (Ω)|
e=1 (Ae)T Fe. We are then left with the following problem to solve:

KΛ = F .

3.2.1 The CG Method

It is reasonably straightforward to see that λ is the element of the space M0
h such that

λ = Ih(gD) on ∂ΩD,
∫

Ω

∇Uμ · ∇Uλ =
∫

Ω

Uμ f +
∫

∂ΩN

Uμ gN for all μ ∈ M0
h such that Uμ = μ on ∂Ωe,

(15)

where we note that Uλ is related to λ through problem (6) when f = 0 and Uμ is similarly
related to μ. Indeed, to see that the weak formulation (15) holds, insert the expression of the
approximate solution uCG given by Eq. (7) into the standard formulation of the CG method
given by Eq. (3), take the test function v to beUμ, and note that we have

∫
Ω

∇U f ·∇Uμ = 0,
by definition of the local solutions U f and Uμ. This last result can also be demonstrated by

evaluating
∫
Ω

∇U f · ∇Uμ = Û
T
f LÛμ using the definitions (9) and (11).

We can further highlight the connection between Eq. (15) and the statically condensed
CG problem by considering the elemental contribution to (15) using the matrix form we
introduced above. We can express the component of problem (15) restricted to element Ωe

as

μ̂
T [

I, −L
b,i (Li,i)−1

]
[
L
b,b

L
b,i

L
i,b

L
i,i

] [
I

−(Li,i)−1
L
i,b

]

λ̂ = μ̂
T

[
ge
N

+ f b − L
b,i (Li,i)−1 f i

]

where μ = ∑
n φb

n (∂Ωe)μ̂ and ge
N
[n] is defined as 〈

gN , φb
n

〉
∂Ωe∩∂ΩN

on the elements where
∂Ωe ∩ ∂ΩN �= ∅ and as zero otherwise. Multiplying out this equation then leads us to the
standard elemental Schur complement formulation of the statically condensed problem for
λ̂: [

L
b,b − L

b,i (Li,i)−1
L
i,b

]
λ̂ = ge

N
+ f b − L

b,i (Li,i)−1 f i , (16)

which can then be assembled into the global trace linear system KΛ = F , where

K =
|T (Ω)|∑

e=1

(Ae)TKeAe =
|T (Ω)|∑

e=1

(Ae)T
[
L
b,b − L

b,i (Li,i)−1
L
i,b

]
Ae

and

F =
|T (Ω)|∑

e=1

(Ae)T
[
ge
N

+ f b − L
b,i (Li,i)−1 f i

]
.

3.2.2 The HDG Method

To determine λ in case of the HDG method, we require that the boundary conditions be
weakly satisfied and that the normal component of the numerical trace of the flux q̃ given by
Eq. (12c) be single valued. This renders this numerical trace conservative, a highly-valued
property for this type of methods; see [2].

123

J Sci Comput

So, we say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD, (17a)
∑

Ωe∈Th

∫

∂Ωe
μ q̃e · ne =

∫

∂ΩN

μ gN , (17b)

for all μ ∈ M0
h such that μ = 0 on ∂ΩD . Here Ph denotes the L2-projection into the space

of restrictions to ∂ΩD of functions of Mh .
After defining gN l [i] to be

〈
gN , ζ li

〉
Γ l∩∂ΩN

on Neumann boundary faces and zero other-
wise, we can write Eq. (17b) restricted to a single face in the matrix form:

[
˜̄
F
l,e
1

˜̄
F
l,e
2

˜̄
F
l,e
3

]
⎡

⎣
q̂e
1

q̂e
2

q̂e
3

⎤

⎦ +
[
˜̄
F
l,m
1

˜̄
F
l,m
2

˜̄
F
l,m
3

]
⎡

⎣
q̂m
1

q̂m
2

q̂m
3

⎤

⎦ + (τ e,i + τm, j)Ḡl
λ̂
l

−τ e,i F̄l,eue − τm, j
F̄
l,mum = gN

l ,

where we are assuming that l = σ(e, i) = σ(m, j), that is, that the elements e and m have
the common internal face Γ l . The matrices are defined as follows:

F̄
l,e[i, j] =

〈
ζ li , φ

e
j

〉

Γ l

˜̄
F
l,e
k [i, j] =

〈
ζ li , φ

e
j n

e
k

〉

Γ l
Ḡ
l [i, j] =

〈
ζ li , ζ

l
j

〉

Γ l
.

Using the notation introduced in Sect. 3.1.2 Eq. (17b) for a single face can be written in
a more compact form as:

B
eve + G

e
λ̂
e + B

mvm + G
m
λ̂
m = gl

N
. (18)

If we sum the face contributions from Eq. (18) over all the faces in the mesh, concatenate
the individual face Neumann conditions gl

N
into g

N
and replace λ̂

e
by AeΛ we get

|T (Ω)|∑

e=1

(Ae)T
[
B
eve + G

eAeΛ
] = g

N
. (19)

The last step is to express ve from Eq. (14) (the local problem) and plug it into Eq. (19)
above. This will give us our global system for the trace unknowns:

KΛ = F, (20)

where

K =
|T (Ω)|∑

e=1

(Ae)TKeAe =
|T (Ω)|∑

e=1

(Ae)T
[
G
e − B

e(Ae)−1
C
e]Ae

and

F = g
N

−
|T (Ω)|∑

e=1

(Ae)TBe(Ae)−1w. (21)

3.3 The HDG Postprocessing

To end the presentation of the HDG method, we highlight how one can postprocess the
approximate solution to obtain a new approximation of the scalar variable with the order
of convergence increased by one when the polynomial degree P is larger than zero. For a

123

J Sci Comput

detailed discussion of the postprocessing in the context of the HDG method, including the
flux postprocessing, we refer the reader to [16] and the references therein. Below we will
give a brief outline of the postprocessing technique we used in our implementation.

The postprocessed numerical solution ue∗ on the element Ωe is the function in TP+1(Ω
e)

defined by
(∇ue∗,∇w)Ωe = (qe,∇w)Ωe ∀TP+1(Ω

e), (22a)

(ue∗, 1)Ωe = (ue, 1)Ωe . (22b)

We note that, if qe converges with order P + 1 and the average of ue on each element
superconverges with order P + 2, then the postprocessing ue∗ converges with order P + 2,
when P ≥ 1. The conditions for superconvergence imposed upon the finite element space
depending on the element shape are discussed in [18]. Numerical results demonstrating
the L2 errors before and after postprocessing for hexahedral and tetrahedral elements (see
Sect. 5) indicate that the technique works as intended for both types of elements. In our
implementation we have expressed qe, used in Eq. (22a), through λe and ue using Eq. (12b).
This was done to avoid solving local problems for qe in case only scalar variable ue is
required.

4 Parallel Implementation

In a three dimensional formulation, both CG and HDG discretisations lead to the creation of
matrix systems which, for even moderately sized meshes at low polynomial orders, quickly
become too large to store or solve in a practially useful amount of time on a single processor.
Strategies for dividing the problem amongst multiple processors are therefore essential to
consider simulations for even relatively small problems. The goal of this section is to describe
a parallelisation strategy for both HDG and CG systems, and through the examination of a
model unsteady diffusion problem, compare the relative performance and scalability of these
methods across a large number of processors in the following section.

4.1 Parallelisation Strategy

Whilst finite element methods are conceptually simple to parallelise owing to the existing
elemental decomposition of the domain, there are many numerical and technical hurdles to
overcome when implementing an efficient and scalable parallel algorithm. Namely we must
partition the domain ‘evenly’, so that each process receives a computationally equal-sized
part of the whole problem, and also design an algorithm to solve the resulting matrix systems
in parallel without a single process needing to store the entirity of the spatial operator.

The focus of this work is on the latter problem. However we note that the approach taken
here is to construct the dual graph of the mesh, where each node of the graph represents an
element and edges connecting nodes denote the connection of two elements through the trace
space. This graph can then passed through a partitioner such as [8,29] in order to determine an
appropriate number of subgraphs, each of which forms the mesh partition for a given process.
When the mesh is hybrid (i.e. heterogeneous element type) we assign an appropriate weight
to each element, such as the number of local degrees of freedom, so that in the resulting
matrix inversion each process receives a computationally equal portion of the full problem.

The formulation of both CG and HDG algorithms leads to the construction of a large
sparse matrix system

KΛ = F (23)

123

J Sci Comput

for the statically condensed variable λ, where K represents the discrete Laplacian operator.
Parallel algorithms for inverting this system may be broadly categorised as either direct
[1,46], in which the matrix is inverted through a procedure such as Cholesky decomposition,
or iterative, whereby the solution is obtained through repeatedly applying the operator K in
some manner in order to converge to a solution.

In parallel, iterative algorithms such as the preconditioned conjugate gradient method
[20] have a distinct advantage over direct methods in that we can leverage the finite element
construction ofK in order to more readily parallelise the problem. Let K̃ = ⊕Nel

e=1 K
e denote

the block-diagonal matrix with each block K
e being the local action ofK on an element Ωe.

Then, by utilising the global-to-local operator A we can rewrite (23) as

KΛ = [A�K̃A]Λ,

where Λl = AΛ is the vector of local coefficients of Λ.
The use of this assembly mapping allows us to readily parallelise an iterative solve of

either the CG or HDG system. In order to calculate the matrix multiplication u = Kv we
apply the following procedure:

1. Prior to the solve, each process p constructs the matrix K̃p: the direct sum of the local
elemental matrices contained in the partition belonging to this process.

2. When we are required to perform a matrix multiplication applied to a vector of local
coefficients vlp , we first calculate u

l
p = K̃pv

l
p .

3. Each process then applies a local assembly operation A�
p to determine the unique coef-

ficients u p = A�
p u p which lie on the process.

4. Finally, each process performs an inter-process assembly operation by sending its con-
tributions to any other processors which have common coefficients. Any contributions
received from other processors are added to the vector u p .

5. At the end of this procedure, each process has the global coefficients u.

The HDG method has an advantage over the CG method in this procedure, since in the
formulation of the HDGmethod we utilise the trace space in order to decouple elements. This
implies that the inter-process communication is always pairwise, whereas in the CGmethod,
any processes which share a vertex or edge must perform a communication as illustrated
in Fig. 1. In the worst case, for small unstructured tetrahedral meshes this may result in an
all-to-all communication if every element shares a common vertex or edge, although such
scenarios are unlikely. For the unstructured examples we consider in the following section,
vertex valencies of up to 44 are observed and communication patterns can therefore be very
demanding.

However, CG also has the advantage of smaller elemental matrix sizes. In unsteady prob-
lems, themajority of the computational cost of the simulation comes from inverting thematrix
system, which in the PCG algorithm can be broken down into the time taken for the local
block matrix-vector products K̃pv

l
p and the communication cost incurred from the assembly

process.
In order to give a qualitative idea of how these matrix sizes may affect performance a

priori, in Fig. 2 we compare the rank of an elemental block K
e for the CG method (NCG)

compared to the HDGmethod (NHDG) as a function of polynomial order p and element type.
The two bar plots show a comparison at equal polynomial order (left) and one order lower
for HDG (right) in order to show the computational effects that the postprocessing technique
can achieve. We clearly see that when compared at equivalent order, HDG local matrices
are always larger than the equivalent boundary-condensed CG matrices. This effect is most

123

J Sci Comput

Fig. 1 Illustration of
communication patterns in CG
and HDG, where each element is
on a different process. HDG
communication (gray arrows
only) requires only pairwise
communication. However CG
requires communication between
shared vertices (blue and gray
arrows) (Color figure online)

0 2 4 6 8 10 12 14

p

0

1

2

3

N
H
D
G
(p
)/
N
C
G
(p
)

Tetrahedron

Hexahedron

0 2 4 6 8 10 12 14

p

0

1

N
H
D
G
(p

−
1)
/N

C
G
(p
)

Tetrahedron

Hexahedron

Fig. 2 Ratio of HDG to CG local matrix sizes for hexahedral and tetrahedral with (right) and without (left)
postprocessing taken into account. The dotted line indicates where matrix dimensions are equal

prohibitive for tetrahedral elements, where even at polynomial order 10 tetrahedral elements
still have a dimension ratio of around 4

3 . When HDG postprocessing is used, hexahedral
matrices are marginally smaller than their CG counterparts, but tetrahedral elements still
have a significant overhead.

There is, therefore, a balance to be struck between the possible increase in performance
from HDG communication versus the larger matrix sizes which occur in the HDG formu-
lation. It is also clear that for problems that do not permit superconvergence, HDG will
suffer from far larger elemental matrices than its CG counterparts, particularly at low poly-
nomial orders. We will investigate these properties by performing a series of numerical
experiments to determine the weak and strong scalability of each method in the following
section.

123

J Sci Comput

5 Numerical Results

In this section we compare the performance of the CG and HDGmethods using elliptic PDE
in three dimensions as a test case. We will start by comparing numerical errors for both
methods while solving the steady-state Helmholtz equation (postprocessing is employed in
HDG case). Next, we will discuss the serial implementation performance and its dependence
on the choice of the direct linear system solver, using the steady-state Helmholtz problem
as well as the time-dependent heat equation as a benchmark. We will make a few remarks
regarding the performance of the preconditioned conjugate gradient (PCG) linear system
solver for both numerical methods. Finally, we will conclude the results section by the
parallel implementation performance discussion.

We now provide some of the experimental specifics. Tests for the serial implementation
were run on the machine equipped with 80 Intel(R) Xeon(R) E7-4870 2.40 GHz processors
and 750 GB of RAM running OpenSUSE 12.2 (x86_64). The code was compiled using
gcc 4.8.1. Tests for the parallel implementation were run on HECToR, the UK national
supercomputer service, which is a CrayXE6machine comprising of 32-core nodes consisting
of two 16-core Interlagos AMD Opteron processors together with with 32GB of RAM and
are connected using a Cray Gemini interconnect. Tests were performed using between 1 and
128 nodes (32 and 4096 cores respectively).

When considering the serial implementation we have opted for a direct linear system
solver under the assumption that serial codes are typically used for relatively small problems
where the use of direct solver is both permissible storage-wise and effective. For the parallel
implementation we utilise a PCG iterative method. Due to the existence of the extensive
preconditioning-related body of work for the CG method [22,44] and a relative scarcity of
such research in case of the HDG method, we opt to use a Jacobi preconditioner for both
numerical methods so that neither method is unfairly biased and communication costs due
to the preconditioner are minimal. The HDG method results were obtained with parameter
τ set to one.

In many test cases we will be dealing with regular meshes. Hexahedral meshes are gen-
erated through a tensor product of one-dimensional evenly spaced segments, and tetrahedral
meshes are generated by splitting each hexahedron into six tetrahedra. We adopt the use
of an abbreviated notation n3 and n3 × 6 instead of more commonly used n × n × n and
n × n × n × 6 to denote regular hexahedral and tetrahedral meshes respectively.

Remark 1 We note that the performance of a numerical method depends not only on the
choice of linear solver but also on some of the optimization choices that were made regarding
the method implementation. In order to assemble a finite element operator or evaluate the
result of such operator action, one can consider one of the three strategies: global (based on
the global interpretation of the spectral/hp finite element method), sum-factorization (that
exploits the tensorial nature of the basis) and localmatrix approach.Any of the three strategies
can become optimal for a particular problem choice and parameter range. Generally, since
higher order spectral/hp finite element methods favor sum-factorization performance-wise,
it is our optimization strategy of choice for this section. More details regarding the above
optimization strategies can be found in [48].

Remark 2 In [18], the space for the numerical flux q that ensures superconvergence of the
HDG method on a hexahedral element is slightly larger than the standard tensor-product
space Qk (for details, see Table 6 in [18]). In our implementation, we use the Qk space
to represent the flux variable and still observe superconvergence properties on hexahedral
elements numerically.

123

J Sci Comput

Table 1 L2 errors of the scalar variable u for CG and HDGmethods for Helmholtz equation on 93 hexahedral
mesh and 63 × 6 tetrahedral mesh

NCG Hexahedra Tetrahedra NHDG

L2CG L2HDG L2CG L2HDG

3 1.944e−02 8.301e−02 1.686e−01 1.323e−01 2

4 2.126e−03 6.046e−03 5.522e−02 4.367e−02 3

5 1.833e−04 3.449e−04 1.673e−02 1.373e−02 4

6 1.325e−05 2.504e−05 4.431e−03 3.981e−03 5

7 8.201e−07 1.460e−06 1.085e−03 9.973e−04 6

8 4.460e−08 7.863e−08 2.388e−04 2.283e−04 7

9 2.151e−09 3.828e−09 4.707e−05 4.562e−05 8

5.1 Postprocessing, Errors and Convergence Orders

To verify each method, we begin by examining the L2 errors for both the CG and HDG
methods, with the use of postprocessing in the latter case. As a test case we use a Helmholtz
equation of the form

∇2u(x) − μu(x) = f (x) x ∈ Ω,

u(x) = gD(x) x ∈ ∂ΩD,

where μ = 1,Ω = [0, 1]3 and f (x) and gD(x) are selected to give an exact solution of the
form

u(x) = sin(5πx) sin(5πy) sin(5π z).

We first measure the L2 errors of the scalar variable u for the CG method and the post-
processed L2 errors of u for the HDG method on regular tetrahedral and hexahedral meshes
comprising of 1296 and 729 elements respectively. Corresponding results are presented in
Table 1, where NCG and NHDG denote the number of 1D modes in each direction of the
tensorial 3D expansion. The results for the HDGmethod are shifted by one polynomial order
for the ease of comparison and to reflect the superconvergence property of the HDGmethod.
We can see that the postprocessing technique indeed raises the convergence order by one
and the HDG method with polynomials of order P produces errors comparable with those
produced by the CG method with polynomials of order P + 1.

5.2 Serial Performance

Having verified each method we now analyse the timing data in order to measure the per-
formance of each method. We start by considering the time it takes to solve the steady-state
Helmholtz problem using a serial implementation of both methods. Execution time mea-
sured includes all the stages of a typical finite element code: we start by loading the mesh
from a file and initializing all the data structures and end by the numerical solution evalua-
tion at the quadrature points. In case of the HDG method, the postprocessing procedure and
evaluation of the postprocessed solution is included in the runtime. We note that the serial
implementation of the steady-state problem postprocessing accounts for around 20–30% of
the execution time for P = 1, depending on the mesh used. This quickly drops below 10%

123

J Sci Comput

Table 2 Execution time for the CG andHDGmethods on 93 hexahedralmesh, using direct static condensation
(DSC) and direct multi-level static condensation (DMSC) solvers

NCG DSC DMSC NHDG

CG HDG HDG
CG CG HDG HDG

CG

3 4.92 6.07 1.24 7.46 4.96 0.66 2

4 80.96 48.44 0.60 48.32 31.51 0.65 3

5 564.31 243.17 0.43 297.90 169.73 0.57 4

6 2661.04 947.12 0.36 1103.36 791.51 0.72 5

7 8765.75 2709.26 0.31 3397.99 2642.24 0.78 6

8 25,450.47 6917.71 0.27 8789.20 7051.14 0.80 7

9 58,228.23 16,177.59 0.28 19,580.75 17,786.10 0.91 8

Table 3 Execution time for the CG and HDG methods on 63 × 6 tetrahedral mesh, using direct static
condensation (DSC) and direct multi-level static condensation (DMSC) solvers

NCG DSC DMSC NHDG

CG HDG HDG
CG CG HDG HDG

CG

3 0.73 3.28 4.52 3.46 2.92 0.84 2

4 4.86 12.29 2.53 14.02 9.05 0.65 3

5 42.04 46.71 1.11 59.39 29.30 0.49 4

6 220.04 144.82 0.66 154.89 92.03 0.59 5

7 819.23 399.07 0.49 777.43 297.04 0.38 6

8 2282.90 885.17 0.39 2057.15 796.64 0.39 7

9 5747.78 1852.25 0.32 4081.03 1712.52 0.42 8

as the polynomial order increases and levels off at around 3–5% of the total execution time
at higher polynomial orders. The run time contribution of the postprocessing will be smaller
in the case of a time-dependent problem, as it is done only once, and in case the of a parallel
implementation since there is no inter-element dependency for this operation.

The statically condensed linear system is solved directly using the Cholesky factorisation
implementation in LAPACK and dense format matrices. Before assembling the matrix, we
reorder using the reverse Cuthill-McKee algorithm to reduce the bandwidth of the system and
the resulting factorisation. We have found that this combination of dense format and RCM
is efficient, often outperforming sparse-format approaches due to the lower matrix sparsity
found at higher polynomial orders.

Since in the previous section it was demonstrated that the postprocessing does increase
the numerical solution order by one, we shift the timing results of the CG method by one;
that is, we for example compare the CG solution of order 5 with the HDG solution of order 4.
However, from this table, one may also infer relative performance by looking at offset rows
for problems where superconvergence is not available.

Runtime data is presented in Tables 2 and 3 for regular hexahedral and tetrahedral
meshes using both direct static condensation (DSC) and direct multi-level static conden-
sation (DMSC) solution strategies. We apply the multi-level algorithm in a local fashion as
described in [43], so that the global system is constructed at only the lowest level. Time is

123

J Sci Comput

measured in seconds and HDG
CG denotes the ratio of corresponding runtimes. As these results

are calculated in serial, we deliberately restrict our results to consider polynomial orders in
the range P ≤ 8. As the runtimes indicate, very high polynomial orders quickly become
computationally intractable on a single processor.

Analyzing the results presented in Tables 2 and 3 we can see that superconvergence
achieved through postprocessing allows the HDG method to be competitive with the CG
method and outperform the latter as the polynomial order increases. In case of the DMSC
solver, the HDG method consistently outperforms CG from a polynomial order of one,
whereas for the DSC solver the HDG method outperforms the CG method from the third or
fourth polynomial degree, depending on the element type. We do however reiterate that the
observed behavior is only valid for the direct solve of the statically condensed linear system.

The use of multi-level static condensation results in some interesting performance obser-
vations. Overall, it is clear that CG benefits far more from using DMSC than HDG. This
performance difference can be attributed to the method that is used to determine the degrees
of freedom that form in each level of static condensation. We first construct a graph that
represents the mesh connectivity of the global system. The graph is then passed to a nested
bisection algorithm within the partitioning software METIS [29]. The resulting separatrix
is then inverted in a bottom-up manner as described in [47] to form each level of static
condensation.

In the HDG method, the coupling of connectivity through element faces, but not edges
and vertices, means that this graph has a far less complex structure when compared to its
CG counterpart. In turn, the nested bisection algorithm does not recurse to as many levels
as can be achieved in the CG method. Since the linear system to be solved resides at the
lowest level, the HDG formulation results in an increased number of degrees of freedom at
this level when compared to the CG. Indeed in severe cases, the lack of recursion means that
the overheads of having multiple levels can sometimes increase execution time. An example
of this can be seen in the the simple hexahedral mesh of Table 2 at NHDG = 6 and 7, where
HDG with DMSC has a longer runtime than DSC.

5.3 Unsteady Diffusion Equation

In the case of an unsteady equation, setup costs are often negligible when compared to the
number of timesteps required to produce a solution up to the final required time.

The exemplar elliptic PDE used for these tests is the traditional diffusion equation for a
scalar variable u,

∂u

∂t
− ∇2u = 0, (24)

which occurs frequently in the modelling of various physical phenomena, and thus can give
an indication of how the CG and HDG methods perform in the setting of a more complex
system, such as operator splitting schemes for the Navier-Stokes equations [27].

As in the previous sectionwe take the domain to be a cube [0, 1]3 and enforce homogeneous
Dirichlet boundary conditions. For the purposes of error comparison we utilise an exact
solution and initial condition of the form

u(x, 0) = sin(πx) sin(πy) sin(π z), u(x, t) = e−3π2t u(x, 0).

Since the initialization (and postprocessing for the HDGmethod) are performed only once
for each simulation, and the timestep size as well as the final time may vary from simulation
to simulation, we will compare the time each method requires to perform N timesteps,
rather than the total simulation runtime. In this particular case we have used the second-order

123

J Sci Comput

Table 4 Average time taken to perform 100 timesteps of the diffusion equation for the CG and the HDG
methods on a 93 hexahedral mesh

NCG DSC DMSC NHDG

CG HDG HDG
CG CG HDG HDG

CG

3 3.3687 3.7979 1.13 1.9001 2.3727 1.25 2

4 22.1862 19.2747 0.87 7.4255 6.2906 0.85 3

5 106.7327 77.9770 0.73 25.8663 20.8083 0.80 4

6 311.8601 220.7129 0.71 82.3704 75.9543 0.92 5

7 831.7730 378.4930 0.46 164.9608 157.2287 0.95 6

8 2148.8804 1020.5737 0.47 313.3912 354.5623 1.13 7

9 3512.1737 1916.7294 0.55 594.2661 637.5448 1.07 8

Direct static condensation (DSC) and direct multi-level condensation (DMSC) solvers are used. Time is
measured in seconds

diagonally implicit Runge-Kutta (DIRK2) [23] scheme for time integration, the timestep was
taken to be 10−6 to minimise temporal error and we run the simulation for 1000 timesteps
of which the first 100 are discarded to exclude the initialization time from our comparison.
We average the time it takes to perform 100 timesteps over the remaining 900 steps.

Whilst HDGpostprocessing time is excluded from the analysis, the orders of bothmethods
are shifted by one with respect to one another to account for HDG superconvergence as in
the previous section. Results for the 93 hexahedral mesh are presented in Table 4.

We observe that under these conditions and factoring out the initialization and post-
processing time, the HDG method outperforms the CG method when DSC solver is used.
Each method exhibits similar performance characteristics when the DMSC solver is used:
the ratio of runtimes is within 1.00 ± 10% range for higher polynomial orders. We note
that for the unsteady diffusion equation, we are not inverting the full linear system matrix
at each time-integration step (or rather stage, since we are using DIRK2 scheme) but do the
backward/forward substitution using the precomputed Cholesky factors. This accounts for
the difference in solve time ratios (HDG

CG) between the steady-state and unsteady cases.
Also, it is important to note that even with minor modifications to equation (24), one

can lose the superconvergence property. In this case, we observe that the CG system is
significantly faster than that of the HDG scheme, by a factor between 2 and 4 depending on
polynomial order.

5.4 Iterative Linear System Solver

We conclude the discussion of the serial implementation performance by making a few
remarks on the use of the iterative solver, namely PCGwith diagonal preconditioner, for both
numerical methods. Based on the numerical experiments performed, there are key points that
can be observed:

1. There is a dependence between the HDG method parameter τ , that penalizes the jump
in the flux q on the face shared by the two neighbor elements, and the number of PCG
iterations required to achieve a given tolerance.

2. While using just a diagonal preconditioner for the HDG and the CG methods, we can
observe that the statically condensed linear systemmatrix for theCGmethod requires sub-
stantially fewer iterations for PCG to converge than its HDG counterpart. This illustrates

123

J Sci Comput

Table 5 Number of iterations
taken for a PCG solve with
diagonal preconditioner to
converge to within a relative
tolerance of ε = 10−9

Both the CG method and HDG
method with various values of
parameter τ are considered on a
53 × 6 tetrahedral mesh

NHDG Value of τ in the HDG method CG NCG

1 10 100 1,000 10,000

2 130 133 168 305 494 51 3

3 323 317 327 555 1465 98 4

4 520 514 501 601 1326 148 5

5 766 753 715 758 1379 197 6

6 959 951 930 934 1345 247 7

7 1210 1189 1170 1132 1428 303 8

8 1422 1400 1366 1360 1426 357 9

Table 6 Number of iterations taken for a PCG solve with various preconditioners to within a relative tolerance
of ε = 10−9

NHDG HDG block CG block CG low energy CG linear space NCG

2 130 51 37 29 3

3 157 98 53 35 4

4 203 150 62 38 5

5 223 204 69 40 6

6 245 252 74 41 7

7 258 295 78 42 8

8 279 345 82 44 9

Both the CG method and HDG method with τ = 1 are considered on a 53 × 6 tetrahedral mesh

that the HDG method requires a specifically designed preconditioner to be competitive
in the realm of iterative solvers.

Let us consider the example of the data from which the above conclusions were drawn. In
Table 5 we provide the number of iterations of the PCG solver required to solve a statically
condensed linear system to within a relative tolerance of ε = 10−9. Again, the CG method
polynomial order is shifted by one to account for HDG postprocessing. To demonstrate the
reliance of the iteration count on τ , we vary τ between 1 and 10,000 and compare this against
the CG method with a Jacobi preconditioner used for both methods. We observe that there
is a slight reduction (followed by a growth) in the iteration count for the HDG method with
the parameter τ value increase with an optimal value around 100. Even with the one order
shift between the two methods, the conditioning of the linear system matrix produced by the
HDG method is much worse than in case of its CG counterpart. This therefore calls for the
development of an efficient HDG preconditioner as future work, in the same manner as [38]
has done for DG methods for the compressible Navier-Stokes equations.

To emphasise this point, in Table 6 we consider some alternative forms of preconditioner
for both HDG and CG systems. For each element of the trace, we collect the matrix entries
of the global system , invert each block and assemble them in a block diagonal matrix to
form a block-Jacobi preconditioner. This leads to very little improvement for the CG system,
but for the HDG significantly improves the iteration count. To further highlight the effect
of the preconditioner, we also consider two choices for the CG scheme: a low energy block
preconditioner, in which a basis transformation is applied to make the resulting global system

123

J Sci Comput

more diagonally-dominant, and a linear space conditioner for the coarse linear finite element
space which is combined with the low energy preconditioner. With these choices we see even
more improvement over the HDG system.

However, each of these choices has different costs in terms of set-up, communication
and the action of the preconditioner itself on the global coefficients. For example, the HDG
system needs to use a more expensive block preconditioner to attain the same iteration count
as the Jacobi-preconditioned CG system. This is important because in the following section,
we will report timings of the matrix solve which are performed using the iterative solver.

Therefore, for the purposes of drawing a fair comparison in these experiments, we need
a metric which gives a sense of relative cost between the schemes. We will therefore use a
simple Jacobi preconditioner for both methods, and measure time which is averaged over
both a number of timesteps and also the total number of PCG iterations required to converge
to the solution. This per-iteration timing value gives an indication as to how each method
would perform in the presence of an optimal preconditioner, and also allows us to consider the
effects of communicationwhen taking into account the parallelmatrix-vectormultiplications.

5.5 Parallel Performance

We begin our discussion of the parallel HDG performance results by first describing the test
problem that has been used to benchmark the HDG scheme. Firstly, we posit that the use
of a parallel solver is most likely to occur in time-dependent problems. Our tests therefore
focus on this aspect and do not include any set-up costs which may be associated with matrix
construction. As before then, we examine the properties of the unsteady diffusion solver as
defined in Sect. 5.3. We measure per-iteration timings as noted at the end of the previous
section.

5.5.1 Weak Scaling

We initially examine the weak scaling of both methods, whereby as the number of processors
increases, the problem size in terms of both number of elements and polynomial order is
kept constant on each processor. An ideal numerical method which scales perfectly should
therefore show the same runtime as the number of processors increases.

On each processor we consider two meshes: a 33 mesh of hexahedra and a 23 ×6 mesh of
tetrahedra. The number of elements is deliberately fixed to be the same at each polynomial
order in order to assess the relative communication costs of eachmethod.At lower polynomial
orders, there are very few degrees of freedom per process, and therefore communication costs
are the dominant force in the timings of each simulation. Scalability will therefore be very
poor. At high polynomial order however, local matrix sizes are much larger and therefore
communication costs form less of the overall runtime; we can therefore expect much better
scaling.

In this series of simulations we can therefore observe both whether the HDGmethod gains
any benefits in execution time from the simpler communication patterns, and additionally if
the use of postprocessing offers an advantage for the HDG scheme at equivalent polynomial
order to overcome the larger matrix sizes which are inherent to the formulation.

The timings for hexahedral and tetrahedral meshes are shown in Fig. 3. On the left hand
sidewe seeCGandHDGmethods compared at the same order, and on the rightwe see timings
for CG which are one polynomial order higher to observe the effects of postprocessing of the
HDG results. We can draw two immediate conclusions from these data. Firstly, the impact of
a larger local matrix size for the HDG method is clearly seen even at low polynomial order

123

J Sci Comput

101 102 103 104

Nproc

10− 3

10− 2

10− 1

T
im

e/
ite
ra
tio

n

P = 3, CG

P = 3, HDG

P = 5, CG

P = 5, HDG

P = 7, CG

P = 7, HDG

101 102 103 104

Nproc

10− 3

10− 2

10− 1

T
im

e/
ite
ra
tio

n

P = 4, CG

P = 3, HDG

P = 6, CG

P = 5, HDG

P = 8, CG

P = 7, HDG

101 102 103 104

Nproc

10− 3

10− 2

10− 1

T
im

e/
ite
ra
tio

n

P = 3, CG

P = 3, HDG

P = 5, CG

P = 5, HDG

P = 7, CG

P = 7, HDG

101 102 103 104

Nproc

10− 3

10− 2

10− 1

T
im

e/
ite
ra
tio

n

P = 4, CG

P = 3, HDG

P = 6, CG

P = 5, HDG

P = 8, CG

P = 7, HDG

Fig. 3 Weak scalings showing time per iteration for between 1 and 128 nodes (32 and 4096) processors for
hexahedral mesh (top) and tetrahedral mesh (bottom). The different figures show effects with (left) and without
(right) HDG postprocessing

on the left hand side, with significantly longer runtimes. However, when postprocessing is
implemented, this difference is not as pronounced for the tetrahedron and almost identical
for the hexahedron as predicted by the illustration given in Fig. 2.

The second observation is that asides from P = 2 on the tetrahedral mesh, the HDG
method and CG method scale with very similar trends. We may surmise that certainly at
higher polynomial orders, the use of an efficient parallel gather-scatter operation allows the
CGmethod to scale as effectively as the HDGmethod in these tests. However it is interesting
to note that at P = 2 for a tetrahedral mesh, where the CG method must communicate to a
wider range of processors given the higher valency of vertices and edges than the hexahedral
mesh, theHDGmethod does scalewith a smaller slope than theCGmethod. This indicates the
potential for effective communication performance of HDG at lower orders, and on meshes
of tetrahedra where communication patterns are more complex for the CG method. This
aspect is particularly important, since many problems of practical interest in complex three-
dimensional geometries utilise unstructured meshes with high vertex valency. We therefore
investigate this aspect in particular in the following section.

5.5.2 Strong Scaling

In the second series of simulations, we perform a strong scaling test in which the global
problem size is kept constant as the number of processors increases. This is a more practical
test, in the sense that a given problem is more likely to be divided onto more processors
by an end-user in order to obtain a decrease in execution time. It is also more difficult
to attain optimal performance in this test at lower polynomial orders, since at some point

123

J Sci Comput

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Nproc

0

50

100

150

200

250

Sp
ee
du
p

P = 9, CG

P = 8, HDG

Ideal

Fig. 4 Strong scaling of time-dependent diffusion problem between 1 and 128 nodes (32 and 4096 processors
respectively) at polynomial order P = 9 for both CG and HDG (right) on a unstructured mesh of a rabbit
aorta intercostal pair (left)

the latency and bandwidth of communication in combination with the small per-process
computation cost will in general limit scalability. To this end we consider the scaling of each
method on two unstructured curvilinear tetrahedral meshes which are used in the study of
biological flows. The first mesh, which we examine at a high polynomial order, is a small
mesh of an intercostal pair of a rabbit aorta comprising of approximately 8,500 tetrahedra.
At a lower order we instead examine the full mesh of the aortic arch which instead contains
approximately 1.5 × 105 elements.

The strong scaling of each method for the intercostal pair is shown in Fig. 4. The speedup
quoted on the vertical axis is relative to the time taken on a single 32-processor node. At
high polynomial order we clearly see that both methods scale well. Even at 4096 processors,
where each process contains only two or three tetrahedra, efficiency remains high. At times
the scaling is seen to be super-linear; whilst counterintuitive, this is commonly seen on
modern multi-core hardware [31] due to resource contention. At lower numbers of nodes,
the matrix-vector multiplication used in the iterative solve requires intensive memory access,
meaning that much of the processor time is spent fetching data from the main memory store,
where the limiting factor is memory bandwidth. As the problem size decreases however,
matrices are able to be stored on processor cache which is far quicker to access, meaning that
per-processor execution time is greatly reduced and super-linear scaling can be observed.

To validate this effect is not specific to HECToR, we have performed a replica experiment
on ARCHER, the successor to HECToR. ARCHER is a Cray XC30 system, with each node
possessing two 2.7 GHz 12-core E5-2697v2 processors, with an improved interconnect.
Figure 5 shows that a similar and indeed more exaggerated behaviour occurs when scaling
up to 128 nodes (3072 cores).

The main observation that can be drawn from Figs. 4 and 5 however is that the HDG
method generally outperforms the CG method in terms of strong scalability. We note that for
the intercostal mesh, the average vertex valency is 12 and maximum valency 44. When the

123

J Sci Comput

0 500 1000 1500 2000 2500 3000 3500

Nproc

0

20

40

60

80

100

120

140

160

180

Sp
ee
du

p

P = 9, CG

P = 8, HDG

Ideal

Fig. 5 Strong scaling of time-dependent diffusion problem between 24 and 4096 processors at polynomial
order P = 9 for both CG and HDG (right) on a unstructured mesh of a rabbit aorta intercostal pair (left)

number of elements per core is low, CG communication patterns are therefore significantly
complex. The results here go some way to demonstrating that the simplified communication
patterns of the HDG method can lead to a more efficient implementation when considering
per-iteration timings.

To demonstrate the scalability of each method at lower polynomial orders we consider
the same series simulation but now performed for the full rabbit aortic arch. In this case,
communication patterns will be significantly more complex due to the larger mesh size. We
therefore consider only results obtained from ARCHER as this has the a faster interconnect.
In Fig. 6 we see that a similar picture of scalability occurs for this mesh as well, although
due to the higher communication costs, the super-linear effect is far less pronounced.

5.5.3 Summary of Parallel Results

Overall we may conclude that in parallel, the HDG and CG methods observe similar or
slightly higher execution times per iteration, but only if HDG postprocessing is utilised.
However, we note that in general the number of iterations that is taken to converge to the
solution in the PCG method is higher for HDG than CG. However, with a better precondi-
tioning strategy, we may expect that iteration counts for both methods can be reduced. We
note that in terms of strong scaling, HDG has some benefits over CG where the commu-
nication cost is high—either from a low number of elements per process at high order,
or a large number of unstructured tetrahedra per process at low order. Furthermore we
note that many common CG preconditioning strategies rely on the solution of the coarse
linear space at each iteration of the PCG algorithm, particularly when solving Poisson-
type problems occuring in for example CFD applications, which further hinder strong
scaling of the method [22]. If HDG preconditioning strategies can be developed which
avoid this then the difference in scalability for real-world flow problems may be far more
pronounced.

123

J Sci Comput

0 500 1000 1500 2000 2500 3000 3500
Nproc

0

20

40

60

80

100

120

140

160

Sp
ee
du
p

P = 4, CG

P = 4, HDG

Ideal

Fig. 6 Strong scaling of time-dependent diffusion problem between 1 and 128 processors at polynomial order
P = 4 for both CG and HDG (right) on a unstructured mesh of a rabbit aortic arch (left)

6 Conclusions

In this paper, we have presented a comprehensive overview of the performance properties of
both statically-condensed CG and HDG methods both in serial and in parallel with different
solver strategies, and across a range of test problems which have been deliberately chosen to
indicate performance in a variety of theoretically interesting and practically relevant prob-
lems. The field of potential categories and problem types one may use for numerical method
comparison is vast and by no means does this work claim to cover them all. However, where
the problem of interest is time-dependent and does not involve the reconstruction of matrix
systems, or elliptic and within scope of direct solvers, this work gives a good indication as
to how each method will perform.

The results demonstrate that in serial execution where direct solvers are used, HDG either
outperforms or exhibits extremely similar execution times as the CGmethod. For steady-state
elliptic problems, HDG outperforms CG at anywhere between polynomial orders one and
three, with the time taken to generate matrices, solve the elliptic problem and produce the
solution field ranging between 25 and 90% of the equivalent CG runtime, depending on the
choice of solver and element type. For the unsteady diffusion problem, whilst this difference
is less pronounced if multi-level static condensation is used, HDG is still able to provide an
equivalent performance level to the CG method. We note that in these problems, the local
postprocessing method which allows one to obtain a superconverged solution field is crucial
in allowing the HDG method to perform far better than the CG method.

On the other hand, when an iterative solver is used to invert the matrix system, the HDG
method can struggle to attain the same performance level as CG. In this case the use of post-

123

J Sci Comput

processing is essential for the HDGmethod to exhibit equivalent performance characteristics.
This arises from the difference in size between local boundary matrices for the methods, so
that the action of thematrix operator becomesmore expensive in the case of theHDGmethod.
Indeed, even when postprocessing is used, in the HDG formulation some elements such as
the tetrahedron still have larger boundary matrices and thus increased execution times. When
the iterative solver is applied in parallel we therefore see similar execution times to the CG
method. In parallel, where an iterative solver is the preferred choice, this therefore has the
consequence of reduced performance and HDG methods have little advantage over their CG
counterparts. One exception to this however is in problems where very few elements are
stored per process, where communication costs are higher and the simplified communication
patterns present in the HDG formulation can offer better scalability in comparison to CG.

One should keep in mind that the conclusions regarding the comparative performance of
two methods when iterative solver is used are based on the per-iteration time data. If one
considers the time it takes to solve the linear system using an iterative solver, the CG method
is clearly ahead of theHDGmethod in terms of the number of iterations it requires to converge
to a solution. This clearly points to the fact that the development of good preconditioning
strategies for the HDG method is one of the stepping stones on the way to its competitive
parallel performance.

Acknowledgments The work was supported by the Department of Energy (DOE NETL DE-EE004449)
and under NSF OCI-1148291. DM acknowledges support from the EU FP7 project IDIHOM under Grant
No. 265780. SJS additionally acknowledges Royal Academy of Engineering support under their research chair
scheme.

References

1. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods
for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

3. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., de Grazia, D., Yakovlev,
S., Lombard, J.-E., Ekelschot, D., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C.,
Kirby, R.M., Sherwin, S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys.
Commun. 192, 205–219 (2015)

4. Celiker, F., Cockburn, B., Shi, K.: Hybridizable discontinuous Galerkin methods for Timoshenko beams.
J. Sci. Comput. 44(1), 1–37 (2010)

5. Celiker, F., Cockburn, B., Shi, K.: A projection-based error analysis of HDG methods for Timoshenko
beams. Math. Comput. 81, 277 (2012)

6. Cesmelioglu, A., Cockburn, B., Nguyen, N.C., Peraire, J.: Analysis of HDGmethods for Oseen equations.
J. Sci. Comput. 55(2), 392–431 (2013)

7. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations.
Part I: general nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012)

8. Chevalier, C., Pellegrini, F.: PT-scotch: a tool for efficient parallel graph ordering. Parallel Comput. 34(6),
318–331 (2008)

9. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-Hybridizable Galerkin method for second-
order elliptic problems. Math. Comput. 77(264), 1887–1916 (2007)

10. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order
elliptic problems. Math. Comput. 78, 1–24 (2009)

11. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

12. Cockburn, B., Cui, J.: Divergence-free HDG methods for the vorticity-velocity formulation of the stokes
problem. J. Sci. Comput. 52(1), 256–270 (2012)

123

J Sci Comput

13. Cockburn, B.,Dong,B.,Guzmán, J., Restelli,M., Sacco, Riccardo:Ahybridizable discontinuousGalerkin
method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846
(2009)

14. Cockburn, B., Dubois, O., Gopalakrishnan, J., Tan, S.: Multigrid for an HDG method. IMA J. Numer.
Anal. 34(4), 1386–1425 (2014)

15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed,
and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–
1365 (2009)

16. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDGmethods. Math.
Comput. 79(271), 1351–1367 (2010)

17. Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDGmethods for Stokes flow. J. Sci. Comput.
45(1–3), 215–237 (2010)

18. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order
elliptic problems. Math. Comput. 81, 279 (2012)

19. Cockburn, B., Shi, K.: Conditions for superconvergence of HDGmethods for Stokes flow.Math. Comput.
82, 282 (2013)

20. Demmel, J.W., Heath, M.T., Van Der Vorst, H.A.: Parallel numerical linear algebra. Acta Numer. 2,
111–197 (1993)

21. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)
22. Grinberg, L., Pekurovsky, D., Sherwin, S.J., Karniadakis, G.E.: Parallel performance of the coarse space

linear vertex solver and low energy basis preconditioner for spectral/hp elements. Parallel Comput. 35(5),
284–304 (2009)

23. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, 2nd edn. Springer, New York (1991)

24. Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and
discontinuous galerkin methods. Int. J. Numer. Meth. Eng. 96(9), 529–560 (2013)

25. Hughes, T.J.R.: TheFinite ElementMethod: Linear Static andDynamic Finite ElementAnalysis. Prentice-
Hall, Englewood Cliffs (1987)

26. Jaust, A., Schuetz, J., Woopen, M.: A hybridyzed discontinuous galerkin method for unsteady flows with
Shock-Capturing. In: 44th AIAA Fluid Dynamics Conference, AIAA Aviation. American Institute of
Aeronautics and Astronautics (2014)

27. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–
Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)

28. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. OXFORD University
Press, Oxford (2005)

29. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput. 20(1), 359–392 (1999)

30. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1),
183–212 (2012)

31. Lange, M., Gorman, G., Weiland, M., Mitchell, L., Southern, J.: Achieving efficient strong scaling with
PETSc using hybrid MPI/OpenMP optimisation. In: Supercomputing, pp. 97–108. Springer, New York
(2013)

32. Lanteri, S., Perrussel, R.: An implicit hybridized discontinuous Galerkin method for time-domain
Maxwell’s equations. Rapport de recherche RR-7578, INRIA, (March 2011)

33. Li, L., Lanteri, S., Perrussel, R.: A hybridizable discontinuous Galerkin method for solving 3D time-
harmonic Maxwells equations. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban, A.N.,
Levesley, Jeremy, Tretyakov,Michael V. (eds.) NumericalMathematics andAdvancedApplications 2011,
pp. 119–128. Springer, Berlin (2013)

34. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin
method for linear convection diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

35. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin
method for nonlinear convection diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

36. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-
harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)

37. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin
method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

38. Persson, P.-O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations
of the Navier–Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)

39. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompress-
ible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012)

123

J Sci Comput

40. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space-time discontinuous Galerkin method for the
incompressible Navier–Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

41. Roca, X., Nguyen, N.C., Peraire, J.: Scalable parallelization of the hybridized discontinuous galerkin
method for compressible flow. In: 21st AIAA Computational Fluid Dynamics Conference (2013)

42. Sherwin, S.J.: Hierarchical hp finite elements in hybrid domains. Finite Elment Anal. Design 27, 109
(1997)

43. Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order (hp) finite element
methods. Int. J. Numer. Meth. Eng. 38(22), 3775–3802 (1995)

44. Sherwin, S.J., Casarin, M.: Low-energy basis preconditioning for elliptic substructured solvers based on
unstructured spectral/hp element discretization. J. Comput. Phys. 171(1), 394–417 (2001)

45. Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear
elasticity. Int. J. Numer. Meth. Eng. 80(8), 1058–1092 (2009)

46. Tufo, H.M., Fischer, P.F.: Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput.
61(2), 151–177 (2001)

47. Vos, P.: From h to p efficiently: optimising the implementation of spectral/hp element methods. PhD
thesis, Imperial College London (2011)

48. Vos, P.E.J., Sherwin, S.J., Kirby, R.M.: From h to p efficiently: implementing finite and spectral/hp
element methods to achieve optimal performance for low- and high-order discretisations. J. Comput.
Phys. 229(13), 5161–5181 (2010)

49. Woopen, M., Ludescher, T., May, G.: A hybridyzed discontinuous Galerkin method for turbulent com-
pressible flow. In: 44th AIAA Fluid Dynamics Conference, AIAA Aviation. American Institute of
Aeronautics and Astronautics (2014)

50. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Fluid Mechanics, vol. 3, 5th edn.
Butterworth-Heinemann, Oxford (2000)

51. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2, 5th edn.
Butterworth-Heinemann, Oxford (2000)

52. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: The Basis, vol. 1, 5th edn. Butterworth-
Heinemann, Oxford (2000)

123

	To CG or to HDG: A Comparative Study in 3D
	Abstract
	1 Introduction
	2 Domain Partitioning, Finite Element Spaces and Polynomial Expansions
	2.1 Partitioning of the Domain
	2.2 The Finite Element Spaces
	2.3 Elemental Polynomial Expansion Bases

	3 The CG and HDG Methods
	3.1 Local Problems
	3.1.1 The CG Method
	3.1.2 The HDG Method

	3.2 Global Formulation
	3.2.1 The CG Method
	3.2.2 The HDG Method

	3.3 The HDG Postprocessing

	4 Parallel Implementation
	4.1 Parallelisation Strategy

	5 Numerical Results
	5.1 Postprocessing, Errors and Convergence Orders
	5.2 Serial Performance
	5.3 Unsteady Diffusion Equation
	5.4 Iterative Linear System Solver
	5.5 Parallel Performance
	5.5.1 Weak Scaling
	5.5.2 Strong Scaling
	5.5.3 Summary of Parallel Results

	6 Conclusions
	Acknowledgments
	References

