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Evaluating Alignment of Shapes by Ensemble
Visualization

Mukund Raj, Mahsa Mirzargar, J. Samuel Preston, Robert M. Kirby, Ross T. Whitaker

Abstract—The visualization of variability in surfaces embedded
in 3D, which is a type of ensemble uncertainty visualization,
provides a means of understanding the underlying distribution
of a collection or ensemble of surfaces. Although ensemble
visualization for isosurfaces has been described in the literature,
we conduct an expert-based evaluation of various ensemble visu-
alization techniques in a particular medical imaging application:
the construction of atlases or templates from a population of
images. In this work, we extend contour boxplot to 3D, allowing
us to evaluate it against an enumeration-style visualization of the
ensemble members and other conventional visualizations used
by atlas builders, namely examining the atlas image and the
corresponding images/data provided as part of the construction
process. We present feedback from domain experts on the efficacy
of contour boxplot compared to other modalities when used as
part of the atlas construction and analysis stages of their work.

I. INTRODUCTION

As computational tools for simulation and data analysis have
matured, researchers, scientists, and analysts have become
interested in understanding not only the deterministic output
of these tools, but also the uncertainty associated with their
computations and/or data collection. Consequently, there is an
increasing interest in uncertainty quantification (UQ) as an in-
tegrated part of simulation and data science in a wide variety of
science and engineering disciplines. UQ views the simulation
and data science pipelines as a random process containing
possibly both epistemic (i.e., reducible) and aleatoric (i.e.,
by chance) uncertainty. Quantification efforts in this random
process are divided into roughly two categories: (1) efforts
to understand the uncertainty and/or variability of the process
through examination of instances (samples) of the process; and
(2) efforts to determine models (e.g., probability theory) that
capture the nature of the process. The first of these categories,
and the focus of this study, utilizes an ensemble of solutions
meant to capture the inherent variability or uncertainty in a
computational or data science pipeline. Although we assume
that the variability seen in the ensemble can be attributed
to some condition or property of the generating process,
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we do not assume that articulation of the process via a
mathematical model is straightforward, and hence we have
only the ensemble members themselves to gain insight into
the originating process.

Studying an ensemble in terms of the variability or dis-
persion between ensemble members can provide useful in-
formation and insight about the underlying distribution of
possible outcomes. Correspondingly, ensemble visualization
can be a powerful way to study this variability; however, a key
challenge here is to be able to convey the variability among
ensemble members while preserving the main features they
share. Preservation of these features is particularly challenging
in cases where the ensemble members are not fields over
which statistical operations such as mean and variance are
well-defined, but instead are derived or extracted features such
as isosurfaces.

In this article, we examine the effectiveness of the contour
boxplot technique [1], a descriptive summary analysis and vi-
sualization methodology, in the context of a particular medical
data science application: brain atlas construction and analysis.
We conducted an expert-based evaluation of the visualization
of ensembles generated through the alignment of shapes using
the deformation of images in the construction of atlases (or
templates) for brain image analysis. To accomplish this eval-
uation, we constructed a prototype system for visualizing and
interacting with ensembles of 3D isosurfaces through a combi-
nation of 3D rendering (isocontouring) and cut-planes (slices
through 3D volumetric fields). In addition, we generalized the
algorithm in [1] to three dimensions as a direct extension of
their analysis of isocontours to isosurfaces – that is, from
co-dimension one objects embedded in 2D to co-dimension
one objects embedded in 3D. This generalization allows us to
compare contour boxplot summaries of an ensemble to both
full enumeration of the ensemble as well as other traditional
means of atlas evaluation (e.g., qualitative visual inspection
of slices of the atlas image or individual volumetric images
used for construction of the atlas). We employ this system
to explore, in collaboration with domain experts, the efficacy
of using ensemble visualization techniques for evaluating 3D
shape alignment of brain MRI images.

The purpose of this paper is to study and evaluate the use
of contour boxplots in a real-world data science application,
the alignment of 3D shapes or surfaces in a population-based
ensemble. Our hypothesis is that the contour boxplot will
allow users to summarize their data in a meaningful way
that allows either better or more efficient (faster) assessment
of the atlas construction as compared to explicit enumera-
tion of the ensemble (i.e., looking at each member image
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individually) or through more coarse-grained characterizations
such as examination of the average intensity image or label
(segmentation) probability maps. As our evaluation results will
show, the contour boxplot methodology has the potential to
significantly benefit the application under study by providing
a visualization of the quantitative summaries of the ensemble.
Although we have formulated our hypothesis in the context
of a particular application, we believe that our evaluation
may provide insight into other arenas where visualization and
analysis of ensembles of shape is desired. Examples of such
applications will be discussed in the conclusion section.

To begin, we give a brief introduction to the process of brain
atlas construction and the evaluation process used by domain
experts.

A. Brain Atlas Construction

Construction of an anatomical atlas for a collection of brain
images is an important problem in medical image analysis.
The goal of various atlas construction schemes is to construct
a statistical representative image and associated set of coordi-
nate transformations (i.e., deformations) from an ensemble of
images [2]. Anatomical atlases provide a common coordinate
system (atlas space) in which to define reference locations
of brain structures. As part of the atlas construction process,
nonlinear registration techniques generate deformations that
can map the anatomies in an individual image to the atlas
space (see Figure 1). The atlas construction process jointly
estimates a representative image defining the atlas space (the
atlas image) and the deformations aligning individual images
to this atlas image (i.e., mapping the image individually to the
atlas space). The atlas image generated by these techniques
then represents the average (or normal) anatomy of this popu-
lation. Such atlases help domain experts characterize expected
anatomical structure and variability of a population and com-
pare different populations in terms of their group atlases (for
example, healthy and unhealthy groups). Differences in the
atlas anatomy can be identified both qualitatively by inspecting
unaligned structures (when mapped to the atlas space) and
quantitatively by analyzing the deformations, quantifying the
amount of change necessary to bring individual ensemble
member into alignment.

Atlas generation is an automated process, but it is not
parameter-free, and the choice of parameters can greatly influ-
ence the quality of the result. In particular, nonlinear deforma-
tions computed for medical image registration are a tradeoff
between image matching and plausible deformations. For ex-
ample, the deformation should not result in the elimination of
anatomical features or noninvertible transformations. Hence,
the deformation is often controlled by tuning parameters to
find a compromise between the mismatch between images
and the regularity (e.g., smoothness) of the transformation.
Due to the regularization of the deformations and the inherent
anatomical differences between ensemble members, not all
features will be perfectly aligned. This imperfect alignment
is manifested as blurring in the atlas image where there
is disagreement regarding voxel intensity among ensemble
members when mapped to the atlas space.

Correct tuning of the regularization parameters allows the
deformations to account for as much anatomical variability
as possible by correctly aligning the corresponding anatomy,
and not simply matching similar intensities. This alignment of
corresponding anatomy is essential for an atlas to be effective
in later statistical analysis of the population. Convergence of
the optimization can be easily checked, but the degree of
alignment of particular structures is analyzed qualitatively by
observing the amount of blurring in the atlas image and by
checking the alignment of each ensemble member (deformed
to atlas space) to the atlas image. The initial alignment is
often unsatisfactory, which results in an iterative process of
parameter tuning and rerunning the atlas generation process.

In addition, due to problems with image scans, extreme
variability among the ensemble members, or incorrect prepro-
cessing, it may not be possible to achieve reasonable alignment
to the atlas image for some set of outlier images. Identification
and removal of such images is often another part of the atlas
generation procedure. Automated measures of global image
alignment are available, but they do not give insight into why
or in which spatial regions particular ensemble members have
poor alignment. Depending on the proposed application of the
atlas, these insights may be pertinent to the decision to prune
or keep particular images (ensemble members).

This manual iteration of parameter tuning/pruning and atlas
generation eventually yields the final atlas to be used in
further analysis. There are two important points to be noted
about the final atlas image. The first is this representative
image/segmentation is not a member of the ensemble itself,
but rather an image/segmentation generated through statistical
operations on the deformation fields. That is to say, it is not a
member of the population that best represents the population,
but rather an attempt at statistically characterizing a represen-
tative image. Second, as noted above, the iterative process does
not guarantee that the resulting atlas image is crisp – that is,
that there are no blurry regions in the image. The ensemble
of images compared to the atlas image scenario is similar in
spirit to the feature-space averaging issue highlighted in [1];
the analogy is that the isosurface (e.g., segmentation) of the
average field is oftentimes not equivalent to a representative
of a set chosen from isosurfaces of the individual fields. As
per the rationale given in [1], the avoidance of feature-space
averaging is why we believe the contour boxplot methodology
provides a useful way to summarize the type of ensemble
data where analyzing feature-sets and their representatives is
important. Since the manual, qualitative evaluation of shape
alignment (as a result of image registration) is a challenging
task, quantifying the variability of the shape alignment and
visualizing this variability can facilitate the domain experts’
ability to effectively validate the atlas construction scheme.

In Section II, we introduce a prototype system that uses
various uncertainty visualization schemes to enhance the study
of variability in an ensemble of shapes. Before introducing our
prototype system, we first provide an overview of the data used
as well as a high-level description of our expert evaluation
study.
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Fig. 1. An atlas construction scheme involves deformation and registration of
all ensemble members to the atlas. The process of deformation and registration
of ensemble members is called transformation to the atlas coordinate system
or the atlas space.

B. Data Preprocessing for Atlases

The images analyzed in this article are 3D MRI images ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database [3]. Each brain image in our ensemble was
also provided with a corresponding label map volume with
various anatomical structures segmented and marked, with
each brain region having a unique integer value. In order to
analyze a specific structure within the brain anatomy, we used
the label assigned to that structure to select it and mask out the
remaining region in all members of the ensemble. The atlas
construction scheme we used is the unbiased diffeomorphic
atlas proposed by Joshi et al. [2], implemented as part of
an open source medical image atlas construction package
called AtlasWerks [4]. We constructed atlases from ensembles
of MRI images using different choices of parameters and/or
different ensembles (i.e., subject groups). In each case, after
constructing the atlas using the MRI images, the corresponding
label map images were transformed to the common (atlas)
coordinate space using deformation fields calculated during
the atlas construction process as described in Section I-A.
These transformed label maps were then passed as input
to the preprocessing pipeline (described in Section II) for
visualization. For a well-constructed atlas, we can expect the
anatomical structures in the brain to have a relatively small
amount of variability after being transformed to the atlas space.
We selected two anatomical structures in the brain expected
to pose different levels of difficulty during atlas construction,
namely the left ventricle and the cortex. The ventricle is often
considered as a very distinct structure (i.e., high contrast) in
the brain image and, therefore, can be expected to exhibit
good alignment among ensemble members in the atlas space
(if all goes well). The cortex was selected as an example of
an anatomical structure with a complex shape (see Figure 2),
a significant challenge for registration/alignment.

Fig. 2. Illustration of the cortex (green) and the ventricle (red). This image
shows the segmentation provided by the label map volume for a typical
ensemble member. The coarseness of the segmentation seen in this label map
is mitigated by smoothing for the final visualization.

C. Expert Evaluation Study Details

Domain experts use various open source or commercial
packages to visualize slices from individual volumetric images
or simply from the average of the aligned images, but to
the best of our knowledge, ours is the first attempt to study
the alignment of shapes in atlas construction using ensemble
visualization techniques. For our evaluation study, we had
access to a group of five domain experts who work with
atlases on a regular basis and who volunteered to participate
in our expert evaluation study. This group included graduate
students, staff researchers, and faculty who use atlases and
medical image ensembles in their research projects.

We asked the participants to explain their current methodol-
ogy for evaluating the atlas construction scheme as well as the
quality of the atlas in terms of being a representative of the
ensemble. As mentioned earlier, we learned that this process
is often performed qualitatively. A visual inspection is carried
out to ascertain whether the shapes of the anatomical structures
in the atlas space are realistic. Experts also mentioned that in
order for an atlas to be helpful for different medical imaging
applications such as segmentation of a specific structure in the
brain, they need the atlas image and the anatomical structures
therein to have sufficient contrast. For example, they expect
to see a crisp boundary (in terms of the average combined
image intensities) between gray and white matter in the brain.
Therefore, the sharpness of the boundaries of the anatomical
structures in the atlas image is another criterion examined
qualitatively to evaluate the alignment of the ensemble. These
qualitative evaluations are often performed on a subset of the
ensemble of images (in the atlas coordinate system), because
visualizing the entire ensemble results in too much clutter and
blurriness. Figure 3 shows a snapshot of a slice of the brain
atlas image used as a common (atlas) coordinate system to
register individual label maps from the ensemble.
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(a) Atlas image slice (b) An MRI image slice

Fig. 3. Illustration of the atlas image slice constructed using AtlasWerks [4].
The anatomical structures in the atlas image usually have lower contrast and
fuzzier edges as compared to an original MRI image. This fuzziness results
from performing averaging while constructing the atlas.

II. OUR VISUALIZATION PIPELINE

In this section, we discuss the visualization pipeline of
our prototype system. We first start with a brief summary
of various ensemble visualization strategies that we have
considered and incorporated into our prototype system. We
then provide an overview of the pipeline and our design
choices to mitigate the challenge of visualizing and rendering
an ensemble of 3D isosurfaces.

A. Ensemble Visualization Overview

Visualization is often data-driven, and therefore uncertainty
visualization schemes are typically designed to deal with
the type of data being visualized. For scientific data, users
are often interested in visualizing derived features of their
data, such as transition regions (or edges), critical points, or
isosurfaces (of volumetric data) and the uncertainty associated
with such feature sets. A thorough review of the rich literature
on uncertainty visualization is beyond the scope of the current
manuscript. However, interested readers can consult [5], [6]
for further details on recent advancements on this topic. The
focus here is visualization of isosurfaces in the context of
uncertain scalar fields, which has been studied somewhat
extensively. Most relevant to the application under study (i.e.,
atlas construction) is the visualization of uncertain isosurface
extracted from an ensemble of scalar fields.

Here we provide a brief summary of three classes of
popular techniques for visualization of uncertain isosurfaces
that are extracted from ensembles of scalar fields. These
techniques were chosen to represent the range of strategies for
representing an ensemble (as discussed in Section I)—namely,
(1) enumeration of all ensemble members, (2) visualization of
the statistical summaries induced from parametric uncertainty
modeling, and (3) descriptive nonparametric summaries:

1) Enumeration: A widely used approach for ensemble
visualization is the direct visualization of all ensemble
members. Direct visualization of ensembles has gained
significant interest in applications such as weather fore-
casting and hurricane prediction [7]. Ensemble-vis [8]
is an example of the data analysis tools designed to
visualize ensemble data. Ensemble-vis uses multiple

views of fields of interest to enhance the visual analysis
of ensembles. We incorporate direct visualization of 3D
ensemble members (see second column in Figure 5) by
rendering the curves formed by the region of intersection
of the codimension one isosurface of each ensemble
member with a cut plane. Note that as long as the
isosurface embedded in 3D is closed, closed curves
will be generated when the isosurface is sliced for
visualization purposes. We refer to this visualization as
a spaghetti plot. In order to facilitate the interpretation
of the individual ensemble members, each of these
curves has been rendered with distinct and random
colors. There are a variety of options for rendering the
enumeration of all 3D surfaces, including transparency,
but clutter is a significant challenge [7]. For this work,
we present the surfaces of the inner- and outermost
volumetric bands formed by all ensemble members.
User studies have suggested the effectiveness of direct
ensemble visualization techniques [7]. However, direct
visualization of the ensemble does not provide any
quantitative information about the data uncertainty, and
relies solely on the user for interpreting data.

2) Parametric Probabilistic Summaries: Many uncer-
tainty visualization schemes use probabilistic model-
ing to convey quantitative information regarding data
uncertainty. These techniques often rely on a certain
kind of statistical model such as multivariate normal
distributions. As a representative of such techniques, we
have chosen to consider the concept of level-crossing
probabilities (LCP) [9]. For visualization, we imple-
mented the 3D probabilistic marching cubes algo-
rithms (proposed based on LCP) [10] as part of our
initial visualization system. Probabilistic marching cubes
rely on approximating and visualizing the probability
map of the presence of the isosurface at each voxel
location. However, the use of parametric modeling can
limit the capability of this techniques. Approximating
the underlying distribution giving rise to the ensemble
and presenting the user with only aggregated quantities
of the inferred distribution can be misleading in some
applications. For instance, this approach can often hide
or distort structures that are readily apparent in the
ensemble.

3) Nonparametric Descriptive Summaries: An alterna-
tive strategy that relies on neither enumeration nor
parametric modeling of the underlying distribution is to
form descriptive statistics of an ensemble. Descriptive
statistics offer an ensemble visualization paradigm for
understanding or interpreting uncertainty from the struc-
ture of an ensemble. The notion of centrality is a natural
approach to understanding the structure of an ensemble.
Because an ensemble is an empirical description of
its distribution, some instances from an ensemble are
more central to the distribution, and therefore more
typical within the distribution. The notion of data depth
provides a formalism for characterizing how central a
sample is within an ensemble. Data depth provides a
natural generalization of rank statistics to multivariate
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data [11]. The univariate boxplot (or whisker plot) is
a conventional approach to visualize order statistics.
Boxplot visualizations provide a visual representation of
the main features of an ensemble, such as the most rep-
resentative member (i.e., the median), quartile intervals,
and potential outliers. The notation of data depth has
been generalized for ensembles of isocontours [1]. The
authors also propose contour boxplot as a visualization
technique to summarize robust and descriptive statistics
of ensembles of 2D isocontours [1]. In our system,
we algorithmically extend and implement the contour
boxplot analysis for isosurfaces embedded in 3D (see
Figure 5, first column) as an example of visualization
techniques based on nonparametric descriptive statistical
summaries of an ensemble.

In order to analyze the alignment, or lack thereof, of shapes
in an ensemble, we incorporated representative members of the
aforementioned ensemble visualization technique categories as
part of our prototype system.

B. Ensemble Visualization Prototype System

At a high level, our prototype system consists of two stages
(see Figure 4):

Fig. 4. Overview of prototype system designed for shape alignment
evaluation using ensemble visualization.

1) Data Preprocessing: When visualizing isosurfaces of
a binary 3D segmented image, it is often necessary to
perform smoothing to reduce aliasing artifacts and facil-
itate 3D rendering/shading. We perform this smoothing
in a two-step preprocessing stage. In the first step, the
binary partitioned image is antialiased using an itera-
tive relaxation process described in [12]. Next, a very
small amount of mesh smoothing is performed on the
isosurface mesh generated from the antialiased binary
image. All visualization preprocessing operations occur
on the 3D volume (and corresponding codimension one
isosurfaces) prior to cut-plane extraction.

2) Visualization: This stage includes some visualization
strategies to facilitate the perception and navigation
of the rendered 3D objects. In order to improve the
perception of shape in our application, we include in-
teractivity with renderings of 3D objects as part of the
visualization system. In our settings, the user is able
to rotate the object displayed on the screen using the

standard trackball interaction mechanism. The system
allows the user to select cutting planes, which clip a
portion of the volume displayed on the screen, to render
cross section views of surfaces embedded in 3D. The
user can also interactively orient and translate the cutting
plane. Additionally, the system provides the flexibility of
having one or multiple cutting planes and interactively
adjusting their position and orientation. The interface of
the system allows the user to interactively select various
features of interest for rendering in order to focus on
any particular feature of interest. For example, the user
can select specific ensemble members to be rendered
individually.

In the case of 3D contour boxplots, the analysis has been
performed on the 3D binary segmented volumetric data (in the
preprocessing stage), and the results are rendered interactively.
While the analysis has been performed on the volumetric data
leading to volumetric 50- and 100 percent bands, we render
the visualization of the statistical summaries only on chosen
cut planes to deal with the issue of occlusion. For instance, in
absence of a cut plane the 100 percent band entirely occludes
the median shape as well as the 50 percent band.

III. EVALUATION

In this section, we demonstrate the efficacy of using en-
semble visualization techniques to study the alignment of
MRI brain images during brain atlas construction by gath-
ering feedback as part of an expert evaluation study of the
proposed prototype system. We refer to our expert evaluators
as participants. All the visualizations presented were part of
the prototype system introduced in Section II. We described
the prototype system to the participants after a walk-through
presentation of the different ensemble visualization techniques.
The participants were able to interact with the system and
switch through the various visualization methods as explained
in Section II. For our study, we solicited their feedback on
the visualization of the two anatomical structure presented
below: the left ventricle and the cortical surface. We paid
particular attention to the participants’ comments concerning
the suitability of ensemble visualization for this application. A
summary of our interactions with the participants follows. We
start by describing three examples where useful insights into
the atlas data were gained by the participants on interacting
with the system.

In our first example, we focus on analyzing the variability
within an ensemble of different regions of brain ventricles
transformed to a common atlas space using the unbiased,
diffeomorphic approach in [2]. Ensemble visualization not
only helps general users identify regions that are either well
or poorly aligned, but also provides insight regarding whether
the variability is due to differences in shape, position, or both.

Figure 5 shows the three approaches to visualizing the
aligned ventricles for an ensemble of 34 brains. From the con-
tour boxplot in Figure 5a, one can immediately identify regions
of high variability such as Region A, which is highlighted in
the figure. In this specific region, most of the variability is
outside the 50 percent band, which means that less than half
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(a) 3D Contour Boxplot (b) Spaghetti Plot (c) 3D Average Intensity Image

Fig. 5. Three visualizations of ventricles from an ensemble containing 34 images from the ADNI dataset transformed to a common atlas space. Left: the
contour boxplot visualization in 3D, with 50 percent volumetric band dark purple, 100 percent band volume in light purple, median in yellow, and outliers
in red (on the cutting plane). Middle: direct visualization of the ensemble members (spaghetti plot). Right: 3D average intensity image.

the ensemble members contributed to this variability. Looking
at the spaghetti plot in Figure 5b, we see there are, in fact, only
two ensemble members that significantly differ from the other
members in Region A. These results show that the variability
is due to overall position as well as shape in this region. In
Region B (Figure 5a), we notice that the variability can be
attributed to significantly different shapes of the isocontours,
and that these shapes would not easily be aligned through
the smooth transformations in this atlas, and may require
parameter tuning to achieve alignment. By observing Region
C (Figures 5a–b), we see that the variability comes mostly
from the positions of the isocontours. Results in Region C also
show that no particular ensemble member is disproportionately
responsible for the variability—the width of the 50 percent
band is nearly that of the 100 percent band in this region, and
outliers align well with the median contour.

Finally, Region D (Figure 5a) demonstrates an area of very
low variability across the ensemble and provides an example of
good alignment of all the ventricles, which is confirmed by the
spaghetti plot in Figure 5b. Figure 5c shows a volume-rendered
3D version of the average intensity image for comparison. The
average intensity image is an essential part of the atlas, but it
does not provide the same insights for debugging the atlas in
a detailed way.

We also showed the participants volume renderings of level-
crossing probability values, as suggested in [10]. The partic-
ipants noted that the level-crossing probability visualization
shows almost the same information as the average intensity
image (Figure 5c), which is already used extensively during
atlas construction. They did not feel that further exploration of
this form of ensemble uncertainty visualization for evaluating
atlases would be useful, and therefore we did not include com-
prehensive results from level-crossing probability renderings in
this study.

The second example was chosen to evaluate whether en-
semble visualization can also provide insight into the overall
variability between the members of an ensemble of aligned
shapes. An understanding of the overall variability (as opposed
to local variability) is useful not only to understand how
well a particular atlas was constructed, but also to compare
different atlases. For this example, we have constructed three

atlases, each with an ensemble of size 30. The first atlas was
constructed with a high value of regularization (transformation
smoothing), λ = 1.0; a second atlas was constructed for the
same ensemble while using a low regularization value, λ = 1

9 ;
and a third atlas was constructed from a different ensem-
ble (i.e., subject group) with the regularization/smoothing at
λ = 1

9 .
Figure 6 shows slices of intensity atlases and contour

boxplot visualizations for each of the three cases (columns
from left to right). The first row presents a slice of the intensity
image for each atlas, and the second row demonstrates the
3D contour boxplot visualization of the cortical surfaces for
atlases corresponding to the intensity image above.

Using a high value for the regularization parameter enforces
high smoothness of the deformation fields, which in turn
makes it harder to arrive at a set of deformations that would
perfectly align all the individual images. The lack of alignment
leads to high variability between isosurfaces in the ensemble.
Such high variability is easily visible by looking at region E in
Figure 6d where the 50- and 100 percent bands are wider than
in the corresponding region of the atlas with low regularization
(Figure 6, middle column). Better image alignment when the
atlas is constructed with low regularization is also evident in
region E by comparing contours of the median and outlier
shapes rendered on the cut plane in Figures 6c and d. We see
that the median and the outlier shapes are poorly aligned for
images aligned with an atlas constructed with high regular-
ization (Figures 6, first column), while the alignment is much
better when the atlas is constructed with low regularization.

Finally, the third atlas (right column of Figure 6) in
this example demonstrates the effect of inherent variability
between the ensemble members (i.e., brain images) on the
atlas construction process. We see that in many regions of
Figure 6f, for instance in region F, the 100 percent band
is significantly wider than the 50 percent band, indicating
a significant spread in the distribution of surfaces, which is
different from the variability seen in the corresponding region
in Figure 6e, where both bands nearly overlap. Furthermore,
in the third atlas we see that the outlier is well aligned
with the median in some regions (see region G), but poorly
aligned in others (see region H). This example demonstrates
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Top: slices of average intensity atlases for ensembles of 30 brain images. Bottom: associated contour boxplot visualizations for cortical surfaces.
Left: atlas constructed with high regularization of deformation. Middle: atlas constructed with low regularization. Right: atlas with low regularization using a
different ensemble than in the other columns.

that shape/surface variability in atlases depends, in addition
to parameters of construction, on the inherent variability of
shapes in the ensemble. Thus, the contour boxplot, as part of
the atlas construction process, can help users tease apart these
different aspects of variability.

In addition to aiding in the understanding of the general
alignment of shapes in an ensemble, the contour boxplot is also
useful in conveying to the general user how well a particular
shape is aligned with respect to the rest of the ensemble.
Such knowledge is particularly useful in the case of outlier
shapes. Atlas construction is often an iterative process, and
identification of outlier images that do not align sufficiently
with the atlas is an important intermediate step in the process.
In the contour boxplot shown in Figure 7c, we see a single
outlier shape and its alignment relative to the ensemble. In
comparing this visualization with an average intensity image
of the left ventricle region Figure 7a, we see that an anomaly
in Region I (Figure7c) shows as a barely perceivable increase
in intensity in Figure 7a. A similar observation can be made
from the intensity image slice of the outlier member shown
in Figure 7b. However, the anomaly shows up clearly in the
contour boxplot, and because it is outside the 100 percent
band, we know that the degree of misalignment of this

shape is rare within the ensemble of ventricles. Region I
also demonstrates the challenges of assessing geometry in
3D, because distances between surfaces can be exaggerated
when viewing them on a single cut. However, interacting with
the visualization by moving and rotating the cut plane can
help verify the 3D shapes of rank statistics and the surface
geometries and separation distances.

In some cases, aligned shapes can differ in size from the
rest of the ensemble. For instance, Figure 7c shows that the
outlier ventricle is noticeably smaller than the median ventricle
in regions J and K, which is not the case in the region L.
This observation is not possible in the corresponding intensity
images. These size differences occur for several reasons. In
this example, for instance, the outlier ventricle may have
been different and irregular to begin with. Another reason
could be mislabeling of the ventricular region during the
segmentation process to generate the labels for that image.
Finally, the process of generating deformations during the
atlas construction might fail, leading to irregularities for an
ensemble member when mapped onto the atlas space. The
contour boxplot can provide information that can help the
user decide whether or not any particular outliers need to
be removed from the ensemble or if further investigation is
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(a) (b)

(c)

Fig. 7. Visualizations of left ventricles. Crosses mark the correspondence
between the images. (a) Left ventricle slice from an intensity image of the
atlas. (b) Left ventricle slice of an ensemble member identified as an outlier
by data depth analysis (c) Contour boxplot visualization of an ensemble of
34 ventricles in atlas space.

necessary to identify causes of possible misalignment.
At the conclusion of our study, we asked the participants

to comment about their experience with the system, including
the applicability of such a system if integrated into an atlas
construction software. They were also asked to compare the
ensemble visualizations to the evaluation techniques they cur-
rently use. As mentioned in Section I, the two main techniques
currently used for atlas evaluation are inspecting unaligned
structures (when mapped to atlas space) or analyzing the
deformations, quantifying the amount of change necessary to
bring individual ensemble member into alignment. Here we
summarize the observations of the participants in this study:

• The participants pointed out that being able to visu-
alize the extent of the variation among the ensemble
of aligned shapes in terms of quantitative percentile
information using the contour boxplot visualization was
helpful for comparing various atlas construction schemes
(or comparing atlases that were constructed from different
ensembles or parameter settings). They also mentioned
that the contour boxplot has the potential to help reduce
the time needed for the user of the atlas construction
software to gain insights regarding the quality of the atlas.

• The participants noted that state-of-the-art techniques
for evaluation/visualization of atlases provided limited
information about the variability that remained within an
ensemble after transforming it to atlas space. Deformation
and image match energies (quantities that are optimized
during registration of images in atlas construction) are not
able to provide insight into the geometric discrepancies
that are crucial to understanding atlas quality.

• The participants noted that the capability of the contour
boxplot to effectively locate and characterize different
types of variability was valuable in atlas construction.

• The participants pointed out that an automated and statis-
tically robust way of identifying and visualizing outliers
in an ensemble can play a major role in construction of
an atlas.

• The spaghetti plot was found to be helpful to view the
contours of specific ensemble members other than the
median or outliers.

• The participants noted that both the contour boxplot and
the spaghetti plot were able to convey important details
pertaining to the variability in an ensemble, whereas the
average intensities had limited utility because of their
general fuzziness.

We conclude this section by summarizing our findings
from this study and the interview process. The goal of the
application described in this manuscript is to evaluate the
alignment of 3D shapes, in particular the alignment of 3D
MRI images that have been transformed to a common atlas
space, using various ensemble visualization methods. It is
observed that the ensemble visualization methods are helpful
in characterizing the alignment of shapes, and furthermore,
provide insights that are useful in understanding the variability
in alignment. An understanding of the type or location of
the variability can be helpful in tuning parameters used in
atlas construction and/or removal of outliers to achieve better
alignment. We observed that the contour boxplot emerged as
a clear favorite of our participants. One of the salient features
of the contour boxplot that makes it distinct from the other
ensemble visualization approaches is its ability to convey an
aggregated result from the analysis of all regions of shapes
in the ensemble on any arbitrary cut plane. For example,
visualizing a slice of the intensity image, or contours on a
cut plane using the spaghetti plot, conveys the variability for
only the region intersecting the cut plane whereas a contour
boxplot visualization using the same cut plane also provides
information about the median and outlier contours that are
calculated from a global analysis of contours. The contour
boxplot, however, has a drawback in that it does not give
the user much information about specific ensemble members,
other than the median or the outliers. For such cases, the
spaghetti plot with interactivity that allows highlighting of
specific ensemble members can augment the contour boxplot
by providing more detail if the general user wishes to focus on
very specific anatomical areas or members of the ensemble.

IV. CONCLUSIONS

In this article, we introduce a new approach to study
alignment of shapes. We demonstrate the efficacy of using
the 3D contour boxplot ensemble visualization technique to
analyze shape alignment and variability in atlas construction
and analysis as a real-world application using a prototype
system. The system was evaluated by medical imaging experts
and researchers working with medical image atlases in an
expert evaluation study that was conducted to examine the
applicability of ensemble visualization for studying shape
alignment and variability. We find that providing the user with
both quantitative and qualitative visualization of variability can
yield better understanding of the main features of the ensemble
and the atlas construction quality.
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(a) (b)

Fig. 8. (a) Contour boxplot visualization for an ensemble of size 100 simulated HIV protein. Here, we see the median contour in yellow and the outlier
contours in red. (b) Contour boxplot visualization of the isosurface of pressure field of a fluid flow. The pressure is considered as a function of depth to
generate a 3D pressure volume. The median contour is drawn in yellow and the outlier contours are drawn in red.

Future work for our system in the context of the current
application includes refining the system in order to address
the suggestions provided by the participants, such as viewing
the specific structures in the context of the whole brain and
more interaction options. Furthermore, ensemble visualization
approaches discussed in this article can be integrated into an
atlas construction package in order to provide the users the
capability of interactively inspecting the shape alignments and
the variability among ensemble members after atlas construc-
tion. Motivated by the feedback from the participants, a more
comprehensive study is required to examine the applicability
of ensemble visualization to compare different atlas construc-
tion schemes.

In addition, studying shape variability has applications
in various branches of science. In molecular dynamics, re-
searchers study different types of molecular structures and
the shapes of their potential fields in solutions (which vary
stochastically) in order to understand, for instance, their bio-
chemical properties [13]. Scientists are also interested in the
evolution of the shape of molecules. For example, the surfaces
of 3D molecular chains are of significant interest for compar-
ison of various types of protein structures [13]. In Figure 8a,
the contour boxplot visualization of the surface of an ensemble
of simulated HIV molecules is shown. The ensemble members
underwent a Procrustes alignment (translation, rotation, scale)
using the positions of the underlying molecules. The potential
fields that form these contours are inherently smooth, and thus
there was no need for preprocessing of this volume data.

Another application where the study of shape variability
and alignment is of significant interest is fluid mechanics. In
fluid mechanics, when developing models of vortex behav-
ior, scientists oftentimes study the variability of the shape
of vortex structures among different simulations (e.g., using
slightly different parameter settings or boundary conditions)
to confirm that their observations are repeatable [14], rather
than a numerical artifact of a particular simulation.The center

of an eddy corresponds to low pressure values in the flow
and hence studying the pressure field of a fluid flow can help
detect the position of the eddies and regions of high vortices.
We have used the 2D incompressible Navier-Stokes solver as
part of the open source package Nektar++ [15] to generate an
ensemble of 28 fluid flow simulation runs. These simulations
have been designed for a steady fluid flowing past a cylindrical
obstacle. For each of the ensemble members, we randomly
perturbed the initial conditions such as inlet velocity and
Reynolds number. For this example, the pressure dependence
in the third dimension was computed analytically. The contour
boxplot visualization of the isosurfaces of the pressure volume
is shown in Figure 8b. There are many possible applications
beyond the ones showcased that could benefit from the contour
boxplot summary and visualization technique.
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