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SUMMARY

We present a computational method for solving the coupled problem of chemical transport in a fluid (blood)
with binding/unbinding of the chemical to/from cellular (platelet) surfaces in contact with the fluid, and with
transport of the chemical on the cellular surfaces. The overall framework is the augmented forcing point
method (AFM) (L. Yao and A.L. Fogelson, Simulations of chemical transport and reaction in a suspension
of cells I: An augmented forcing point method for the stationary case, IJNMF (2012) 69, 1736–52.) for
solving fluid-phase transport in a region outside of a collection of cells suspended in the fluid. We introduce
a novel radial basis function–finite difference (RBF-FD) method to solve reaction–diffusion equations on
the surface of each of a collection of 2D stationary platelets suspended in blood. Parametric RBFs are used
to represent the geometry of the platelets and give accurate geometric information needed for the RBF-
FD method. Symmetric Hermite-RBF interpolants are used for enforcing the boundary conditions on the
fluid-phase chemical concentration, and their use removes a significant limitation of the original AFM. The
efficacy of the new methods is shown through a series of numerical experiments; in particular, second-order
convergence for the coupled problem is demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider a stationary fluid in which there are a number of suspended objects on whose surfaces
chemical reactions may occur. Some of the chemicals may unbind from the surface of a particular
object, thus entering the fluid phase, and undergo diffusion in the fluid. This chemical may bind to
the surface of the same or different one of the suspended objects and, when bound, may diffuse on
the surface of the suspended object. At each point on the objects, the flux of the chemical to (from)
that surface should exactly balance the rate of consumption (production) of the chemical on that
surface. That is, there should be no flux of the chemical across the surfaces of the moving objects.
We wish to determine the surface density (amount/area) of the chemical bound at each point of the
suspended objects’ surfaces and determine the concentration of the chemical at points of the fluid
phase as well.

The specific situation we have in mind is intravascular blood clotting. The fluid is blood plasma,
and the objects are small blood cells called platelets, which normally circulate in the blood. During
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the clotting process, platelets can become activated, allowing them to stick to one another and to the
vascular wall. We have modeled this process (following Fogelson and Guy [1]) using the immersed
boundary (IB) method [2] to determine the coupled motion of the fluid and platelets. In these calcu-
lations, the no-slip condition holds on the platelet surfaces, that is, the velocity at each point of the
platelet matches that of the immediately adjacent fluid. The chemicals of interest in the current work
are those involved in conveying ‘activation’ signals between platelets [1] and those involved in the
coagulation enzyme network [3]. In brief, we seek to solve a diffusion–reaction equation for each
chemical on a platelet surface, where the reactions are coupled to diffusion equations in the blood
around the platelet. Appropriate boundary conditions are to be satisfied at all points of the surfaces
of the platelets (and external boundaries).

There are a variety of Cartesian grid methods that can be used to solve PDEs in the presence
of irregularly shaped objects within the domain. The widely used IB method introduced by Peskin
[4, 5] uses a discrete delta function to spread boundary forces from the IB surface to the fluid, and
then the discrete fluid dynamic equations are solved using a regular discretization on a rectangular
grid everywhere in the domain. The forcing methods introduced by Goldstein [6], Mohd-Yusof [7],
and Kim et al. [8] follow the idea of the IB method in using forces to represent objects embedded
in a flow but calculate the forces using feedback terms or numerical corrections to approximately
enforce boundary conditions. Fadlun [9] introduced direct forcing without modification of the sten-
cil; but, in the end, he applied the forcing in an implicit way by modifying the stencil at grid points
near the irregular boundaries. The immersed interface method of LeVeque and Li [10], the embed-
ded boundary method of Johansen and Collela [11], the sharp interface method of Udaykumar and
coworkers [12, 13], and the capacity function finite volume method of Calhoun and LeVeque [14]
all modify the stencil at grid points near the irregular surfaces. Because of the explicit inclusion of
the boundary conditions in the linear system, the methods with changed stencil often have better
accuracy and stability than the direct forcing methods, while the simpler grid and uniform stencils
of the latter make them easier to implement and allow use of fast solvers.

In the work that motivated this paper [15], a Cartesian grid method for the case in which there
was no flow and the platelets are stationary was presented. In addition, that work dealt with the
problem of solving pure reaction ODEs for the bound chemical densities on the platelet surfaces
that also provided the boundary conditions on the diffusing chemical concentrations in the fluid
around the platelets. This method was called the augmented direct forcing method; in this work,
we will refer to it as the augmented forcing method (AFM). This augmented forcing approach was
inspired by a similar idea for fluid–structure interaction introduced by Colonius and Taira [16] (see
also [17]). It was also shown that this formulation produces the same numerical results as the ghost
cell method (which explicitly modifies the stencil near irregular points) and is computationally more
efficient. However, that work only focused on the solution of simple ODEs on the platelet surfaces;
furthermore, the method designed in that work placed constraints on how close platelets could get
to one another relative to the background grid.

In this paper, we present a new numerical methodology for the simulation of reaction–diffusion
equations on 2D stationary platelets that are suspended in blood and for simulating diffusion of
chemical species in the blood based on boundary conditions derived from those reaction–diffusion
equations. This methodology consists of two components: a new method to solve reaction–diffusion
equations on curves (1D surfaces) using radial basis function generated finite differences (RBF-FDs)
and a version of the AFM (for the simulation of the fluid-phase diffusion equations) modified with
symmetric Hermite-RBF interpolation to enforce boundary conditions. We also utilize a previously
developed alternate representation for the platelets based on parametric RBF interpolation [18]. In
that work, it was found that normals computed using an RBF representation of the platelets (when
the platelets are oddly shaped or deformed) are far more accurate than the normals obtained from
the piecewise quadratic representation that is traditionally employed (e.g., [15]). As the accuracy of
normals can affect the enforcement of boundary conditions in the AFM, this new geometric model
for our platelets is an important part of our methodology.

The remainder of this paper is organized as follows. We first give a precise statement of the
problem we address, along with a description of two new models for chemistry on platelet surfaces
involving reaction–diffusion equations. Then we briefly describe the RBF parametric representation
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of the platelets developed in [18] and describe in detail our approach to the numerical approximation
of these new models, detailing our RBF-FD based approach to solving these equations. We go on
to describe our modifications to the AFM—specifically, our use of RBF-based symmetric Hermite
interpolation to enforce boundary conditions within that method. In Section 6, we explain how shape
parameters for the different RBF interpolants in this work were selected, and we describe a series of
experiments to test the behavior and convergence of our new methodology on separate and coupled
problems of platelet-surface and fluid-phase chemistry.

2. PROBLEM STATEMENT

Consider a 2D region � consisting of those points x D .x; y/ within the rectangle �0 that are
external to all of the non-overlapping subregions �i ; i D 1; : : : ; No (Figure 1). Let �i denote the
boundary of �i .

Let c.x; t / D c.x; y; t/ be a concentration field defined for x 2 � and t > 0. For each i , let
C b
i .X ; t / and C u

i .X ; t / be chemical density fields defined for each point X D .X; Y / 2 �i and
t > 0, representing the surface densities of occupied and unoccupied binding sites, respectively. We
will describe these quantities in greater detail later.

We assume that c.x; t / satisfies the inhomogeneous diffusion equation

@c

@t
D D�c C s; (1)

at each point x 2 �, and that it satisfies the boundary condition

�D
@c

@�
D konC

u
i c � koffC

b
i : (2)

at each point X 2 �i . In these equations, s is a specified source term, D is a diffusion coefficient,
kon and koff are second-order and first-order rate constants, respectively, and � is the unit normal to
�i pointing into the domain �. Initial data for c are given at all points of �.

For the surface densities C b
i and C u

i , we consider two variants of a reaction–diffusion model. For
model 1, we imagine that the density of binding sites C tot

i .X/ is a prescribed constant at each point
X on �i , and we assume that the density of occupied binding sites C b

i .X ; t /, which we also refer to
as the bound chemical density, satisfies

@C b
i

@t
D kon

�
C tot
i � C

b
i

�
cf � koffC

b
i CDs�XC

bbi (3)

Figure 1. Illustration of a rectangular domain and grid with irregular objects embedded.
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at each point X 2 �i . Here, cf is the value of the fluid-phase chemical concentration in the fluid
adjacent to X , Ds is the surface diffusion coefficient, and �X is the Laplace–Beltrami operator on
the surface.

In model 2, we instead consider a pair of coupled reaction–diffusion equations on each surface �i

@C b
i

@t
D konC

u
i cf � koffC

b
i CD

b
s�XC

b
i (4)

@C u
i

@t
D �konC

u
i cf C koffC

u
i CD

u
s�XC

u
i : (5)

Here, the quantity C u
i .X ; t / is the surface density of unoccupied binding sites at X 2 �i at time t ,

and Du
s is the surface diffusion coefficient for these sites. In this variant, all binding sites diffuse on

the surface, so the total density of binding sites atX ,C tot
i .X ; t / D C

b
i .X ; t /CC

u
i .X ; t /, can change

in time. The setup of model 2 is intended to better represent the biological fact that the binding
sites are proteins embedded in the platelet’s lipid membrane and that both occupied and unoccupied
proteins may diffuse. For both problems, initial data for C b

i and C u
i are given at all points on �i .

The surface chemistry and chemical transport are coupled to that in the fluid because of the
appearance of cf in the surface Equations (3) or (4) and (5), and because of the appearance of
C b
i and C u

i in the boundary conditions (2) for the fluid-phase chemical. (For problem 1, we set
C u
i D C

tot
i �C

b
i for each pointX 2 �i .) In our earlier work [15], only the reaction portions of these

equations were considered, that is, there was no surface diffusion, and the chemical surface densities
at different points were coupled only indirectly through the diffusion of fluid-phase chemicals.

3. GRID AND PLATELET GEOMETRY

In this section, we first introduce some terminology relevant to the rectangular Eulerian grid and
to the AFM. We then discuss our RBF-based parametric model for representing platelets, and the
advantages it offers over the commonly used alternatives.

3.1. Grid and boundary

We overlay a uniform Cartesian grid with spacing h over the domain of interest, �0. Let
.xi ; yj / D .ih; jh/ denote a point of the grid. We require c only within the domain � but nev-
ertheless define cij for all points of the mesh. Let tn D n�t be the current time, where �t is
the time step.

To simplify the exposition, we assume that there exists a single irregular object�1 with boundary
�1. We may now classify each grid point based on its relation to the irregular object. Grid points
in the domain � are called fluid points; a grid point that is covered by the object with at least one
neighboring grid point not covered by the object is called a forcing point; finally, the grid points
covered by the object that are not forcing points are called solid points. We also define boundary
points, which are points on the boundary of the object whose inward normal vectors pass through
forcing points; consequently, there are as many boundary points as there are forcing points. This
labeling process extends to the case when multiple irregular objects exist in the domain.

3.2. Geometric model for platelets

We now turn our attention to the representation of platelets. In the intended application, the dynamics
of the irregular objects and the fluid in which they are immersed will be described using the IB
method [5, 19, 20]. In [18], we presented a parametric RBF representation of the boundaries �i of
the platelets and showed that it was more accurate and less costly than the collection of techniques
used in the traditional IB method (using piecewise quadratics to compute normal vectors and using
finite-differences to compute forces).
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For the sake of clarity and readability, we reproduce our RBF parametric model here. The model
is based on explicit parametric representations of the platelets. As our target objects are platelets,
which in 2D models are nearly elliptical or circular, we use a polar parameterization. The modeling
problem can be thought of as an interpolation problem. With this paradigm in mind, we first present
our notation.

We represent a platelet surface at any time t parametrically by

X.�; t/ D .X.�; t/; Y.�; t//; (6)

where 0 6 � 6 2� is the parametric variable and X.0; t/ D X.2�; t/. We explicitly track a finite
set of Nd points X d

1.t/; : : : ;X
d
Nd
.t/, which we refer to as data sites. Here X d

j .t/ WD X.�j ; t /, j D
1; : : : ; Nd, and we refer to the parameter values �1; : : : ; �Nd as the data site nodes (or simply nodes).
We construct each component ofX by using a smooth parametric RBF interpolant of corresponding
coordinate of the data sites as discussed in detail later.

We use the interpolant and its derivatives at another set of prescribed sample points or sample
sites, which correspond to Ns parameter values: �e

1; : : : ; �
e
Ns

, which may be disjoint from the data
site nodes. We select these Ns parameter values to be equally spaced points between 0 and 2� .
Subsequently, we show how to form the interpolant, and how to evaluate the interpolant at sample
sites. For details on how to compute derivatives of the interpolant, see [18].

Here, we explain how to construct an RBF interpolant X.�; t/ using the data�
�1; X

d
1.t/

�
; : : : ;

�
�Nd ; X

d
Nd
.t/
�

; the construction of Y.�; t/ component follows in a similar man-
ner. Let �.r/ be a scalar-valued radial kernel, whose choice we discuss subsequently. Define
X.�; t/ by

X.�; t/ D

NdX
kD1

˛Xk �
�p

2 � 2 cos.� � �k/
�
: (7)

Note that the square-root term in Equation (7) is the Euclidean distance between the points on
the unit circle whose angular coordinates are � and �k . For the geometric modeling, we use the
multiquadric (MQ) radial kernel function, given explicitly by

MQ: �.r/ D
p
1C ."r/2; (8)

where " > 0 is called the shape parameter. To have X.�; t/ interpolate the given data, we require
that the coefficients ˛X

k
; k D 1; : : : ; Nd satisfy the following system of equations:

2
666664

� .r1;1/ � � � � .r1;Nd/

� .r2;1/ � � � � .r2;Nd/

:::
: : :

:::

� .rNd;1/ � � � � .rNd;Nd/

3
777775

„ ƒ‚ …
Arbf

2
6666664

˛X1

˛X2

:::

˛XNd

3
7777775

„ ƒ‚ …
ĘXd

D

2
6666664

Xd
1.t/

Xd
2.t/

:::

Xd
Nd
.t/

3
7777775

„ ƒ‚ …
EXd.t/

; (9)

where rj;k D
p
2 � 2 cos.�j � �k/. As rj;k D rk;j , the matrixArbf is symmetric. More importantly,

for the MQ kernels, Arbf is non-singular [21, 22].
We also define an evaluation matrix, B , which when multiplied by the coefficient vectors
ĘXd and ĘYd evaluates the coordinate interpolants at the set of Ns evaluation nodes, and thus
defines the spatial locations of the sample sites. The entries of this matrix are given by Bj;k Dr
2 � 2 cos

�
�e
j � �k

�
; j D 1; 2; : : : ; Ns; k D 1; 2; : : : ; Nd.
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We conclude this section by noting that the RBF method is preferable to other popular methods
such as Fourier-based methods or piecewise quadratics for modeling platelet-like shapes, as shown
in [18]. The RBF method is also more flexible in terms of parameterization of objects. For example,
if one were to find that a more general ellipse provided a better parameterization of the object than a
circle, then the RBF method can be naturally extended to this new parameterization. The only change
to Equation (7) would be to replace the distance measure in the argument of � with the appropriate
(Euclidean) distance measure on the target object for the parametrization. For an explanation on how
to compute quantities like normal vectors from the RBF model, see [18]. For a detailed study on the
eigenvalue stability of the RBF formulation on both periodic and non-periodic domains, see [23].

4. NUMERICAL SOLUTION OF REACTION–DIFFUSION MODELS FOR PLATELET
CHEMISTRY

In this section, we discuss our numerical method for simulating the two models presented in
Section 2, and our choices for approximating the different components of those models. Before we
proceed, it is useful to discuss our time-stepping scheme for the numerical solution to the coupled
problem presented in Section 2. As in [15], we use a fractional-step approach in which during each
time step we first update the surface densities C b

i and C u
i for each platelet i using known values of

the fluid-phase concentrations to determine the values of cf in Equation (3) or Equations (4)–(5).
Then, using the new as well as older surface densities in the boundary conditions (2), we update the
fluid-phase concentration by solving Equation (1). Hence, in describing how we advance each of
the surface densities or fluid-phase concentration, we regard the other as known.

In order to obtain the numerical solution of the PDEs of models 1 and 2, several components are
required. An approximation of the local fluid-phase chemical concentration cf must be obtained at
each sample site; then, an approximation to the surface Laplacian must be computed; finally, stable
and efficient time-stepping schemes must be selected to advance the solutions in time.

4.1. Interpolating fluid-phase concentrations

In [15], moving least squares (MLS) was used in order to construct a smooth approximation to
cf using chemical concentrations from nearby patches of fluid points. This performed better than
an alternate approach with bivariate quadratic interpolation, which produced undesirable spatial
oscillations in C b. However, there are two potential issues with the use of MLS. First, it requires
the solution of several (small) linear systems [24], in this case constructed from the background
Eulerian grid; on a very fine grid, this cost may not be trivial. Second, if two platelets are very close
to one another, an insufficient number of fluid points may be available for the construction of the
MLS approximation to cf for each of those platelets.

Figure 2. Illustration of the bilinear interpolation stencil for a platelet.
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In order to avoid these potential issues, we use bilinear interpolation, as shown in Figure 2; our
reasoning is that bilinear interpolation has fewer degrees of freedom than bivariate quadratic inter-
polation while not requiring the solution of several linear systems, like MLS does. Our original
approach, which we modify somewhat later, is as follows: For each sample site, we first find the
Eulerian grid cell in the sample site lies. If all four corners of the cell are fluid points or forcing
points, we use bilinear interpolation of the physically meaningful concentrations at the corners to
the sample site. It is possible that one of the corner points is a solid point for which there is no phys-
ically meaningful concentration. In that case, we linearly interpolate concentrations from the other
three corner points to this fourth corner point.

When we used this approach, our experiments showed that the resulting interpolated chemical
concentration field cf was insufficiently smooth and that the overall accuracy was lower than we
expected. Therefore, we instead use this procedure to first interpolate grid concentrations to data
sites rather than sample sites. We then construct a parametric RBF interpolant of this data in the
manner described in Section 3. Lastly, we evaluate the RBF interpolant at the sample sites but with
a shape parameter value slightly smaller (by a factor of 0.99) than the value used to construct the
interpolant. The theory (and rationale) behind the procedure is described in detail in [25]; essentially,
this procedure is a smoothing operation where we interpolate the data with a basis function, and
then replace the basis function with a smoother basis function during evaluation. Figure 1 in [25]
shows this process with the MQ RBF, where increasing the parameter ‘c’ (equivalent to reducing
the shape parameter �geom in our work to some �eval) smoothes a noisy Lidar scan. Section 4 in [25]
explains why this is equivalent to using a low-pass filter on the interpolated data by writing out the
procedure in terms of convolutions against a smoother basis function. This procedure therefore gives
us a smoother concentration field cf at the sample sites. In our platelet applications, we use the same
parametrization for the platelets even when they are moving. This means that we can precompute the
RBF interpolation and evaluation operators and use them with a single matrix-vector multiplication
per platelet for each fluid-phase chemical species.

This interpolation method can be used even when two platelets are a single grid cell apart, which
is an improvement over the method presented in [15] that requires that platelets to be no closer than
two grid widths. This feature is required for physically relevant modeling of aggregation; in platelet
aggregation simulations, platelets may indeed be very close to one another when in an aggregate.

4.2. Approximating the surface Laplacian

Recently RBFs have been used to compute an approximation to the surface Laplacian in the context
of a pseudospectral method for reaction–diffusion equations on manifolds [26]. In that study, global
RBF interpolants were used to approximate the surface Laplacian at a set of ‘scattered’ nodes on a
given surface. To develop a less costly method that is still sufficiently accurate for our purposes, we
here use FD-style approximations based on RBFs for the surface Laplacian. These FD formulas are
generated from RBF interpolation over local sets of nodes on the surface. This type of method is
generally referred to as the RBF-FD method and is conceptually similar to the standard FD method
with the exception that the differentiation weights enforce the exact reproduction of derivatives of
shifts of RBFs (rather than derivatives of polynomials as is the case with the standard FD method)
on each local set of nodes being considered. This results in sparse matrices like in the standard
FD method, but with the added advantage that the RBF-FD method can naturally handle irregular
geometries. Thus, this is a technique well suited for simulating reaction–diffusion equations on
platelet surfaces within a platelet aggregation simulation, where they often deform significantly from
their initial discoid shapes. We note that the RBF-FD method has proven successful for a number
of other applications in planar domains in two and higher dimensions (e.g., [27–32]), and on the
surface of a sphere [33, 34], but note that this is the first application of the method to more general
1D surfaces (curves).

We elect to use Cartesian coordinates rather than surface-based coordinates to formulate the
surface Laplacian. This is not terribly important for 1D surfaces but very important for general-
izing our method to 2D surfaces in the future because a Cartesian-based formulation completely
avoids singularities that are associated with surface-based coordinates (e.g., the pole singularity in
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spherical coordinates). Additionally, the Cartesian-based formulation is quite suitable in the context
of approximation with RBFs [26]. Central to this formulation is the projection operator that takes
an arbitrary 2D vector field at a point X on the surface and projects it onto the tangent line to the
surface at X . Letting � D .	x ; 	y/ denote the unit normal vector to the surface at X (which in our
applications is obtained from the RBF parametric model of the platelets described in the previous
section), this operator is given by

P D I � ��T D
"
.1 � 	x	x/ �	x	y

�	x	y .1 � 	y	y/

#
D

"
pTx

pTy

#
; (10)

where I is the 2 � 2 identity matrix, and px and py represent the projection operators in the x
and y directions, respectively. We can combine P with the standard gradient operator in R2, r D�
@x @y

�T
, to define the surface gradient operator rX in Cartesian coordinates as

rX WD Pr D
�

px � r

py � r

	
D

� Gx
Gy

	
: (11)

Noting that �X D rX � rX , the surface Laplacian can then be written in Cartesian coordinates as

�X WD .Pr�/Pr D GxGx C GyGy : (12)

The approach we use to approximate the surface Laplacian mimics the formulation given in (12) and
is conceptually similar to that based on global RBFs given in [26]. It is worth noting at this point
that although the normal vector is obtained from the parametric representation of the platelet, one
could certainly use normal vectors derived from level set representations or, more generally, signed-
distance representations of the data sites. As the literature on computing normal vectors on point
clouds is fairly rich, we focus our attention on the exposition of the RBF-FD method, assuming that
we are given reasonably smooth normal vectors. The RBF-FD method we now describe is therefore
a Cartesian method that can easily handle non-parametrizable geometries.

Given a set of N nodes, we first construct discrete approximations to Gx and Gy using n-node
RBF-FD formulas (as explained subsequently). Letting Gx and Gy denote these respective dis-
crete approximations (or differentiation matrices), we then obtain the discrete approximation to the
surface Laplacian, L, using the matrix-products as follows:

L WD GxGx CGyGy :

This approach avoids the need to compute derivatives of the normal vectors of the surfaces but does
have the effect of doubling the bandwidth of the L compared to Gx and Gy .

We explain the RBF-FD method for approximating the Gx component of the surface gradient in
(11) as the procedure for Gy is similar. Without loss of generality, let the sample site where we wish
to approximate Gx be X s

1, and let X s
2; : : : ;X

s
n be the n� 1 nearest neighboring sample sites toX s

1.
Given samples of a scalar-valued function (say chemical density) C.X/ at these nodes, C1; : : : ; Cn,
the goal is to approximate GxC.X/ at X D X s

1 using a linear combination of these samples:

GxC.X/jXDX s
1
�

nX
iD1


iCi : (13)

In the RBF-FD method, the differentiation weights, 
i , are computed by enforcing that this linear
combination be exact for each of the RBFs

®
�
�
kX �X s

j k
�¯n
jD1

, that is,

nX
iD1


i�
�
kX i �X

s
j k
�
D Gx�

�
kX �X s

j k
�ˇ̌̌ˇ̌
XDX s

1

; (14)
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for j D 1; : : : ; n. Note that k � k is the standard two-norm (Euclidean distance) between nodes
on the surface and does not depend on any surface metrics (see [35] for a theoretical discussion
on using these types of RBF approximations on general surfaces). It has also been shown through
experience and studies [30, 33] that better accuracy is gained by additionally requiring that the
linear combination (13) be exact for a constant. Hence, we also impose the following constraint on
the weights 
i :

nX
iD1


i D Gx1
ˇ̌̌
ˇ̌
XDX s

1

D 0: (15)

The conditions (14) and (15) can be combined into the following linear system for determining the
RBF-FD weights 
i :

2
6664
�
�
kX s

1 �X
s
1k
�
� � � �

�
kX s

1 �X
s
nk
�
1

:::
: : :

:::
:::

�
�
kX s

n �X
s
1k
�
� � � �

�
kX s

n �X
s
nk
�
1

1 � � � 1 0

3
7775
2
6664


1
:::


n

nC1

3
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77775 ; (16)

where 
nC1 is a dummy value that is not actually used in RBF-FD approximation after this system
is solved.

The solution to (16) gives the weights for the first row of the RBF-FD differentiation matrix
Gx corresponding to X s

1. The weights for the second row corresponding to X s
2 are obtained by

finding the n � 1 nearest neighbors to X s
2 and solving an analogous system to (16). This pro-

cedure is repeated for determining the weights for the remaining rows of Gx corresponding to
sample sites X s

3; : : : ;X
s
Ns

. The differentiation matrix Gy is obtained using the same procedure but
with the operator Gx in (16) replaced with Gy . Note that each row of Gx and Gy contain only n
non-zero entries.

In all the numerical results presented in Section 6, we used the Gaussian RBF �.r/ D e�."r/
2

in
(16) for computing the RBF-FD weights and set n D 3. In the definition of �.r/, " is again called
the shape parameter. Provided it is positive and the sample sites are distinct, the linear system (16)
is guaranteed to be non-singular, which means the weights are unique. Although not presented here,
we did test other RBFs (such as the MQ and inverse MQ) but found that the Gaussian RBF generally
gave better results for the experiments we ran.

4.3. Solving reaction–diffusion equations of models 1 and 2

We use the discretization of the surface Laplacian just described with an implicit–explicit time-
stepping scheme, specifically the second-order accurate semi-implicit backward differentiation
formula (SBDF2) [36]. For model 1, Equation (3), this corresponds to the following discretization:


I �
2

3
�tDsL

�
C nC1 D

4

3

�
C n C�tkon

�
C tot � C n

�
cnf ��tkoffC

n
�

�
1

3

�
C n�1 C 2�tkon

�
C tot � C n�1

�
cn�1f � 2�tkoffC

n�1
�
;

(17)

where�t is the time step, and C nC1, C n, and C n�1 denote vectors containing values of the density
of unoccupied surface binding sites at the Ns sample sites and at time steps n C 1, n, and n � 1,
respectively. Note that (17) results in an Ns � Ns sparse system of equations to solve for C nC1. As
Ns is small, we opt to use a direct method to solve this system of equations, although an iterative
method such as BiCGSTAB could have also been used. We note that we bootstrap (17) with one
step of SBDF1 in the initial time step.
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The discretization for Equations (4)–(5) in model 2 is similar but contains a pair of coupled
equations. However, the implicit systems that result in these two equations are not coupled, because
the coupling is purely through the reaction terms, which are discretized explicitly in time.

5. RBF-HERMITE INTERPOLATION FOR THE AUGMENTED FORCING METHOD

The AFM was developed to solve the problem of simulating chemical diffusion for stationary fluid
and platelets, with the end goal of eventually simulating chemical transport for full platelet simula-
tions within the IB method [15]. In this section, we present our modifications to the AFM based on
RBF-Hermite interpolation.

Hermite (or more generally Hermite–Birkhoff) interpolation refers to the interpolation of data
and derivatives of the data. While there are a variety of methods for this task in 1D (e.g., global
polynomials or piecewise cubic polynomials), they often are difficult or impossible to generalize
to higher dimensions, especially when the data locations are non-uniform. For these problems, the
RBF-Hermite interpolation method [21, Chapter 36] offers a powerful solution that can be gen-
eralized to scattered nodes and various differential and integral constraints (e.g., see [30, 37]. In
this work, we apply the so-called symmetric RBF-Hermite interpolation to the problem of enforc-
ing boundary conditions on the fluid-phase chemical concentrations within the AFM, exploiting
the general nature of this formulation to overcome the separation constraints imposed by the AFM
on the irregular boundaries (platelets) and similar issues that can arise in handling concavities in
platelet shapes.

5.1. The augmented forcing method

The key idea of the AFM (as presented in [15]) is to solve a discrete PDE at all NT grid points,
except that at forcing points, the discrete PDE is modified by the addition of a forcing term that
enforces boundary conditions.

We discretize the PDE for fluid-phase chemical concentrations using the standard second-order
five-point stencil for the Laplacian in space and the second-order Crank–Nicolson scheme in time.
Let A be the matrix formed from the discretization of Equation (1) and r be the right-hand-side
vector from that discretization; let P be an NT � NF matrix that maps each forcing point index to
the index of the corresponding grid point in the overall ordering of the grid unknowns used in the
vector of chemical concentrations c, that is, all the entries of P are zero except for those locations
corresponding to forcing point locations, which are one. Let F be a vector whose NF entries contain
the forcing values. Let E be an NF � NT matrix that enforces boundary conditions as described
subsequently. Then, we require the solution of the following block system of equations:


A P

E 0

�

c
F

�nC1
D



r

rbc

�
: (18)

This system is solved in two stages.

� First, we find F by solving the Schur complement system of the aforementioned block system
using the BiCGSTAB iterative method. This system is as follows:

�EA�1PF D rbc �EA
�1r: (19)

� Having solved for F, we then solve for the chemical concentrations by solving Ac D r �
PF. We use a conjugate gradient solver preconditioned by the modified incomplete Cholesky
factorization of A.

In the AFM as implemented in [15], for each forcing point, the boundary condition at the cor-
responding boundary point (Section 3) and the concentrations at five nearby fluid points are used
to construct a bivariate quadratic interpolant that satisfies the boundary condition at the boundary
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point. A value of c at the forcing point is obtained by evaluating this polynomial at the forcing point.
As the fluid concentrations are still to be determined, this gives an implicit relationship between
the forcing point concentration and those at the five fluid points. This relationship is used to pop-
ulate one row of the matrix E. With this approach, if two platelets are close to one another or the
shape of the platelet is concave, there may not be a sufficient number of points necessary to per-
form this interpolation. In such a case, grid refinement is necessary to introduce sufficient spacing
between objects.

In the following sections, we present our methods for computing the prescribed boundary
conditions rbc and the matrix E that enforces those boundary conditions.

5.2. Computing rbc

Upon rearranging the boundary condition given in Equation (2), we obtain the equation

�D

@

@�
� konC

u

�
c D �koffC

b: (20)

We use this condition at each boundary point when updating the fluid-phase concentration cn to
cnC1. Because of our fractional-step approach to time stepping, values of C u and C b are known at
the needed times at the locations of the sample sites (for model 1, we set C u D C tot � C b). These
are used to compute values at the boundary points, as described subsequently, and so we can think
of them as known in Equation (20) and regard this equation as a Robin condition on cnC1. For later
reference, we define the Robin boundary condition operator by D D �D @

@�
� konC

u.
The right-hand side of Equation (20) describes the known boundary conditions on the fluid-phase

chemical concentration, and therefore, values of it at the boundary points define the vector rbc. It is
important to note that rbc is modified by the procedure to compute the matrix E. It is this modified
rbc that makes its way into the right-hand side of Equation (18).

As boundary conditions are enforced at boundary points in the AFM, we require values of C b and
C u at those points. There are many ways that this can be performed. For example, in [15], piece-
wise quadratic interpolants were fit to the concentrations at the IB points, and then evaluated at the
boundary points. However, in this work, we have two considerations when making this choice. First,
we would like the resulting concentration field to be smooth enough to ensure that the overall con-
vergence of our method is not affected. Second, we require that the interpolant (or more generally,
approximant) be efficient to compute and evaluate. This rules out directly interpolating concentra-
tions at the sample sites as the number of sample sites (Ns) is much greater than the number of data
sites (Nd) in our geometric model; it would be more efficient to construct an approximant that had
as many coefficients as the number of data sites. With these considerations in mind, we determined
that a parametric least-squares fit using the RBF geometric model, described subsequently, would
be a good choice.

Let EC D ŒC1; C2; : : : ; CNs �
T be a vector of function values at the sample sites, representing either

C u or C b values at those sites. Recall from Section 3 that B is an Ns � Nd RBF evaluation matrix.
When B is applied to the known vector of coefficients of an RBF interpolant of some quantity
defined at the data sites, we obtain values of that quantity at the sample sites. Here we use B in a
somewhat different way, as the coefficient matrix in a least-squares problem. We seekNd coefficients
Eg that minimize the quantity jjB Eg � EC jj22; that is, we seek the coefficients of the Nd-term RBF
expansion that best fits the Ns sample-site function values that are contained in EC . As the matrix B
depends only on the fixed parameter nodes of the data sites and sample sites, and not on their actual
spatial locations, it does not change in time. Thus we precompute QR decomposition of B re-use in
each time step to solve these least-squares problems.

Once we obtain the coefficients Eg, we evaluate the least-squares approximant at the boundary
points, giving us values of the chemical surface densities C u and C b at theNF boundary points. This
is performed by building an NF �Nd evaluation matrix, OB , and applying it to the coefficient vector
Eg. In the current paper, because the platelets are stationary, OB can be precomputed and reused every
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time step. In the more general problem where platelets are advected and deformed by a background
flow, OB must be recomputed every time step, because the parameter values corresponding to the
boundary points change as the platelets move relative to the background grid.

5.3. Enforcing boundary conditions with matrix E

We now introduce an alternative method for computing the interpolation matrix E, which we refer
to as Erbf. Our technique for enforcing boundary conditions is conceptually similar to the technique
used in the original AFM. However, there are some significant differences, illustrated in Figure 3.
For each forcing point, we now choose three, rather than five, nearby fluid points immediately
outside the boundary to use in constructing an interpolant that satisfies the boundary conditions.
Additionally, instead of using the boundary condition at a single boundary point, we now use the
boundary conditions at three boundary points in constructing our interpolant. These changes (in
conjunction with the bilinear interpolation scheme outlined in Section 3) allow platelets simulated
by our modified AFM to be as close as a grid cell width apart, something which the original AFM
does not allow.

Suppose we wish to impose Robin boundary conditions for c along �1 using the Robin boundary
operator D from the previous section. Let forcing point B have coordinates .xa; ya/, and let the
corresponding boundary point pa have coordinates .Xa; Ya/. As a prototypical example, consider
the layout of points in Figure 4. Here, pb and pc are the two boundary points closest to pa; and
p1, p2, and p3 are the three fluid points that are neighbors to the forcing point B. Let c1, c2, and
c3 be the chemical concentrations at those fluid points and recall that the boundary conditions are

Figure 3. The figure on the left shows the number of fluid points and boundary points used in the original
AFM. The figure on the right shows the number of fluid points and boundary points used within the

modified AFM.

Figure 4. Illustration of the symmetric Hermite-RBF interpolation stencil.
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known at pa and pb as at pc . We note that fluid points need not necessarily be chosen as shown in
Figures 3 and 4; our method only requires that the selected fluid points be close to the boundary of
the platelet.

We use the symmetric RBF-Hermite interpolation technique to obtain an expression for the
chemical concentration at each forcing point. In this approach, we construct interpolants of the
following form:

sB.p/ D

3X
iD1

ai�.kp�pik/C b1Dpa�.kp�pak/C b2Dpb�.kp�pbk/C b3Dpc�.kp�pck/;

(21)
where the boundary condition operator with subscripts is defined as

Dp��.kp � p�k/ WD D�.kp � xk/
ˇ̌
xDp�

; � D a; b; c;

that is, D acts on � as a function of the subscript variable put on D, with the other variable fixed.
The interpolation conditions are given as

sB.pj / D cj ; j D 1; 2; 3; (22)

DsB.p/jpDp� D D c.p/jpDp� D d�; � D a; b; c; (23)

where the chemical concentrations cj are unknown ones from the end of the current time step,
and the boundary conditions dj are known. These interpolation conditions can be written as the
following block 2 � 2 linear system of equations for determining the unknown coefficients, ai and
bi in (21)

"
G R

RT H

#
„ ƒ‚ …

VB

"
a

b

#
D

"
cB
dB

#nC1
; (24)

where a and b are vectors containing the unknown interpolation coefficients, cB and dB are vectors
containing the respective chemical concentration (22) and boundary condition data (23) for the
forcing point B, and the superscript nC 1 denotes that the values are given at the next time level.
The matrix blocks in this system are defined as follows:

G D

2
64
�.kp1 � p1k/ �.kp1 � p2k/ �.kp1 � p3k/

�.kp2 � p1k/ �.kp2 � p2k/ �.kp2 � p3k/

�.kp3 � p1k/ �.kp3 � p2k/ �.kp3 � p3k/

3
75 ; (25)

R D

2
64
Dpa�.kp1 � pak/ Dpb�.kp1 � pbk/ Dpc�.kp1 � pck/
Dpa�.kp2 � pak/ Dpb�.kp2 � pbk/ Dpc�.kp2 � pck/
Dpa�.kp3 � pak/ Dpb�.kp3 � pbk/ Dpc�.kp3 � pck/

3
75 ; (26)

and

H D

2
64
Dpa

�
Dpa�.kpa � pak/

�
Dpa

�
Dpb�.kpa � pbk/

�
Dpa

�
Dpc�.kpa � pck/

�
Dpb

�
Dpa�.kpb � pak/

�
Dpb

�
Dpb�.kpb � pbk/

�
Dpb

�
Dpc�.kpb � pck/

�
Dpc

�
Dpa�.kpc � pak/

�
Dpc

�
Dpb�.kpc � pbk/

�
Dpc

�
Dpc�.kpc � pck/

�
3
75 : (27)
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The matrices G and H are symmetric so that the composite matrix VB in (24) is symmetric.
Moreover, for our choice of � (again, the MQ RBF), the matrix is guaranteed to be non-singular
provided the nodes p1, p2, p3, and pa, pb , pc are distinct [21, Chapter 36]. Finally, we note that
in our numerical tests, VB is also well conditioned, thus allowing us to use not only very closely
spaced fluid points from a fine grid to perform the interpolation but also a low value for the shape
parameter associated with the MQ RBF. The goal is to use the interpolant (21) to construct the
matrix Erbf for enforcing boundary conditions on the interpolated chemical concentrations at the
forcing points at time level n C 1. This matrix has dimensions NF � NT, where NF is the number
of forcing points and NT is the total number of grid points, and serves the same purpose as E does
in the original AFM matrix (18). The entries of Erbf can be obtained from (21) as follows. First,
we express the interpolated chemical concentration at the forcing point B as a linear combination
of the chemical concentrations at the fluid grid points and the boundary conditions at the boundary
points. The former are unknown as they are specified at time n C 1, while the latter are known
(Section 5.2). The weights in this linear combination can be determined by noting that the value of
the interpolant (21) at the forcing point p D B can be written as

sB.B/ D SB

"
a

b

#
D SBV

�1
B„ ƒ‚ …

QB

"
cB
dB

#nC1
; (28)

where SB is the row vector

SB D

2
6666666664

� .kB � p1k/

� .kB � p2k/

� .kB � p3k/

Dpa�.kB � pak/
Dpb�.kB � pbk/
Dpc�.kB � pck/

3
7777777775

T

:

Thus,QB contains the weights for the linear combination of chemical concentrations and boundary
conditions. Letting cB WD sB.B/ and q1, q2, . . . , q6 denote the entries of QB , we next write this
linear combination as

q1c1 C q2c2 C q3c3 � cB D �q4da � q5db � q6dc ; (29)

where we have arranged the unknown values of the chemical concentration at time level nC 1 on
the left-hand side and the known values of the boundary conditions on the right-hand side.

The weights on the left-hand side of (29) constitute the entries in one row of the evaluation matrix
Erbf corresponding to the forcing point B. The columns for these entries correspond to the indices
of the matching grid points for B, p1, p2, and p3. Specifically, if B is the kth boundary point and
has lexicographic grid index j1, while p1 p2, and p3 have lexicographic indices j2, j3, and j4, then
the kth row of Erbf has non-zero entries

.Erbf/k;j1 D �1; .Erbf/k;j2 D �q1; .Erbf/k;j3 D �q2; and .Erbf/k;j4 D �q3:

Similarly, the vector of known boundary conditions rbc in (18) is populated with values from the
right-hand side of (29). Specifically,

.rbc/k D �q4da � q5db � q6dc ;

where da, db , and dc depend on the location of the boundary point B (Figure 4). Note that prior
to modification, .rbc/k had the value da, which was in turn determined according to the method
outlined in Section 5.2.
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The aforementioned procedure is repeated for each of the NF forcing points B. The resulting
matrix Erbf is clearly sparse, with at most four non-zero entries per row (the matrix E from [15] has
up to six non-zero entries per row). This procedure can be used to enforce Dirichlet and Neumann
boundary conditions as well. We note that the matrix Erbf serves the same function as the matrix E
mentioned in Section 5.1 and described in [15] but requires fewer fluid points in its construction. It
is thus far more flexible in handling geometric features of the immersed objects.

6. RESULTS

In this section, we present the results of the numerical experiments performed to analyze the effects
of the changes made to the AFM, as well as the results of experiments performed to analyze the
new method for the coupled problems proposed in this paper. We first comment on the selection
of the various shape parameters used in this work. Then, we analyze the properties of the RBF-FD
discretization scheme for solving pure diffusion equations on platelet surfaces. Next, we examine
the behavior of the modified AFM when using analytic boundary conditions (as opposed to deriving
boundary conditions from the reaction–diffusion equations on the irregular boundaries). Having
tested the convergence of the modified AFM with analytic boundary conditions, we examine the
effect of varying the distance between forcing points and boundary points on the accuracy of the
modified AFM. We then test the convergence of the combined method on two coupled problems,
where the boundary conditions for the AFM are derived from platelet surface reaction model 1.
Finally, we test the convergence of the combined method on a single coupled problem with boundary
conditions for the AFM derived from platelet surface reaction model 2. Throughout this section,
we compute absolute errors on the Cartesian grid and root mean squared errors on the surfaces
(as in [15]).

6.1. Selection of shape parameters

In this paper, we use RBFs in several contexts. Here, we list the shape parameters for each of those
RBFs and describe the process of obtaining those shape parameters.

1. Geometry: The RBF used for the geometric modeling of the platelets is a parametric inter-
polant. For the selection of the shape parameter for this RBF, we follow the results obtained in
[18]. For this paper, we set that shape parameter to "geom D 0:9.

2. Smoothing cf: We use "geom as the shape parameter for the parametric fit of cf at the data sites.
To evaluate the RBF interpolant at sample sites and also smooth it, we use "eval D 0:99"geom.

3. Surface Laplace–Beltrami operator: Local RBFs are used for computing the RBF-FD approx-
imation to the surface Laplace–Beltrami operator. For these RBFs, for all tests, the shape
parameter was set to "fd D 35. This choice was motivated, in part, by the desire to compen-
sate for irregular point spacings on some of the perturbed objects in the tests. We note that the
comparatively large value of "fd is due to the partial dependence of the PDE to the Cartesian
grid via the cf term, and also due to the fact that we are using the Gaussian RBF with small
node spacings for the interpolation.

4. Chemical densities on platelet surfaces: We once again use the parametric model, albeit for a
least-squares fit. We use the same value for the shape parameter as we do for the geometric
modeling.

5. Hermite interpolant: We set the shape parameter of all the RBF-Hermite interpolants (one for
each forcing point) to "herm D 5. We found that a wide range of values could be used for "herm

without adversely affecting the accuracy of the AFM.

6.2. Convergence of the RBF-FD solution of diffusion equations on a circle

We test the RBF-FD method for solving a pure diffusion equation on the surface of a platelet.
In order to test the effect of the geometric model on the solution of the diffusion equations on the
irregular boundaries by the RBF-FD method, we prescribe an initial chemical density C.�; 0/ D
.cos�C sin�/ on the unit circle with 0 6 � < 2� . For t > 0, the function C.�; t/ D e�t .cos�C
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Table I. The effect of geometric accuracy on the RBF-FD solution to the diffusion equation.

Number of sample sites (Ns) L2 error Order of convergence L1 error Order of convergence

50 2.0591e�03 2.9106e�03
100 5.0705e�04 2.02 7.1672e�04 2.02
200 1.2152e�04 2.06 1.7185e�04 2.06

The errors were measured against the exact solution at t D 2.

Table II. Results of a refinement study for the modified AFM.

Grid size �t L2 error Order of convergence L1 error Order of convergence

32 � 32 0.0050 9.0012e�07 3.3407e�06
64 � 64 0.0025 2.2716e�07 1.99 8.8616e�07 1.92
128 � 128 0.00125 5.2988e�08 2.10 2.0742e�07 2.10

The errors were measured against a solution computed on a 256 � 256 grid as a gold standard. The errors were
measured at t D 3.

sin�/ is then an exact solution to the diffusion equation on the circle when Ds D 1. We fix the
number of data sites to Nd D 50 and vary the number of sample sites. To test the errors in the
spatial discretization, we fix the time step at �t D 10�4. The test was run from t D 0 to t D 2.
The results of this test are shown in Table I. The results demonstrate that the RBF-FD solution
to the diffusion equation on a circle exhibits second-order convergence in the sample site spacing.
Similar experiments with irregularly spaced points around the circle (results not shown) show that
the convergence of the RBF-FD method gradually decreases to first order as the points become more
irregularly spaced. However, the method appears tolerant to mildly uneven point spacings, both on
the circle and on the test objects in coupled problems 2 and 3.

6.3. Convergence of the modified AFM

Table II shows the results of a refinement study conducted with the modified AFM. The solution
was taken to be c.x; y; t/ D sin.�x/ sin.�y/e��

2t . The initial chemical concentration was pre-
scribed using the values of this function at t D 0, and analytic boundary conditions were prescribed
by applying the boundary condition operator D to c. These boundary conditions were enforced at
boundary points on platelet surfaces in the modified AFM calculations, and, on the computational
domain boundary, the exact solution satisfies periodic boundary conditions in the x-direction and
Neumann boundary conditions in the y-direction (although our results were similar for Dirichlet
and Neumann boundary conditions as well). For our refinement study, we used the Robin boundary
condition operator D D �D @

@�
C 1 with a diffusion coefficient D D 0:1. Two objects were embed-

ded in the domain, a circle C1 and an ellipse E1. C1 has its center at (0.2,0.4) and a radius of 0.0995,
while E1 has its center at (0.8,0.4), a semi-major axis of length 0.15 and a semi-minor axis of length
0.1. We compare the solution on grids of several sizes to a solution computed on a 256 � 256 grid.
We also reduce the time step by half for each progressively finer grid. The test was run from t D 0
to t D 3. The results demonstrate that the modified AFM exhibits second-order convergence in both
space and time when analytic boundary conditions are prescribed.

6.4. Effect of location of forcing points on convergence of the modified AFM

We wished to test whether convergence of the modified AFM is sensitive to the distance between
the boundary of an irregular object and the forcing points on the grid. To accomplish this, we placed
an object that looks like a square with rounded corners in the center of the domain; technically,
this object is a superquadric and is shown in Figure 5. We generated the object parametrically
as follows:
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Figure 5. Illustration of the quadric object.

X D xc C r � sign.cos�/.pxj cos�j/m (30)

Y D yc C r � sign.sin�/.py j sin�j/m; (31)

where .xc ; yc/ D .0:5; 0:5/, m D 0:2, r D 0:0995, and 0 6 � < 2� . The test involved squeezing
the sides (or top and bottom) of the object in such a way that the boundary shifts between grid lines
without its actually crossing a grid line and thus causing generation of a new set of forcing points.
We accomplished this by varying the parameters px and py ; reducing px or py squeezes the object
along either the horizontal or the vertical, respectively, while increasing these parameters stretches
the object. For this test, we successively reduced either px or py from 1:1 to 0:7, with px D 1 and
py D 1 corresponding to the unchanged object.

We measure the error in approximating the manufactured solution to the test function c.x; y; t/ D
sin.�x/ sin.�y/e��

2t for these different values of px and py , and we plot the error as a function of
the minimum distance between the forcing points and the boundary. We use analytic normals and
sample sites locations for the rounded square so as to remove the effect of interpolation error. We
set D D 0:2 and perform our tests on a 64 � 64 grid with time step �t D 0:0025. The results are
shown in Figure 6. It is clear that the errors are unaffected by the distance between the boundary
and the forcing points.

6.5. Convergence on coupled problems for model 1

We next report on tests of the convergence of the modified AFM in conjunction with the RBF-
FD method on two coupled problems. In coupled problem 1, the boundary conditions at boundary
points for the modified AFM were obtained from the solution of reaction–diffusion equations on the
surfaces of platelets C1 and E1. The diffusion coefficient for the fluid-phase chemical concentrations
was set to D D 0:1 and that for the surface of the platelets was set to Ds D 1 for both platelets.
The reaction rates were set to kon D 0:2 and koff D 0:4 for C1, and to kon D 0:4 and koff D 0:2

for E1. The fluid-phase concentrations were initialized to c.x; y; 0/ D sin.�x/ sin.�y/, while the
platelet densities were initialized to C.�; 0/ D cos.�/, for 0 6 � < 2� for both C1 and E1. The test
was run from t D 0 to t D 3. Convergence was measured for both the fluid-phase concentrations
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Figure 6. Error in the manufactured solution (figure on the left is for varying px , and figure on the right
is for varying py) as a function of the minimum distance between a boundary point and its corresponding

forcing point.

Table III. Results of a refinement study for the modified AFM on coupled problem 1.

Number of sample Order of Order of
Grid size sites (Ns) �t L2 error convergence L1 error convergence

32 � 32 50 0.0050 1.2841e�03 1.9135e�03
64 � 64 100 0.0025 3.2477e�04 1.98 4.9864e�04 1.94
128 � 128 200 0.00125 7.5756e�05 2.10 1.2041e�04 2.05

The errors were measured by using a solution computed on a 256 � 256 grid as a gold standard. The number of
sample sites was also increased from Ns D 50 to Ns D 200 as the grid was refined. All errors were measured
at t D 3.

Table IV. Results of a refinement study for the RBF-FD solution to reaction–diffusion equations on the
surface of platelets in coupled problem 1.

Number of sample Order of Order of
sites (Ns) Grid size �t L2 error convergence L1 error convergence

50 32 � 32 0.0050 1.5567e�03 2.1497e�03
100 64 � 64 0.0025 3.6238e�04 2.10 5.0534e�04 2.09
200 128 � 128 0.00125 8.3943e�05 2.11 1.1706e�04 2.11

The errors were measured using a solution computed on a 256 � 256 grid with analytically computed normals
at Ns D 400 sample sites as a gold standard. The fluid grid was also refined as the number of sample sites was
increased. All errors were measured at t D 3.

and the platelet-surface concentrations. The results shown in Tables III and IV demonstrate that the
modified AFM with boundary conditions derived from the RBF-FD solution of reaction–diffusion
equations on simple platelet surfaces exhibits second-order convergence in both space and time on
coupled problem 1.

Coupled problem 2 uses the same parameters as coupled problem 1 but differs from that problem
in solving surface reaction–diffusion equations on the ellipse E1 and on a smoothly perturbed ver-
sion of ellipse E1 that we will call perturbed ellipse 1 (PE1); these objects are shown in Figure 7.
The motivation for this test was to study the behavior of the AFM on platelets, which may be oddly
shaped or stretched ellipses (e.g., as they may be when bound to other platelets within a clot). The
points on PE1 are given by

XPE1 D

�
1:0C 0:09 exp



�.1 � cos�/2

0:1

�	
XE1: (32)
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Figure 7. Illustration of the platelets in coupled problem 2.

Table V. Results of a refinement study for the modified AFM on coupled problem 2.

Number of sample Order of Order of
Grid size sites (Ns) �t L2 error convergence L1 error convergence

32 � 32 50 0.0050 9.8668e�04 1.5650e�03
64 � 64 100 0.0025 2.5374e�04 1.96 4.1418e�04 1.92
128 � 128 100 0.00125 5.8373e�05 2.12 9.7048e�05 2.09

The errors were measured by using a solution computed on a 256 � 256 grid as a gold standard. The number of
sample sites was also increased from Ns D 50 to Ns D 200 as the grid was refined. All errors were measured
at t D 3.

Table VI. Results of a refinement study for the RBF-FD solution to reaction–diffusion equations on the
surface of platelets in coupled problem 2.

Number of sample Order of Order of
sites (Ns) Grid size �t L2 error convergence L1 error convergence

50 32 � 32 0.0050 1.1976e�03 1.6179e�03
100 64 � 64 0.0025 2.7351e�04 2.13 3.6505e�04 2.15
200 128 � 128 0.00125 6.1624e�05 2.15 8.3978e�05 2.13

The errors were measured using a solution computed on a 256 � 256 grid with analytically computed normals at
Ns D 400 sample sites as a gold standard. The grid was refined as the number of sample sites was increased. All
errors were measured at t D 3.

Table VII. Results of a refinement study for the modified AFM on coupled problem 3.

Number of sample Order of Order of
Grid size sites (Ns) �t L2 error convergence L1 error convergence

32 � 32 50 0.0050 9.8668e�04 1.5650e�03
64 � 64 100 0.0025 2.5374e�04 1.96 4.1418e�04 1.92
128 � 128 200 0.00125 5.8373e�05 2.12 9.7048e�05 2.09

The errors were measured by using a solution computed on a 256 � 256 grid as a gold standard. The number of
sample sites was also increased from Ns D 50 to Ns D 200 as the grid was refined. All errors were measured
at t D 3.

The results of a convergence study of the combined method on coupled problem 2 are shown
in Tables V and VI. These results show that the modified AFM in conjunction with the RBF-FD
method for solving reaction–diffusion equations on perturbed platelet surfaces exhibits second-order
convergence in both space and time.

6.6. Convergence on a coupled problem for model 2

Having tested the convergence of the combined method on coupled problems 1 and 2 that used
model 1, we now test the convergence of the combined method on a coupled problem that uses
model 2. For this new coupled problem (coupled problem 3), we simulate the equations of model 2
on the objects E1 and PE1 using the RBF-FD method within the AFM. The reaction rates were set
to the same as those in coupled problem 2, as were the platelet positions. The bound and unbound
chemical density fields were initialized to C b.�/ D cos.�/ and C u.�/ D 1 � C b.�/, for 0 6 � <
2� , respectively. The simulation was run from t D 0 to t D 3.
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Table VIII. Results of a refinement study for the RBF-FD solution to the reaction–diffusion equations for
bound chemical concentrations on the surface of platelets in coupled problem 3.

Number of sample Order of Order of
sites (Ns) Grid size �t L2 error convergence L1 error convergence

50 32 � 32 0.0050 1.1976e�03 1.6179e�03
100 64 � 64 0.0025 2.7351e�04 2.13 3.6505e�04 2.15
200 128 � 128 0.00125 6.1624e�05 2.15 8.3978e�05 2.13

The errors were measured using a solution computed on a 256 � 256 grid with analytically computed normals at
Ns D 400 sample sites as a gold standard. The grid was refined as the number of sample sites was increased. All
errors were measured at t D 3.

Table IX. Results of a refinement study for the RBF-FD solution to the reaction–diffusion equations for
unbound chemical concentrations on the surface of platelets in coupled problem 3.

Number of sample Order of Order of
sites (Ns) Grid size �t L2 error convergence L1 error convergence

50 32 � 32 0.0050 1.1976e�03 1.6179e�03
100 64 � 64 0.0025 2.7351e�04 2.13 3.6505e�04 2.15
200 128 � 128 0.00125 6.1624e�05 2.15 8.3978e�05 2.13

The errors were measured using a solution computed on a 256 � 256 grid with analytically computed normals at
Ns D 400 sample sites as a gold standard. The grid was refined as the number of sample sites was increased. All
errors were measured at t D 3.

The results of the convergence studies are shown in Tables VII–IX. Having used the same initial
conditions and platelet configurations as in coupled problem 2, we see identical results in terms of
errors and convergence on coupled problem 3 for the AFM and for the PDE for C b. Furthermore,
the errors and convergence for the PDE for C u are identical to the errors and convergence for C b.
We thus observe second-order convergence using our methods on coupled problem 3 as well. The
advantage of model 2 over model 1, of course, is that one has greater flexibility in model 2, in terms
of selecting initial conditions for C u and C b, and different coefficients of diffusion as well.

7. DISCUSSION

The AFM was developed in [15] for the simulation of chemical transport in a stationary fluid in the
presence of irregular boundaries (platelets). In that work, an ODE model for chemistry on platelet
surfaces was also presented, with the ODEs contributing boundary conditions to the fluid-phase
chemical diffusion equation and the fluid-phase chemical diffusion equation contributing to the
ODEs. When the AFM was used in conjunction with a Crank–Nicolson time-stepping method for
the simulation of the combined problem, the resulting method was shown to have second-order
accuracy and convergence. However, the method had the following limitations:

� The ODE model was only a simple approximation to true platelet chemistry; a reaction–
diffusion PDE model would be more appropriate.
� The use of MLS scheme to obtain fluid-phase chemical concentrations at points on the platelet

surface imposed a separation constraint on platelets—the platelets had to be at least 2h apart,
where h is the Cartesian grid spacing.
� The AFM itself imposed another separation constraint of 2h on platelets because of the

biquadratic interpolation stencil chosen to enforce boundary conditions on the fluid-phase
chemical diffusion equation.

In this work, we introduced more complete models of platelet surface chemistry involving diffu-
sion of chemical densities on the surface. Two models (models 1 and 2) were presented. Model 1 is a
simple update to the ODE model that involved adding a surface diffusion term to the ODE (thereby
giving a PDE), while model 2 aims to better match the biology of the problem by using a pair of
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PDEs at each point on the boundary (these PDEs are coupled to each other through their equal and
opposite reaction terms).

In order to facilitate the simulation of models 1 and 2 on oddly shaped platelets (typically seen
in platelet aggregation simulations) in 2D and to remove the limitations of the AFM in its original
form, we presented the following numerical methodology:

� the first application of RBF-FD to the simulation of reaction–diffusion equations on surfaces
in 2D;
� a modification to the AFM involving symmetric RBF-Hermite interpolation (instead of

biquadratic interpolation) to enforce boundary conditions on the fluid-phase chemical diffusion
equation, thus eliminating the separation constraint on platelets simulated by the AFM; and
� a replacement for the MLS scheme used in [15] with a simple bilinear interpolation and a

parametric RBF-based smoothing scheme, thereby eliminating the other separation constraint
on platelets in that work.

Through numerical experiments, we analyzed the behavior of our proposed methodology and
draw the following conclusions:

� The RBF-FD approximation to the surface Laplacian, when used in conjunction with a BDF2
scheme, resulted in a method that exhibited second-order convergence in both space and time
when applied to the simulation of pure diffusion equations on circles.
� The symmetric RBF-Hermite interpolation scheme for enforcing boundary conditions within

the AFM gave a modified AFM that also exhibited second-order convergence in both space and
time for diffusion of fluid-phase concentrations.
� The combined methodology involving RBF-FD and the AFM showed second-order conver-

gence in both space and time on three coupled problems involving reaction–diffusion equations
on platelet surfaces and a diffusion equation for the fluid-phase concentrations; coupled prob-
lems 1 and 2 used model 1 (simulated with SBDF2), while coupled problem 3 used model 2
(also simulated with SBDF2).

While we have indeed shown that the RBF-FD method can be successfully applied to the sim-
ulation of reaction–diffusion equations on platelet-like surfaces in 2D, we have yet to explore the
effects on this method of using different stencil sizes, different point spacings, and different RBF
kernels on both 2D and 3D geometries. We plan to do this in a separate work. Also, like in [15],
while our results are valid for stationary platelets in stationary fluid, we have yet to explore the mod-
ified AFM and the RBF-FD method for platelets interacting with a moving fluid as simulated by the
IB method. This, too, is the subject for future work.
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