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Abstract In this paper, we attempt to address the potential usefulness of smoothness-
increasing accuracy-conserving (SIAC) filters when applied to real-world simulations. STAC
filters as a class of post-processors were initially developed in Bramble and Schatz (Math
Comput 31:94, 1977) and later applied to discontinuous Galerkin (DG) solutions of linear
hyperbolic partial differential equations by Cockburn et al. (Math Comput 72:577, 2003),
and are successful in raising the order of accuracy from k + 1 to 2k + 1 in the L>—norm
when applied to a locally translation-invariant mesh. While there have been several attempts
to demonstrate the usefulness of this filtering technique to nontrivial mesh structures (Curtis
etal. in SIAM J Sci Comput 30(1):272, 2007; Mirzaee et al. in SIAM J Numer Anal 49:1899,
2011; King et al. in J Sci Comput, 2012), the application of the SIAC filter never exceeded
beyond two-space dimensions. As tetrahedral meshes are often the type considered in more
realistic simulations, we contribute to the class of SIAC post-processors by demonstrating the
effectiveness of SIAC filtering when applied to structured tetrahedral meshes. These types
of meshes are generated by tetrahedralizing uniform hexahedra and therefore, while main-
taining the structured nature of a hexahedral mesh, they exhibit an unstructured tessellation
within each hexahedral element. Moreover, we address the computationally intensive task of
performing numerical integrations when one considers tetrahedral elements for SIAC filter-
ing and provide guidelines on how to ameliorate these challenges through the use of more
general cubature rules. We consider two examples of a hyperbolic equation and confirm the
usefulness of SIAC filters in obtaining the superconvergence accuracy of 2k 4+ 1 when applied
to structured tetrahedral meshes. Additionally, the DG methodology merely requires weak
constraints on the fluxes between elements. As SIAC filters improve this weak continuity to
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Ck=1—continuity at the element interfaces, we provide results that show how post-processing
is useful in extracting smooth isosurfaces of DG fields.

Keywords Discontinuous Galerkin - SIAC filtering - Accuracy enhancement - Structured
tetrahedral meshes - Post-processing

1 Introduction and Motivation

A class of post-processing techniques was developed in [1] and later continued by Cockburn
et al. [2,6] for discontinuous Galerkin (DG) solutions of linear hyperbolic partial differential
equations. This post-processor, later known as smoothness-increasing accuracy-conserving
filter [7], is successful in raising the order of accuracy from k + 1 to 2k + 1 in the L?>—norm
when applied to a locally translation-invariant mesh. While there have been several attempts
to demonstrate the usefulness of this filtering technique to nontrivial mesh structures, the
application of the SIAC filter never exceeded beyond two-space dimensions. Thereby, we
consider the contribution of this paper to be the very first attempt of its kind in demonstrating
the potential usefulness of SIAC filtering when applied to real-world simulations. In this
work, we examine the effect of filtering over three-dimensional structured tetrahedral meshes.
These types of meshes are generated by tetrahedralizing uniform hexahedra and therefore
while maintaining the structured nature of a hexahedral mesh, they exhibit an unstructured
tessellation within each hexahedral element. We consider two examples of a hyperbolic
equation and demonstrate that it is indeed possible to obtain the superconvergence accuracy
of 2k+ 1 through the application of the STAC filter. Moreover, we address the computationally
intensive task of performing numerical integrations when one considers tetrahedral elements
for SIAC filtering and provide guidelines on how to ameliorate these challenges through the
use of more general cubature rules. Additionally, the DG methodology merely requires weak
constraints on the fluxes between elements. As SIAC filters improve this weak continuity to
C*k=1—continuity at the element interfaces, we provide results that show how post-processing
is useful in extracting smooth isosurfaces of DG fields.

In order to extend the application of the SIAC filter to more general mesh structures, the
authors in [3] considered a smoothly-varying mesh as well as a random mesh and demon-
strated the 2k + 1 order of accuracy for the smoothly-varying mesh. However, numerical
results were only provided for one-dimensional and two-dimensional tensor-product meshes.
The application of the SIAC filter to structured triangulations was extended both theoreti-
cally and numerically in [4]. Numerical examples confirming the effectiveness of SIAC fil-
tering over structured triangular meshes were given. In [5], theoretical proof demonstrating
the applicability of the SIAC filter to adaptive meshes was provided. Moreover, numerical
examples were given confirming the accuracy enhancing capability of SIAC filtering to a
broader range of translation-invariant meshes. However, the authors in [5] only considered
two-dimensional uniform triangulations. In [8], Mirzaee et al. provided the computational
extension of this filtering technique to general unstructured triangulations. Four different
mesh types were considered and numerical results were presented in two-dimensions indi-
cating lower errors and increased smoothness through a proper choice of kernel scaling.
Consequently, to the best of authors’ knowledge there has never been a published work
regarding SIAC post-processing over tetrahedral mesh structures.

While the theoretical extension of the STAC filter to tetrahedral meshes is straightforward,
the computational extension is challenging due to the non-tensor product nature of these
mesh types. The filtering kernel in higher dimensions is a tensor-product of one-dimensional
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kernels. This fact can be exploited when filtering over tensor-product translation-invariant
meshes (such as quadrilateral or hexahedral meshes) to gain more efficiency by evaluating
the higher dimensional integrals as products of 1D integrals. However, in the case of tri-
angular or tetrahedral meshes, the higher dimensional integrals are not separable which in
turn lead to a substantial increase in the computational cost. This issue is more pronounced
for tetrahedral meshes where the kernel/mesh intersection will result in many integration
regions. Consequently, using convenient tensor-product quadrature rules will result in a non-
tractable postprocessing for tetrahedral meshes. In this work, we have taken advantage of the
more general cubature rules that yield substantially fewer integration points comparing to
the tensor-product rules. With these integration rules, we were able to collect results for three
different mesh resolutions and polynomial orders. Detail of the implementation is provided
in the following sections.

We proceed in this paper by providing the basics of the DG scheme over tetrahedral meshes
followed by a brief review of the SIAC filter. In Sect. 2, we briefly discuss the theoretical
foundations in SIAC filtering of DG solutions and how it applies to structured tetrahedral
meshes. We then continue by presenting the detail of the implementation as well as important
practical considerations. Section 3, provides numerical results confirming the usefulness of
post-processing over structured tetrahedral meshes. Finally Sect. 4, concludes this paper. We
further note that throughout this document, we use the terms filtering and post-processing
interchangeably.

1.1 The Discontinuous Galerkin Formulation for Tetrahedral Mesh Structures

The discontinuous Galerkin method has become increasingly popular in the last decades,
while the first report on the DG finite-element method dates back to 1970s [9]. Since its
introduction by Reed and Hill in 1973 [10] for solving the linear neutron transport equa-
tion on triangular meshes, its flexibility in handling complex geometries and its high-order
accuracy have resulted in successive development and application of the DG methodology
to the solution problems in fluid and solid mechanics, acoustics, electromagnetics and so
on. Although the governing equations of these applications are generally represented by sys-
tems of linear hyperbolic equations, the DG has been also extended to systems of nonlinear
equations (see [11,12]).

In this paper we consider accuracy enhancement of numerical solutions to three-
dimensional linear hyperbolic equations of the form

’;
— 0

" + E g(Ai(x)u) =0, xe x[0,T],
i=1

i

ux,0) =u,(x), xef2 (1)

where 2 € R3, and A; (x), i = 1,2, 3is bounded in the L°° —norm. We also assume smooth
initial conditions are given along with periodic boundary conditions.
To start the discretization of Eq. (1) in space with DG methodology, we develop a suitable

weak formulation of (1) on a partition of §2 that we denote by 2 which consists of N
non-overlapping tetrahedral elements 7, and is given by

N
2= @)
e=1
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Fig.1 Tetrahedron to Hexahedron transformation for evaluating the DG approximation using tensorial basis
functions

Moreover, in the semi-discrete formulation we obtain an approximate solution by defining
the approximation space V;, C V. In DG methodology the space V}, is continuous in each
element but discontinuous across element interfaces and is defined such that

Vi={ec 2@ ¢l eP@), Vel 3

i.e., the space of L2-integrable functions defined over 7, with degree at most k. Consequently,
the weak form of Eq. (1) will be

aﬂuhdx—Z/f,(x z)—dx+2/f,n vpds =0, &)

Te

where 31, is the boundary of the element 7., and 7; is the unit outward normal to the element
boundary in the ith direction. Furthermore, f;(x,t) = A;(x)u,(x, 1) is the flux function.
We note that the flux function is multiply defined at element interfaces and, therefore, we
impose the definition that ﬁﬁi = h(up(XETEOT 1)y, (IO 1)) be a consistent two-
point monotone Lipschitz flux as in [13].

The approximate solution uy is given by

—p-
wp(x, 1) = Z Z Z WD )P (x), X € 1. )
p=0g=0 r=0
Here u(p ) () is the expansion coefficient at time ¢ corresponding to the expansion poly-

nomial ¢(1’ *4:") in the tetrahedral element .

We note that for ¢7*¢"), we choose a hierarchical expansion basis using Jacobi poly-
nomials of mixed weight that retains the tensor-product property and is key in obtaining
computational efficiency via the sum-factorisation technique [14]. In order to implement
such expansion basis we perform a mapping to the so-called collapsed coordinate system.
Fig. 1 depicts how a tetrahedron in the Cartesian coordinate system (&1, &, £3) is transformed
to a hexahedron in the collapsed coordinate system (11, 172, n3). The advantage of such a sys-
tem is that we can then define one-dimensional functions upon which we can construct our
multidomain tensorial basis. Once in the collapsed coordinate system, we can evaluate the
DG approximation u, of degree k at a single point in O (k*) floating point operations using
the sum-factorisation technique. For more information regarding tensorial basis functions
and the collapsed coordinate system consult [14].
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By substituting Eq. (5) into Eq. (4), we solve for the expansion coefficients ugf 47 (1)

and we complete our DG scheme. We add that for our DG solver, we used the Nektar++
implementation given in [14] and available at http://www.nektar.info.

1.2 Overview of the Smoothness-Increasing Accuracy-Conserving Filter

Built upon the framework initially established by Bramble and Schatz [1] and Mock and Lax
[15], Cockburn et al. [2,6], introduced a class of post-processors, later known as smoothness-
increasing accuracy-conserving (SIAC) filter, for hyperbolic PDEs using the discontinuous
Galerkin method. The post-processor consists of a convolution kernel applied to the approxi-
mation only once, at the final time, and is independent of the partial differential equation under
consideration as long as the necessary negative-order norm error estimate can be proven. The
negative-order norm error estimates give us information on the oscillatory nature of the error
and should be of higher order than the L2-norm error estimates for the post-processor to be
applicable. The post-processor extracts this information and works to filter out oscillations
in the error and to enhance the accuracy in the usual L?-norm, up to the order of the error
estimates in the negative-order norm. Indeed, the smoothness will increase to ¢! and the
order will improve to O(h2¥*1) for a locally translation-invariant mesh. SIAC filtering has
been extended to a broader set of applications such as being used for filtering within stream-
line visualization algorithms in [7,16,17]. In this section we provide a brief introduction of
this filtering technique. A more detailed background can be found in [2,18,19].

The post-processor is simply the discontinuous Galerkin solution u, at the final time 7,
convolved against a B-spline kernel K ,21k+1’k *1 That is, in one-dimension,

M*(X) = K?_Ik—,—l’k-i_l * Up,

o0

1 —X

= / KAk (yT) un()dy, ©)
—00

where u* is the post-processed solution and H is the kernel scaling parameter. The superscript
2k + 1, k 4 1 typically represents the number of B-splines used in the kernel as well as the
B-spline order. We shall drop this superscript for simplicity. k is also the degree of the
numerical approximation.

The convolution kernel K (x) is a linear combination of B-splines and is given by

k
K= > c,¢" -y, )

y=—k

where ¢, are the kernel coefficients and are assigned such that the kernel reproduces poly-
nomials up to degree 2k. That is K x p = p, where p is a polynomial of degree O, - - - , 2k.
Y*+1 s the B-spline of degree k, and

ik ()

The definition in Eq. (7), provides a symmetric form of the kernel. This type of the kernel
acquires equal amount of information from both sides of an evaluation point x and is therefore
not suitable for post-processing near boundaries and shocks. A one-sided form of the kernel
was introduced in [20] and further developed in [18] that only collects information from one
side of the boundary or shock. In this paper, we only consider periodic boundary conditions
and consequently the symmetric form could be applied everywhere in our computational
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domain, however, all the discussions herein could easily extend to accommodate one-sided
filtering. We further add that in higher dimensions the convolution kernel is a tensor-product
of one-dimensional kernels.

2 Smoothness-Increasing Accuracy-Conserving Filter for Structured Tetrahedral
Meshes

We begin this section by stating the main theorem in SIAC filtering of DG solutions [5]:

Theorem 1 Let uj, be the DG solution to the linear hyperbolic equation given in Eq. (1) at
the final time T. The approximation is taken over a mesh whose elements are of size h = %H
in each coordinate direction where £ is a multi-index of a dimension equal to the number
of elements in one direction. For example, if £ = [€1, --- ,£LN], where N is the number of
elements in one direction, then the size of the element i will be eil_H . Consequently, H rep-
resents the macro-element size of which any particular element is generated by hierarchical
integer partitioning of the macro-element. Given sufficient smoothness in the initial data we
obtain the following estimate for the Ly-error,

lu — Ky *uplle < CH*, )

where K g is the post-processing kernel given in Eq. (8) scaled by H.

Comparing to the original theorem in [2], Theorem 1 encompasses a broader range of
mesh structures. More detail along with several numerical examples can be found in [5].

We note that if within each macro-element of size H we assume equal partitioning, the
resulting mesh will have a translation invariant structure. A translation invariant mesh is a
type of mesh in which we can identify a repeating pattern [21]. Consequently, according to
Theorem 1, we are able to obtain higher order accuracy in the L>-norm when post-processing
translation invariant meshes. The structured tetrahedral mesh we consider in this paper will
fall into this category.

To generate a translation invariant structured tetrahedral mesh, we first split the domain into
uniform hexahedral elements and then subdivide each hexahedral element into tetrahedra. As
it is mentioned in [22], there are eight different ways to divide a hexahedron into tetrahedra.
These configurations are shown in Fig. 2. As it is understood this figure, the top configuration
leads to five tetrahedra per element while the rest lead to six tetrahedra. Another point worth
mentioning is that in the first five configurations (first and second row in Fig. 2), we sometimes
need to flip the hexahedral element when constructing the entire mesh so that the diagonal
edges of adjacent hexahedra align. We are however not required to do that if we choose any
of the last three configurations (bottom row in Fig. 2). In either case, we are always able to
identify a repeating pattern within these structured meshes. In this paper we have chosen the
lower left configuration in Fig. 2 as our structured tetrahedral mesh. We continue by providing
the detail of the implementation of the SIAC filter over structured tetrahedral meshes.

The convolution kernel in three dimensions is formed by the tensor-product of one-
dimensional kernels. That is

K(x,y,2) = K(x) x K(y) x K(2). (10)
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Fig. 2 All possible subdivisions of a hexahedral element into five and six tetrahedra. When juxtaposing
the hexahedral elements, it is necessary to flip the hexahedron in x-, y- or z-direction with the first five
configurations. No flipping is required with the configurations in the bottom row. We consider the lower left
configuration as our structured tetrahedral mesh

Consequently the post-processor in three-dimensions will have the following form:

1
WX, Y, ) =

[c. Sl SlNe o) !
x [ [ [K (%) K (XZH_Z}) K (%) up(x1, x2, x3)dx1dxadx3, (11)
—00 —00 —00

where u, is the approximate DG solution of the numerical simulation and H;,i = 1, 2, 3 are
the kernel scaling parameters in each direction.

We note that in [4] and [8], we thoroughly discussed the extension of the SIAC filter to
structured and unstructured triangular meshes respectively. Similarly, here we have taken the
existing implementation of this filtering technique and applied it to structured tetrahedral
meshes.

The convolution kernel as presented in Eq. (7) along with the DG approximation u;, are
piecewise polynomials. Therefore to numerically evaluate the integral in Eq. (11) exactly to
machine precision, we need to subdivide the integration domain into regions of sufficient
continuity, where the integrand does not have any break in regularity. Previously in [8], we
demonstrated that these integration regions can be found by solving a geometric intersection
problem between a square and a triangle for triangular meshes. In three dimensions, the
footprint of the kernel is contained in a cube that is further subdivided by the kernel knots
into smaller cubes of H; x Hp x H3 dimensions. As a result, to find the regions of continuity
as shown in Fig. 3, we find the intersection region between a tetrahedral element and a cube.
For this we apply the Sutherland-Hodgman clipping algorithm from computer graphics [23].
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Fig. 3 Footprint of a three-dimensional kernel (a). Demonstration of an intersection between a tetrahedral
element and a cube of the kernel footprint (b)

Following Theorem 1, the scaling parameters H;, i = 1,2, 3, which determine the extent
of the kernel on the DG mesh, will be equal to the translation invariance of the mesh. This
is necessary in order to observe the proper order of convergence in the L?—norm after the
application of the SIAC filter. It is therefore clear that H; is equal to the uniform mesh spacing
for the configurations in the bottom row of Fig. 2 as the entire mesh could be constructed by
exactly repeating the hexahedral element. However, for the other configurations, whenever
we perform a flip in a direction 7, the scaling H; will be twice as large as the uniform mesh
spacing.

To evaluate the post-processed solution at a point denoted by (x, y, z), we center the
kernel at that point. We then find the intersection regions and evaluate the resulted integrals.
Therefore the integral in Eq. (11) now becomes

1 oo 0 XX
u*(x,y,2) = ﬁ/ / /15(x1)13(x2)15(X3)uh(X1,Xz,m)dxldxzdxs
—00 —00 —00
1 _ _ _
= > /K(Xl)K(xz)K(x3)uh(x1,xz,xs)dxldxzdx3 (12)

T;eSupp{K)}T;
where we have denoted K (x;) = K (X f;x ) for simplicity, and Supp{Ie } contains all the
tetrahedral elements 7 that intersect with the kernel footprint.
We note that the final integration region resulted as the kernel-mesh intersection is itself
a polyhedron. For ease of implementation, we further tetrahedralize this polyhedron by
triangulating its faces (as shown in Fig. 3b) and connecting the resulting triangles to the
centroid of the polyhedron. Consequently, the integral in Eq. (12) becomes

/ K (1)K (x2) K (x3)up (x1, X2, x3)dx1dx2dx3
Tj

N
=> / K (x1)K (x2) K (x3)up (x1, X2, x3)dx1dxad xs (13)
=0

where N is the total number of tetrahedral subregions formed in the tetrahedral element 7
as the result of kernel-mesh intersection.
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By numerically computing the integral in Eq. (13) using a quadrature technique, we can
now evaluate the post-processed solution u™*(x, y, z).

2.1 Practical Considerations

From the computational perspective, post-processing over tetrahedral meshes is a very chal-
lenging task. Let us consider again the post-processing formula given in Eq. (11). Following
our discussion in the previous section, in computing the post-processed value at a single point
(x,y, z), there exist three distinct steps:

1. Centering the kernel at (x, y, z) and identifying the support of the kernel over the DG
mesh.

2. Solving a geometric intersection problem to obtain the integration regions.

3. Numerically evaluating the integrals by a means of quadrature rule.

In the case of structured tetrahedral meshes, it suffices to find the extent of the kernel on
the basic hexahedral mesh which has a uniform structure. It is trivial that the footprint of the
kernel over such a uniform mesh can be found in constant computational time. In the case of
unstructured meshes, as it was performed in [8], we can always group the unstructured mesh
elements within a regular grid. Consequently, we conclude that Step 1 has always a constant
computational complexity.

To find the integration regions in Step 2, as mentioned in the previous section, we perform
the Sutherland-Hodgman clipping algorithm. In this algorithm we loop through the faces of
one polyhedron and clip it against the second polyhedron. The computational complexity of
this algorithm is O(n), where n = f] x f> and is equal to 24 when finding the intersection
between a cube and a tetrahedron. f;,i = 1, 2 indicate the number of faces in each polyhe-
dron. For structured tetrahedral meshes, the support of the kernel spans 3k + 1 hexahedral
elements in each direction (2 x ( L%J + kzil)), k being the degree of the approximation.
That is, for each evaluation point we need to process 6 x (3k + 1)3 tetrahedra for the config-
uration we chose in this paper. As each tetrahedral element intersects with at most 8 cubes of
the kernel, the cost of finding all the intersection regions will therefore be 8 x 6 x 24(3k + 1)°
or O(k%).

Given the amount of processing we need to perform in Step 2, we should maintain the
computational cost of Step 3 as low as possible in order to have a tractable post-processing
algorithm. It appears that the main computational bottleneck in post-processing over tetra-
hedral meshes lies in evaluation of the integrals. The key point to consider here is that the
three-dimensional integral over a tetrahedral region 7, as given in Eq. (13) is in fact an
expensive operator to evaluate due to several function evaluations. To understand why this is
the case, consider quadrilateral and hexahedral meshes. For these mesh structures, the tensor
product nature of the convolution kernel in higher dimensions would result in separation of
the integrals and ultimately the multidimensional integral could essentially be evaluated by
computing one-dimensional integrals (see [19]). This evaluation could even further be sim-
plified if one also considers tensorial basis functions to represent the DG approximation in
multi-dimensions [14]. Consequently, using tensor-product Gaussian quadrature rules pro-
vides a convenient way to numerically evaluate the integrals involved in the convolution when
dealing with tensor-product mesh structures such as quadrilateral and hexahedral meshes.
However, in the case of triangular or tetrahedral meshes, due to the dependency of the coordi-
nate directions, the convolution integral is not separable (see [19] for triangles) and therefore,
we can not reduce the cost of computing the 3D integral through evaluating 1D integrals.
As aresult, using the conventional tensor-product quadrature rules will not be optimal in the
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Table 1 Number of quadrature
points required in each

integration technique for k Tensor-product Cubature
triangular elements

Triangles

p? 16 12

- P’ 25 19
k indicates the degree of the 4

numerical approximation P 49 33

Table 2 Number of quadrature points required in each integration technique for tetrahedral elements

Tetrahedra

k Tensor-product Cubature
P2 125 46

p3 343 140

p* 729 -

k indicates the degree of the numerical approximation. Cubature points for the Pt approximation were not
available

sense of using the fewest function evaluations for a given approximation degree. A suitable
alternative here is to use non-tensor product formulas -generally known as cubature rules.
The cubature rules are complicated to derive and are not known to very high-orders. For
our post-processing experiments we used the pregenerated points and weights by Zhang et
al. in [24] and available for polynomials up to degree 14. We note that from Eq. (13), it is
clear that the cubature rule we apply should be exact to integrate a polynomial of degree 4k.
Table 1 and Table 2, provide the number of points (see [24]) required to evaluate the convo-
lution integral over each region of continuity using the aforementioned quadrature strategies.
While there is no substantial difference in the number of quadrature points for the case of
triangular elements, there is a noticeable difference in terms of computational efficiency
when using cubature rules for tetrahedral meshes over tensor-product quadrature. Note that
we could not find the cubature points for a k = 4 DG approximation (polynomial integrand
of degree 16). However, in practice we were able to use even fewer cubature points, that are
required to integrate a lower degree polynomial, to evaluate the convolution operator. In fact,
using only 24 points for a P2 approximation, 36 points for a P3, and 46 points for a P*
approximation seemed to be enough to provide the accuracy predicted by theory.

We further emphasize the use of the sum-factorization technique introduced in Sect. 1.1
for evaluating our DG approximation at the cubature points. The application of this technique
along with the cubature rules, led to a substantial decrease in the computational intensity of
Step 3 of the post-processing algorithm.

3 Numerical Results
In this section we provide numerical results that demonstrate the effectiveness of SIAC
filtering when applied to structured tetrahedral meshes. We consider a constant coefficient

and a variable coefficient advection equation and show that it is indeed possible to gain the
optimal convergence rate of 2k + 1 in the L2 and L, norms after the application of the SIAC
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Table 3 Errors before and after post-processing the solutions of the constant coefficient advection equation
over a structured tetrahedral mesh

Mesh Ly-error Order Lo-error Order Ly-error Order Lo-error Order
- Before post-processing After post-processing

P2

6,000 1.06E—03 6.78E—03 2.50E—04 750E—-04 -

48,000 1.28E—04 3.04 8.96E—04 291 5.52E—-06 5.50 1.54E—-05 5.60
384,000 1.60E—05 3.00 1.13E—-04 2.98 1.40E—-07 5.30 3.82E—-07 5.33
P3

6,000 1.21E—-04 - 1.30E—-03 - 3.72E-05 - 8.60E—05 -
48,000 7.51E—06 4.01 8.41E—-05 3.95 2.15E-07 7.43 4.43E-07 7.60
384,000 4.76E—07 3.98 5.43E—-06 3.99 1.07E—09 7.65 3.01E-09 7.20

P
6,000 2.02E-05 - 1.70E-04 - not valid - not valid -
48,000 6.53E—-07  4.95 5.65E-06  4.91 2.02E-09 - 6.50E-09 -

384,000 2.21E-08  4.88 1.89E—07  4.90 543E-12  8.56 1.79E—11 8.50

filter. Moreover, to demonstrate the effectiveness of SIAC filtering in introducing smoothness
back to our numerical approximation, we provide an example of isosurfaces of a DG field
before and after the application of the post-processor.

3.1 Constant Coefficient Advection Equation

For this example we consider the following advection equation
U +uy +uy+u; =0, (x,y,2) € (0,1) x (0,1) x (0, 1), T =6.28, (14

with initial condition u (0, x, y, z) = sin(27w (x 4+ y+z)). Table 3 provides the error results for
three different mesh resolutions and polynomial degrees. From these results it is completely
clear that SIAC filtering has been effective in raising the order of accuracy to 2k 4 1 both in
the L, and L, norms.

3.2 Variable Coefficient Advection Equation

For this example we consider solutions of the equation
u; + (au)y + (au)y + (au); = f, (x,y,2) € (0,1) x (0,1),x(0,1) T =6.28.(15)

We implement a smooth coefficient a(x, y, z) = 2+ sin(2w (x + y + 7)), with an initial con-
dition of u(x, y, z, 0) = sin(2w (x 4+ y 4 z)). Periodic boundary conditions are implemented
in both directions and the forcing function, f(x, y, z, t), is chosen so that the exact solution
isu(x,y,z,t) =sin(2w(x + y + z — 2t)). Table 4 demonstrates the error results before and
after post-processing. Similarly to the previous example, we see a clear improvement in the
order of accuracy. Moreover, the magnitudes of the errors are lower after the application of
the post-processor.
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Table 4 Errors before and after post-processing the solutions of the variable coefficient advection equation
over a structured tetrahedral mesh

Mesh Ly-error Order Lo-error Order Ly-error Order Lo-error Order
- Before post-processing After post-processing

P2

6,000 1.78E—03 6.50E—03 3.02E—-04 6.90E—04

48,000 2.24E—-04 2.99 8.83E—04 2.88 7.61E—06 5.31 1.58E—-05 5.45
384,000 2.82E—05 2.98 1.14E—-04 2.95 1.93E—07 5.30 3.71E-07 541
P3

6,000 2.00E—04 - 1.10E-03 - 4.50E—05 - 9.10E—05 -
48,000 1.32E-05 3.92 6.97E—05 3.98 3.06E—-07 7.20 7.36E—07 6.95
384,000 8.60E—07 3.94 4.51E—06 3.95 2.10E—09 7.18 5.79E—-09 6.99

P
6,000 291E-05 - 2.00E-04 - not valid - not valid -
48,000 9.74E-07  4.90 6.79E—-06  4.88 5.50E-09 - 8.43E-09 -

384,000  3.15E-08 4.95 2.32E-07  4.87 1.68E—11 8.50 2.67E—11 8.30

Fig. 4 Isosurface constructed
based on the analytical solution
u(x,y,z) =cos(2mx)
+cos(2my) + cos(2m z) for
isovalue = 0.2

3.3 Isosurfaces of a DG Field

Here we again consider the advection equation given in Eq. (14) but this time withu(x, y, z) =
cos(2mx) + cos(2my) + cos(2mz) as the initial condition. We consider an isosurface of the
numerical approximation of this equation before and after the application of the SIAC filter.
Figure 4 demonstrates an isosurface extracted from the analytical field for isovalue = 0.2.

To extract an isosurface we follow the approach of the traditional Marching Cubes
(MC) algorithm [25] with some modifications. For a given MC mesh (which is a
hexahedral mesh), we loop through individual cubes and identify the cube that con-
tains part of the isosurface for a given isovalue. In traditional MC, linear interpo-
lation is used to find the surface/edge intersection along an edge of the cube.
However, in our modified algorithm we perform a higher-order root-finding scheme.
That is, we find the intersection of the higher-order DG approximation with the edge
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(a) Isosurface based on the DG so- (b) Isosurface based on the post-
lution. processed solution.

Fig. 5 Comparison of isosurfaces before and after the application of the SIAC filter. a Isosurface based on
the DG solution, b Isosurface based on the post-processed solution

of the cube by a means of root-finding. Therefore, along an edge of the cube that con-
tains the isosurface, we find the intersection point by finding the roots of the following
equation:

up(x) —isovalue = 0, (16)

where uj is our numerical approximation as given in Eq. (5). When generating iso-
surfaces using the post-processed data, uj is replaced by u*, the post-processed value
given in Eq. (11). We add that by applying a root-finding mechanism, we are able to
observe the discontinuities that exist in the solution data as long as the MC grid over-
laps with the hexahedral mesh that was used to construct our structured tetrahedral
mesh.

Figure 5 depicts a zoomed-in portion of the isosurface in Fig. 4, but this time using the
approximate DG solution u; (Fig. 5a) and the post-processed solution u* (Fig. 5b) to find
the point of intersection in Eq. (16). As you notice there are visible discontinuities in the
isosurface constructed on the DG approximation whereas in the isosurface extracted using
the post-processed value, there is no discontinuity. In other words, through the application of
the SIAC filter we are indeed able to introduce smoothness back to our numerical solution.

4 Conclusion

From its early introduction by Bramble and Schatz in [1] to its later development for lin-
ear hyperbolic equations by Cockburn et al. in [2,6], there has never been a demonstration
of the effectiveness of the Smoothness-Increasing Accuracy-Conserving filter over three-
dimensional mesh structures. In fact, the very first attempt of applying this filtering technique
to meshes of nontrivial structures, mainly in one-dimension, was in [3] . Later in a series
of papers [4,5,8], the extension to structured triangular meshes, general translation-invariant
meshes as well as adaptive meshes and unstructured triangulations were provided; all in
two-space dimensions. As our ultimate goal is the application of this filter to real-world sim-
ulations, we provided in this paper for the first time, computational results confirming the
accuracy-conserving and smoothness-increasing capabilities of the SIAC filter over struc-
tured tetrahedral meshes. We considered two variants of a hyperbolic PDE and presented
error results which indicates that it is indeed possible to obtain the optimal 2k + 1 order of
accuracy through post-processing. We further demonstrated how post-processing is useful in
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extracting smooth isosurfaces of DG fields. We believe this is a significant contribution and
a major step in extending the application of the SIAC filter beyond conventional 2D mesh
structures.
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