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1 INTRODUCTION

VISUALIZATION is an important aspect of current large-
scale data analysis. As the users of scientific software

are not typically visualization experts, they might not be
aware of limitations and properties of the underlying
algorithms and visualization techniques. As visualization
researchers and practitioners, it is our responsibility to
ensure that these limitations and properties are clearly
stated and studied. Moreover, we should provide mechan-
isms which attest to the correctness of visualization
systems. Unfortunately, the accuracy, reliability, and
robustness of visualization algorithms and their implemen-
tations have not in general fallen under such scrutiny as
have other components of the scientific computing pipeline.

The main goal of verifiable visualization is to increase

confidence in visualization tools [19]. Verifiable visualiza-

tion tries to develop systematic mechanisms for identifying

and correcting errors in both algorithms and implementa-

tions of visualization techniques. As an example, consider a

recent scheme to check geometrical properties of isosurface

extraction [15]. By writing down easily checkable conver-

gence properties that the programs should exhibit, the

authors identified bugs in isosurfacing codes that had gone

undetected.

We strive for verification tools which are both simple and
effective. Simple verification methods are less likely to have
bugs themselves, and effective methods make it difficult for
bugs to hide. Alas, the mathematical properties of an
algorithm and its implementation are both constructs of
fallible human beings, and so perfection is an unattainable
goal; there will always be the next bug. Verification is,
fundamentally, a process, and when it finds problems with
an algorithm or its implementation, we can only claim that
the new implementation behaves more correctly than the
old one. Nevertheless, the verification process clarifies how
the implementations fail or succeed.

In this paper, we investigate isosurfacing algorithms and
implementations and focus on their topological properties. For
brevity, we will use the general phrase “isosurfacing” when
we refer to both isosurfacing algorithms and their imple-
mentations. As a simple example, the topology of the
output of isosurface codes should match that of the level set
of the scalar field (as discussed in Section 3). Broadly
speaking, we use the method of manufactured solutions
(MMS) to check these properties. By manufacturing a model
whose known behavior should be reproduced by the
techniques under analysis, MMS can check whether they
meet expectations.

Etiene et al. have recently used this method to verify
geometrical properties of isosurfacing codes [15], and
topological verification naturally follows. An important
contribution of this paper is the selection of significant
topological characteristics that can be verified by software
methods. We use results from two fields in computational
topology, namely, digital topology and stratified Morse
theory (SMT).

In summary, the main contributions of this work can be
stated as follows:

1. In the spirit of verifiable visualization, we introduce
a methodology for checking topological properties of
publicly and commercially available isosurfacing
software.

2. We show how to adapt techniques from digital
topology to yield simple and effective verification
tools for isosurfaces without boundaries.
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3. We introduce a simple technique to compute the
Euler characteristic of a level set of a trilinearly
interpolated scalar field. The technique relies on
stratified Morse theory and allows us to verify
topological properties of isosurfaces with boundaries.

4. We propose a mechanism to manufacture isosurfaces
with nontrivial topological properties, showing that
this simple mechanism effectively stresses isosurfa-
cing programs. As input, we also assume a piecewise
trilinear scalar field defined on a regular grid.

The verification process produces a comprehensive record
of the desired properties of the implementations, along
with an objective assessment of whether these properties
are satisfied. This record improves the applicability of the
technique and increases the value of visualization. We
present a set of results obtained using our method, and
we report errors in two publicly available isosurface
extraction codes.

2 RELATED WORK

The literature that evaluates isosurface extraction techni-
ques is enormous, with works ranging from mesh quality
[12], [34], [37], to performance [40] and accuracy analysis
[33], [43]. In this section, we focus on methods that deal with
topological issues that naturally appear in isosurfacing.

2.1 Topology-Aware Isosurfacing

Arguably the most popular isosurface extraction technique,
Marching Cubes [23] (MC) processes one grid cell at a time
and uses the signs of each grid node (whether the scalar
field at the node is above or below the isovalue) to fit a
triangular mesh that approximates the isosurface within the
cell. As no information besides the signs is taken into
account, Marching Cubes cannot guarantee any topological
equivalence between the triangulated mesh and the original
isosurface. In fact, the original Marching Cubes algorithm
would produce surfaces with “cracks,” caused by alternat-
ing vertex signs along a face boundary, which lead to
contradicting triangulations in neighboring cells [31].
Disambiguation mechanisms can ensure crack-free surfaces,
and many schemes have been proposed, such as the one by
Montani et al. [26], domain tetrahedralization [4], preferred
polarity [2], gradient-based method [41], and feature-based
schemes [18]. The survey of Newman and Yi has a
comprehensive account [29]. Although disambiguation
prevents cracks in the output, it does not guarantee
topological equivalence.

Topological equivalence between the resulting triangle
mesh and the isosurface can only be achieved with
additional information about the underlying scalar field.
Since function values on grid nodes are typically the only
information provided, a reconstruction kernel is assumed, of
which trilinear reconstruction on regular hexahedral grids is
most popular [30]. Nielson and Hamann, for example, use
saddle points of the bilinear interpolant on grid cell faces
[31]. Their method cannot always reproduce the topology of
trilinear interpolation because there remain ambiguities
internal to a grid cell: pairs of nonhomeomorphic isosurfaces
could be homeomorphic when restricted to the grid cell
faces. This problem has been recognized by Natarajan [28]

and Chernyaev [8], leading to new classification and
triangulation schemes. This line of work has inspired many
other “topology-aware” triangulation methods, such as
Cignoni et al.’s reconstruction technique [9]. Subsequent
work by Lopes and Brodlie [22] and Lewiner et al. [21] has
finally provided triangulation patterns covering all possible
topological configurations of trilinear functions, implicitly
promising a crack-free surface. The topology of the level sets
generated by trilinear interpolation has been recently
studied by Carr and Snoeyink [5], and Carr and Max [3].
A discussion about these can be found in Section 4.2.

2.2 Verifiable Visualization

Many of the false steps in the route from the original MC
algorithm to the recent homeomorphic solutions could have
been avoided with a systematic procedure to verify the
algorithms and the corresponding implementations.
Although the lack of verification of visualization techniques
and the corresponding software implementations has been
a long-term concern of the visualization community [16],
[19], concrete proposals on verification are relatively recent.
Etiene et al. [15] were among the first in scientific
visualization to propose a practical verification framework
for geometrical properties of isosurfacing. Their work is
based on the method of MMS, a popular approach for
assessing numerical software [1]. We are interested in
topological properties of isosurfacing, and we also use MMS
as a verification mechanism. As we will show in Section 6,
our proposed technique discovered problems in popular
software, supporting our assertion about the value of a
broader culture of verification in scientific visualization.

There have been significant theoretical investigations in
computational topology dealing with, for example, isosur-
face invariants, persistence, and stability [10], [13]. This
body of work is concerned with how to define and compute
topological properties of computational objects. We instead
develop methods that stress topological properties of
isosurfacing. These goals are complementary. Computa-
tional topology tools for data analysis might offer new
properties which can be used for verification purposes, and
verification tools can assess the correctness of the computa-
tional topology implementations. Although the mechanism
we propose to compute topological invariants for piecewise
smooth scalar fields is, to the best of our knowledge, novel
(see Section 4.2), our primary goal is to present a method
that developers can adapt to assess their own software.

3 VERIFYING ISOSURFACE TOPOLOGY

We now discuss strategies for verifying topological
properties of isosurfacing techniques. We start by obser-
ving that simply stating the desired properties of the
implementation is valuable. Consider a typical implemen-
tation of Marching Cubes. How would you debug it?
Without a small set of desired properties, we are mostly
limited to inspecting the output by explicitly exercising
every case in the case table. The fifteen cases might not
seem daunting, but what if we suspect a bug in symmetry
reduction? We now have 256 cases to check. Even worse,
what if the bug is in a combination of separate cases along
neighboring cells? The verification would grow to be at
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least as complicated as the original algorithm, and we
would just as likely make a mistake during the verification
as we would in the implementation. Therefore, we need
properties that are simple to state, easy to check, and good
at catching bugs.

Simple example. Although the previously mentioned
problem with Marching Cubes [23] is well known, it is not
immediately clear what topological properties fail to hold.
For example, “the output of Marching Cubes cannot
contain boundary curves” is not one such property, for
two reasons. First, some valid surfaces generated by
Marching Cubes—such as with the simple 23 case—do
contain boundaries. Second, many incorrect outputs might
not contain any boundaries at all. The following might
appear to be a good candidate property: “given a positive
vertex v0 and a negative vertex v1, any path through the
scalar field should intersect the isosurface an odd number
of times.” This property does capture the fact that the
triangle mesh should separate interior vertices from
exterior vertices and seems to isolate the problem with
the cracks. Checking this property, on the other hand, and
even stating it precisely, is problematic. Geometrical
algorithms for intersection tests are notoriously brittle; for
example, some paths might intersect the isosurface in
degenerate ways. A more promising approach comes from
noticing that any such separating isosurface has to be a
piecewise-linear (PL) manifold, whose boundary must be a
subset of the boundary of the grid. This directly suggests
that “the output of Marching Cubes must be a PL manifold
whose boundaries are contained in the boundary of the
grid.” This property is simple to state and easy to test: the
link of every interior vertex in a PL manifold is topologi-
cally a circle, and the link of every boundary vertex is a line.
The term “consistency” has been used to describe problems
with some algorithms [29]. In this paper, we say that the
output of an algorithm is consistent if it obeys the PL
manifold property above. By generating arbitrary grids and
extracting isosurfaces with arbitrary isovalues, the incon-
sistency of the original case table becomes mechanically
checkable and instantly apparent. Some modifications to
the basic Marching Cubes table, such as using Nielson and
Hamann’s asymptotic decider [31], result in consistent
implementations, and the outputs pass the PL manifold
checks (as we will show in Section 6).

The example we have presented above is a complete
instance of the method of manufactured solutions. We
identify a property that the results should obey, run the
implementations on inputs, and test whether the resulting
outputs respect the properties. In the next sections, we
develop a verification method for algorithms to reproduce
the topology of the level sets of trilinear interpolation [8],
[22], [30], thus completely eliminating any ambiguity. In this
paper, we say the output is correct if it is homeomorphic to
the corresponding level set of the scalar field. This
correctness property is simple to state, but developing
effective verification schemes that are powerful and simple
to implement is more involved. We will turn to invariants of
topological spaces, in particular to Betti numbers and the
Euler characteristic, their relative strengths and weaknesses,
and discuss how to robustly check their values. Fig. 1 shows
our pipeline to assess topological correctness and also the
paper organization.

4 MATHEMATICAL TOOLS

This section describes the mathematical machinery used to
derive the topology verification tools. More specifically, we
provide a summary of the results we need from digital
topology and stratified Morse theory. A detailed discussion
on digital topology can be found in Stelldinger et al.’s paper
[39], and Goresky and MacPherson give a comprehensive
presentation of stratified Morse theory [17].

In Section 4.1, we describe a method, based on digital
topology, that operates on manifold surfaces without
boundaries and determines the Euler characteristic and Betti
numbers of the level sets. A more general setting of surfaces
with boundaries is handled with tools derived from stratified
Morse theory, detailed in Section 4.2. The latter method can
only determine the Euler characteristic of the level set.

Let us start by recalling the definition and some properties
of the Euler characteristic, which we denote by �. For a
compact 2-manifold M, �ðMÞ ¼ V �E þ F , where V , E,
and F are the number of vertices, edges, and faces of any
finite cell decomposition ofM. IfM is a connected orientable
2-manifold without boundary, �ðMÞ ¼ 2� 2gðMÞ, where
gðMÞ is the genus ofM. The Euler characteristic may also be
written as �ðMÞ ¼

Pn
i¼0ð�1Þi�i, where �i are the Betti

numbers: the rank of the ith homology group of M.
Intuitively, for 2-manifolds, �0, �1, and �2 correspond to the
number of connected components, holes and voids (regions
of the space enclosed by the surface), respectively. IfM has
many distinct connected components, that is,M¼

Sn
i¼1Mi

and MiTMj ¼ ; for i 6¼ j then �ðMÞ ¼
Pn

i �ðMiÞ. More
details about Betti numbers, the Euler characteristic, and
homology groups can be found in Edelsbrunner and Harer’s
text [13]. The Euler characteristic and the Betti numbers are
topological invariants: two homeomorphic topological
spaces will have the same Euler characteristic and Betti
numbers whenever these are well defined.

4.1 Digital Topology

Let G be an n� n� n cubic regular grid with a scalar eðsÞ
assigned to each vertex s of G and t : IR3 ! IR be the
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Fig. 1. Overview of our topology verification pipeline. First step, we
generate a random trilinear field and extract a random isosurface using
the implementation under verification. We then compute the expected
topological invariants from the trilinear field and compare them against
the invariants obtained from the mesh. We provide two simple ways to
compute topological invariants from a trilinear field based on digital
topology (DT) or stratified Morse theory.



piecewise trilinear interpolation function in G, that is,
tðxÞ ¼ tiðxÞ, where ti is the trilinear interpolant in the cubic
cell ci containing x. Given a scalar value �, the set of
points satisfying tðxÞ ¼ � is called the isosurface � of t. In
what follows, tðxÞ ¼ � will be considered a compact,
orientable 2-manifold without boundary. We say that a
cubic cell ci of G is unambiguous if the following two
conditions hold simultaneously:

1. Any two vertices sa and sb in ci for which eðsaÞ < �
and eðsbÞ < � are connected by negative edges, i.e., a
sequence of edges sas1; s1s2; . . . ; sksb in ci whose
vertices satisfy eðsiÞ < � for i ¼ 1; . . . ; k.

2. Any two vertices sc and sd in ci for which eðscÞ > �
and eðsdÞ > � are connected by positive edges, i.e., a
sequence of edges scs1; s1s2; . . . ; slsd in ci whose
vertices satisfy eðsiÞ > � for i ¼ 1; . . . ; l.

In other words, a cell is unambiguous if all positive vertices
form a single connected component via the positive edges
and, conversely, all negative vertices form a single connected
component by negative edges [41]. If either property fails to
hold, ci is called ambiguous. The top row in Fig. 3 shows all
possible unambiguous cases.

The geometric dual of G is called the voxel grid associated
with G, denoted by VG. More specifically, each vertex s of G
has a corresponding voxel vs in VG, each edge of G
corresponds to a face in VG (and vice versa), and each cubic
cell in G corresponds to a vertex in VG, as illustrated in Fig. 2.

Each voxel vs can also be seen as the Voronoi cell associated
with s. Scalars defined in the vertices of G can naturally be
extended to voxels, thus ensuring a single scalar value eðvsÞ
to each voxel vs in VG defined as eðsÞ ¼ eðvsÞ. As we shall
show, the voxel grid structure plays an important role when
using digital topology to compute topological invariants of
a given isosurface. Before showing that relation, though, we
need a few more definitions.

Denote by G0 the ð2n� 1Þ � ð2n� 1Þ � ð2n� 1Þ regular
grid is obtained from a refinement of G. Vertices of G0 can be
grouped in four distinct sets, denoted by O, F , E, C. The set
O contains the vertices of G0 that are also vertices of G. The
sets F and E contain the vertices of G0 lying on the center of
faces and edges of the voxel grid VG, respectively. Finally, C
contains all vertices of VG. Fig. 2 illustrates these sets.

Consider now the voxel grid VG0 dual to the refined grid
G0. Given a scalar value �, the digital object O� is the subset
of voxels v in VG0 such that v 2 O� if at least one of the
criteria below are satisfied:

. v 2 O and eðvÞ � �.

. v 2 F and both neighbors of v in O have scalars less
than (or equal to) �.

. v 2 E and at least 4 of the 8 neighbors of v in O [ F
have scalars less than (or equal) �.

. v 2 C and at least 12 of the 26 neighbors of v in
O [ F [ E have scalars less than (or equal) �.

The description above is called MI (Fig. 4), and it allows us
to compute the voxels that belong to a digital object O�. The
middle row of Fig. 3 shows all possible cases for voxels
picked by the MI algorithm (notice the correspondence with
the top row of the same figure).

The importance of O� is two-fold. First, the boundary
surface of the union of the voxels inO�, denoted by @O� and
called a digital surface (DS), is a 2-manifold (see the proof by
Stelldinger et al. [39]). Second, the genus of @O� can be
computed directly fromO� using the algorithm proposed by
Chen and Rong [7] (Fig. 5). As the connected components of
O� can also be easily computed and isolated, one can calculate
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Fig. 2. The four distinct groups of vertices O;F;E; C, are depicted as
black, blue, green, and red points. They are the “Old,” “Face,” “Edge,”
and “Corner” points of a voxel region VG (semitransparent cube),
respectively. For the sake of clarity, we only show a few points.

Fig. 3. An illustration of the relation between unambiguous isosurfaces of trilinear interpolants and the corresponding digital surfaces. The top row
shows all possible configurations of the intersection of t ¼ � with a cube cj for unambiguous configurations [22]. Each red dot si denotes a vertex
with eðsiÞ < �. Each image on the top right is the complement �ci of cases 1 to 4 on the left (cases 5 to 7 were omitted because the complement is
identical to the original cube up to symmetry). The middle row shows the volume reconstructed by Majority Interpolation (MI) for configurations 1 to 7
(left) and the complements (right) depicted in the top row. Bottom row shows the boundary of the volume reconstructed by the MI algorithm (the role
of faces that intersect ci is explained in the proof of Theorem 4.1). Notice that all surfaces in the top and bottom rows are topological disks. For each
cube configuration, the boundary of each digital reconstruction (bottom row) has the same set of positive/negative connected components as the
unambiguous configurations (top row).



the Euler characteristic of each connected component of O�
from the formula � ¼ 2� 2g and thus �0, �1, and �2.

The voxel grid VG0 described above allows us to

compute topological invariants for any digital surface

@O�. However, we so far do not have any result relating

@O� to the isosurface tðxÞ ¼ �. The next theorem provides

the connection.

Theorem 4.1. Let G be an n� n� n rectilinear grid with scalars

associated with each vertex of G and t be the piecewise trilinear

function defined on G, such that the isosurface tðxÞ ¼ � is a 2-

manifold without boundary. If no cubic cell of G is ambiguous

with respect to tðxÞ ¼ �, then @O� is homeomorphic to the

isosurface tðxÞ ¼ �.

Proof. Given a cube ci � G and an isosurface t ¼ fx j tðxÞ ¼
�g, let ti ¼ t \ ci. Similarly, denote

@Oi ¼ clIR3ðð@O� \ ciÞ � @ciÞ;

where clIR3 denotes the closure operator. We note that

@Oi is a 2-manifold for all i [35], [39]. There are two main

parts to the proof presented here. For each i,

1. the 2-manifolds ti and @Oi are homeomorphic;
and

2. both ti and @Oi cut the same edges and faces of ci.

Since t is trilinear, no level-set of t can intersect an edge
more than once. Hence, if ci is not ambiguous, ti is exactly
one of the cases 1 to 7 in the top row of Fig. 3 [22], either a
topological disk or the empty set. Each case in the top row
of Fig. 3 is the unambiguous input for the MI algorithm to
produce the voxel reconstruction shown in the middle
row, where the boundaries of each of these voxel
reconstructions are shown in the bottom row. By inspec-
tion, we can verify that the boundary of the digital
reconstruction @Oi (bottom row of Fig. 3) is also a disk for
all possible unambiguous cases and complement cases.
Hence, for each i, the 2-manifolds @Oi and ti are home-
omorphic. Then, for each i, both @Oi and ti cut the same set
of edges and faces of ci. Again, we can verify this for all
possible i by inspecting the top and bottom rows in Fig. 3,
respectively. Finally, we apply the Pasting Lemma [27]
across neighboring surfaces @Oi and @Oj in order to
establish the homeomorphism between @O� and t. tu

This proof provides a main ingredient for the verification
method in Section 5. Crucially, we will show how to
manufacture a complex solution that unambiguously
crosses every cubic cell of the grid. Since we have shown
the conditions for which the digital surfaces and the level
sets are homeomorphic, any topological invariant will have
to be the same for both surfaces.

4.2 Stratified Morse Theory

The mathematical developments presented above allow us
to compute the Betti numbers of any isosurface of the
piecewise trilinear interpolant. However, they require
isosurfaces without boundaries. In this section, we provide
a mechanism to compute the Euler characteristic of any
regular isosurface of the piecewise trilinear interpolant
through an analysis based on critical points, which can be
used to verify properties of isosurfaces with boundary
components. We will use some basic machinery from
stratified Morse theory, following the presentation of
Goresky and MacPherson’s monograph [17].

Let f for now be a smooth function with isolated critical
points p, where rfðpÞ ¼ 0. From classical Morse theory, the
topology of two isosurfaces fðxÞ ¼ � and fðxÞ ¼ �þ �
differs only if the interval ½�; �þ �� contains a critical value
(fðpÞ is a critical value iff p is a critical point). Moreover, if "p
is a small neighborhood around p and L�ðpÞ and LþðpÞ are
the subset of points on the boundary of "p satisfying fðxÞ <
fðpÞ and fðxÞ > fðpÞ, respectively, then the topological
change from the isosurface fðxÞ ¼ fðpÞ � � to fðxÞ ¼
fðpÞ þ � is characterized by removing L�ðpÞ and attaching
LþðpÞ. Thus, changes in the Euler characteristic, denoted by
��ðpÞ, are given by

��ðpÞ ¼ �ðLþðpÞÞ � �ðL�ðpÞÞ: ð4:1Þ

For a smooth function f , the number of negative eigenva-
lues of the Hessian matrix determines the index of a critical
point p, and the four cases give the following values for
�ðL�ðpÞÞ and �ðLþðpÞÞ.

The above formulation is straightforward but unfortu-
nately cannot be directly applied to functions appearing in
either piecewise trilinear interpolations or isosurfaces with
boundary, both of which appear in some of the isosurfacing
algorithms with guaranteed topology. Trilinear interpolants
are not smooth across the faces of grid cells, so the gradient
is not well defined there. Identifying the critical points
using smooth Morse theory is then problematic. Although
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Fig. 4. Voxel selection using Majority Interpolation.

Fig. 5. A simple formula for genus computation.



arguments based on smooth Morse theory have appeared in
the literature [42], there are complications. For example, the
scalar field in a node of the regular grid might not have any
partial derivatives. Although one can still argue about the
intuitive concepts of minima and maxima around a
nondifferentiable point, configurations such as saddles are
more problematic, since their topological behavior is
different depending on whether they are on the boundary
of the domain. It is important, then, to have a mathematical
tool which makes predictions regardless of the types of
configurations, and SMT is one such theory.

Intuitively, a stratification is a partition of a piecewise-
smooth manifold such that each subset, called a stratum, is
either a set of discrete points or has a smooth structure. In a
regular grid with cubic cells, the stratification we propose
will be formed by four sets (the strata), each one a (possibly
disconnected) manifold. The vertex set contains all vertices
of the grid. The edge set contains all edge interiors, the face
set contains all face interiors, and the cell set contains all
cube interiors. We illustrate the concept for the 2D case in
Fig. 6. The important property of the strata is that the level
sets of f restricted to each stratum are smooth (or lack any
differential structure, as in the vertex-set). In SMT, one
applies standard Morse theory on each stratum, and then
combines the partial results appropriately.

The set of points with zero gradient (computed on each
stratum), which SMT assumes to be isolated, are called the
critical points of the stratified Morse function. In addition,
every point in the vertex set is considered critical as well.
One major difference between SMT and the smooth theory
is that some critical points do not actually change the
topology of the level sets. This is why considering all grid
vertices as critical does not introduce any practical
problems: most grid vertices of typical scalar fields will be
virtual critical points, i.e., points which do not change the
Euler characteristic of the surface. Carr and Snoeyink use a
related concept (which they call “potential critical points”)
in their state-machine description of the topology of
interpolants [5].

Let M be the stratified grid described above. It can be
shown that if p is a point in a d-dimensional stratum ofM, it
is always possible to find a ð3� dÞ-dimensional submani-
fold of M (which might straddle many strata) that meets
transversely the stratum containing p, and whose intersec-
tion consists of only p (one way to think of this ð3� dÞ-
manifold is as a “topological orthogonal complement”). In
this context, we can define a small neighborhood T"ðpÞ in
the strata containing p and the lower tangential link T�L ðpÞ as
the set of points in the boundary of T"ðpÞ with scalar values
less than that in p.

Similarly, we can define the upper tangential link TþL ðpÞ as
the set of points in the boundary of T"ðpÞ with scalar value
higher than that at p. Lower normal N�L ðpÞ and upper normal
NþL ðpÞ links are analogous notions, but the lower and upper
links are taken to be subsets of N"ðpÞ, itself a subset of the
ð3� dÞ-dimensional submanifold transverse to the stratum
of p going through p. The definitions above are needed in
order to define the lower stratified link and upper stratified
link, as follows: given T"ðpÞ; T�L ðpÞ; N"ðpÞ, and N�L ðpÞ, the
lower stratified Morse link (and similarly for upper stratified
link) is given by

L�ðpÞ ¼ ðT"ðpÞ �N�L ðpÞÞ [ ðN"ðpÞ � T�L ðpÞÞ: ð4:2Þ

These definitions allow us to classify critical points even in
the nonsmooth scenario. They let us compute topological
changes with the same methodology used in the smooth
case. In other words, when a scalar value � crosses a critical
value �p in a critical point p, the topological change in the
isosurface is characterized by removing L�ðpÞ and attaching
LþðpÞ, affecting the Euler characteristic as defined in (4.1).

The remaining problem is how to determine �ðL�ðpÞÞ
and �ðLþðpÞÞ. Recalling that �ðA [BÞ ¼ �ðAÞ þ �ðBÞ �
�ðA \BÞ, �ðA�BÞ ¼ �ðAÞ�ðBÞ, and �ðT"Þ ¼ �ðN"Þ ¼ 1
(we are omitting the point p) we have:

�ðL�Þ ¼ �ðT" �N�L [N" � T�L Þ
¼ �ðN�L Þ þ �ðT�L Þ � �ðT" �N�L \N" � T�L Þ:

ð4:3Þ

Now, we can define T" ¼ T�L [ Tr; T�L \ Tr ¼ ; and simi-
larly for N" and N�L . Then, expand the partitions and
products, and distribute the intersections around the
unions, noticing all but one of intersections will be empty:

T" �N�L \N" � T�L ¼ ððTr [ T�L Þ �N�L Þ \ ððNr [N�L Þ � T�L Þ
¼ ððTr �N�L Þ [ ðT�L �N�L ÞÞ
\ ððNr � T�L Þ [ ðN�L � T�L ÞÞ
¼ N�L � T�L :

Therefore,

�ðT" �N�L \N" � T�L Þ ¼ �ðN�L � T�L Þ ¼ �ðN�L Þ�ðT�L Þ;

which gives the final result

�ðL�Þ ¼ �ðN�L Þ þ �ðT�L Þ � �ðN�L Þ�ðT�L Þ: ð4:4Þ

The same result is valid for �ðLþÞ, if we replace the
superscript “�” by “þ” in (4.4). If T�L or TþL are 1D, then we
are done. If not, then we can recursively apply the same
equation to T�L and TþL and look at progressively lower-
dimensional strata until we reach T"ðpÞ and N"ðpÞ given by
1-disks. The lower and upper links for these 1-disks will
always be discrete spaces with zero, one, or two points, for
which � is simply the cardinality of the set.
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Fig. 6. An illustration of a piecewise-smooth immersed 2-manifold. The

colormap illustrates the value of each point of the scalar field. Notice that

although the manifold itself is not everywhere differentiable, each

stratum is itself an open manifold that is differentiable.



In some cases, the Euler characteristic of the lower and
upper link might be equal. Then, �ðL�ðpÞÞ ¼ �ðLþðpÞÞ, and
��ðpÞ ¼ 0. These cases correspond to the virtual critical
points mentioned above. Critical points in the interior of
cubic cells are handled by the smooth theory, since in that
case the normal Morse data are 0 dimensional. This implies
that the link will be an empty set with Euler characteristic
zero. So, by (4.4), �ðL�Þ ¼ �ðT�L Þ. Because the restriction of
the scalar field to a grid edge is a linear function, no critical
point can appear there. As a result, the new cases are critical
points occurring at vertices or in the interior of faces of the
grid. For a critical point p in a vertex, stratification can be
carried out recursively, using the edges of the cubes
meeting in p as tangential and normal submanifolds.
Denoting by nl1; nl2; nl3 the number of vertices adjacent to
p with scalar value less than that of p in each Cartesian
coordinate direction, (4.4) gives

�ðL�ðpÞÞ ¼ nl1 þ nl2 þ nl3 � nl1ðnl2 þ nl3Þ; ð4:5Þ

�ðLþðpÞÞ can be computed similarly, but considering the

number of neighbors of p in each Cartesian direction with

scalars higher than that of p.
If p is a critical point lying in a face r of a cube, we

consider the face itself as the tangential submanifold and
the line segment r? orthogonal to r through p the normal
submanifold. Recursively, the tangential submanifold can
be further stratified in two 1-disks (tangential and normal).
Denote by nl the number of ends of r? with scalar value less
than that of p. Also, recalling that the critical point lying in
the face r is necessarily a saddle, thus having two face
corners with scalar values less and two higher than that of
p, (4.4) gives

�ðL�ðpÞÞ ¼ nl þ 2� 2 nl: ð4:6Þ

Analogously, we can compute �ðLþðpÞÞ ¼ nu þ 2� 2 nu
where nu is the number of ends of r? with scalar value

higher than that of p.
A similar analysis can be carried out for every type of

critical point, regardless of whether the point belongs to the
interior of a grid cell (and so would yield equally well to a
smooth Morse theory analysis), an interior face, a boundary
face, or a vertex of any type. The Euler characteristic �� of
any isosurface with isovalue � is simply given as

�� ¼
X

pi2C�
��ðpiÞ; ð4:7Þ

where C� is the set of critical points with critical values less

than �.
It is worth mentioning once again that, to the best of our

knowledge, no other work has presented a scheme which
provides such a simple mechanism for computing the Euler
characteristic of level sets of piecewise-smooth trilinear
functions. Compare, for example, the case analyses and
state machines performed separately by Nielson [30], by
Carr and Snoeyink [5], and by Carr and Max [3]. In contrast,
we can recover an (admittedly weaker) topological invar-
iant by a much simpler argument. In addition, this
argument already generalizes (trivially because of the
stratification argument) to arbitrary dimensions, unlike
the other arguments in the literature.

5 MANUFACTURED SOLUTION PIPELINE

We now put the pieces together and build a pipeline for
topology verification using the results presented in Section 4.
In the following sections, the procedure called ISOSURFA-

CING refers to the isosurface extraction technique under
verification. INVARIANTFROMMESH computes topological
invariants of a simplicial complex.

5.1 Consistency

As previously mentioned, MC-like algorithms which use
disambiguation techniques are expected to generate PL
manifold isosurfaces no matter how complex the function
sampled in the vertices of the regular grid. In order to stress
the consistency test, we generate a random scalar field with
values in the interval ½�1; 1� and extract the isosurface with
isovalue � ¼ 0 (which is all but guaranteed not to be a
critical value) using a given isosurfacing technique, sub-
jecting the resulting triangle mesh to the consistency
verification. This process is repeated a large number of
times, and if the implementation fails to produce PL
manifolds for all cases, then the counterexample provides
a documented starting point for debugging. If it passes the
tests, we consider the implementation verified.

5.2 Verification Using Stratified Morse Theory

We can use the formulation described in Section 4.2 to
verify isosurfacing programs which promise to match the
topology of the trilinear interpolant. The SMT-based
verification procedure is summarized in Fig. 7. The
algorithm has four main steps. A random scalar field with
node values in the interval ½�1; 1� is initially created.
Representing the trilinear interpolation in a grid cell by
fðx; y; zÞ ¼ axyzþ bxyþ cxzþ dyzþ exþ fyþ gzþ h, t h e
internal critical points are given by

tx ¼ ðd�x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�y�z

p
Þ=ða�xÞ;

ty ¼ ðc�y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�y�z

p
Þ=ða�yÞ;

tz ¼ ðb�z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�y�z

p
Þ=ða�zÞ;

where �x ¼ bc� ae, �y ¼ bd� af , and �z ¼ cd� ag [32].
Critical points on faces of the cubes are found by setting
x; y or z to either 0 or 1, and solving the quadratic
equation. If the solutions lie outside the unit cube ½0; 1�3,
they are not considered critical points, since they lie
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Fig. 7. Overview of the method of manufactured solutions using stratified

Morse theory. INVARIANTFROMCPS is computed using (4.7). The

method either fails to match the expected topology, in which case G is

provided as a counterexample, or succeeds otherwise.



outside the domain of the cell. The scalar field is
regenerated if any degenerate critical point is detected
(these can happen if either the random values in a cubic
cell have, by chance, the same value or when �x, �y or �z

are zero). In order to avoid numerical instabilities, we also
regenerate the scalar field locally if any internal critical
point lies too close to the border of the domain (that is, to
an edge or to a face of the cube).

The third step computes the Euler characteristic of a set
of isosurfaces with random isovalues in the interval ½�1; 1�
using the theory previously described, jointly with (4.7).
In the final step, the triangle mesh M approximating the
isosurfaces is extracted using the algorithm under
verification, and �ðMÞ ¼ V ðMÞ � EðMÞ þ F ðMÞ, where
V ðMÞ; EðMÞ, and F ðMÞ are the number of vertices, edges,
and triangles. If the Euler characteristic computed from
the mesh does not match the one calculated via (4.7), the
verification fails. We carry out the process a number of
times, and implementations that pass the tests are less
likely to contain bugs.

5.3 Verification Using Digital Topology

Fig. 9 shows the verification pipeline using the MI algorithm,
and Fig. 8 depicts the refinement process. Once again a
random scalar field, with potentially many ambiguous
cubes, is initially generated in the vertices of a grid G. The
algorithm illustrated in Fig. 9 is applied to refine G so as to
generate a new grid ~Gwhich does not have ambiguous cells.
If the maximum number of refinement is reached and
ambiguous cells still remain, then the process is restarted
from scratch. Notice that cube subdivision does not need to
be uniform. For instance, each cube may be refined using a
randomly placed new node point or using ti’s critical points,
and the result of the verification process still holds. This is
because Theorem 4.1 only requires ci to be unambiguous.
For simplicity, in this paper we refine G uniformly doubling
the grid resolution in each dimension.

Scalars are assigned to the new vertices of ~G (the ones not
in G) by trilinearly interpolating from scalars in G, thus
ensuring that G and ~G have exactly the same scalar field [30].
As all cubic cells in ~G are unambiguous, Theorem 4.1
guarantees the topology of the digital surface @O� obtained
from ~G is equivalent to that of tðxÞ ¼ �. Algorithm
INVARIANTFROMDS computes topological invariants of
@O� using the scheme discussed in Section 4.1. In this

context, INVARIANTFROMDS is the algorithm illustrated in
Fig. 5. Surfaces with boundary are avoided by assigning the
scalar value 1 to every vertex in the boundary of G.

6 EXPERIMENTAL RESULTS

In this section, we present the results of applying our
topology verification methodology to a number of different
isosurfacing techniques, three of them with topological
guarantees with respect to trilinear interpolant. Specifically,
the techniques are:

VTKMC [38] is the Visualization Toolkit (VTK) imple-
mentation of the Marching Cubes algorithm with the implicit
disambiguation scheme proposed by Montani et al. [26].
Essentially, it separates positive vertices when a face saddle
appears and assumes no tunnels exist inside a cube. The
proposed scheme is topologically consistent, but it does not
reproduce the topology of the trilinear interpolant.

Marching Cubes with Edge Transformations or MACET

[12] is a Marching Cubes-based technique designed to
generate triangle meshes with good quality. Quality is
reached by displacing active edges of the grid (edges
intersected by the isosurface), both in normal and tangential
direction toward avoiding “sliver” intersections. Macet
does not reproduce the topology of the trilinear interpolant.

AFRONT [37] is an advancing-front method for isosurface
extraction, remeshing, and triangulation of point sets. It
works by advancing triangles over an implicit surface. A
sizing function that takes curvature into account is used to
adapt the triangle mesh to features of the surface. AFRONT

uses cubic spline reconstruction kernels to construct the
scalar field from a regular grid. The algorithm produces
high-quality triangle meshes with bounded Hausdorff
error. As occurred with the VTK and Macet implementa-
tions, Afront produces consistent surfaces but, as expected,
the results do not match the trilinear interpolant.

MATLAB [24] is a high-level language for building codes
that requires intensive numerical computation. It has a
number of features and among them an isosurface extrac-
tion routine for volume data visualization. Unfortunately,
MATLAB documentation does not offer information on the
particularities of the implemented isosurface extraction
technique (e.g., Marching Cubes, Delaunay-based, etc.;
consistent or correct).
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Fig. 8. Our manufactured solution is given by tðxÞ ¼ �. G is depicted in
solid lines while ~G is shown in dashed lines. ~G is a uniform subdivision of G.
The trilinear surfaces ti are defined for each cube ci 2 G and resampled in
c0j 2 ~G. The cubes in the center of G have four maxima each (left) and thus
induce complicated topology. The final isosurface may have several
tunnels and/or connected components even for coarse G (right).

Fig. 9. Overview of the method of manufactured solutions using digital
topology. The method either fails to match the expected topology, in
which case G is provided as a counterexample, or succeeds otherwise.



SNAPMC [34] is a Marching Cubes variant which
produces high-quality triangle meshes from regular grids.
The central idea is to extend the original lookup table to
account for cases where the isosurface passes exactly
through the grid nodes. Specifically, a user-controlled
parameter dictates maximum distance for “snapping” the
isosurface into the grid node. The authors report an
improvement in the minimum triangle angle when com-
pared to previous techniques.

MC33 was introduced by Chernyaev [8] to solve ambi-
guities in the original MC. It extends Marching Cubes table
from 15 to 33 cases to account for ambiguous cases and to
reproduce the topology of the trilinear interpolant inside each
cube. The original table was later modified to remove two
redundant cases which leads to 31 unique configurations.
Chernyaev’s MC solves face ambiguity using Nielsen and
Hamann’s [31] asymptotic decider and internal ambiguity by
evaluating the bilinear function over a plane parallel to a face.
Additional points may be inserted to reproduce some
configuration requiring subvoxel accuracy. We use Lewiner
et al.’s implementation [21] of Chernyaev’s algorithm.

DELISO [11] is a Delaunay-based approach for isosurface
extraction. It uses the intersection of the 3D Voronoi
diagram and the desired surface to define a restricted
Delaunay triangulation. Moreover, it builds the restricted
Delaunay triangulation without having to compute the
whole 3D Voronoi structure. DELISO has theoretical
guarantees of homeomorphism and mesh quality.

MCFLOW is a proof-of-concept implementation of the
algorithm described in Scheidegger et al. [36]. It works by
successive cube subdivision until it has a simple edge flow. A
cube has a simple edge flow if it has only one minima and
one maxima. A vertex s 2 ci is a minimum if all vertices
sj 2 ci connected to it has tðsjÞ > tðsiÞ. Similarly, a vertex is
a maximum if tðsjÞ < tðsiÞ for every neighbor vertex j. This
property guarantees that the Marching Cubes method will
generate a triangle mesh homeomorphic to the isosurface.
After subdivision, the surfaces must be attached back
together. The final mesh is topologically correct with
respect to the trilinear interpolant.

We believe that the implementation of any of these
algorithms in full detail is nontrivial. The results reported
in the following section support this statement. They show
that coding isosurfacing algorithms is complex and error-
prone, and they reinforce the need for robust verification
mechanisms. In what follows, we say that a mismatch occurs
when invariants computed from a verification procedure
disagree with the invariants computed from the isosurfacing
technique. A mismatch does not necessarily mean an
implementation is incorrect, as we shall see later in this
section. After discussions with the developers, however, we
did find that there were bugs in some of the implementations.

6.1 Topology Consistency

All implementations were subject to the consistency test
(Section 5.1), resulting in the outputs reported in the first
column of Table 1. We observed mismatches for DELISO,
SNAPMC (with nonzero snap value), and MATLAB im-
plementations. Now, we detail these results.

6.1.1 DELISO

We analyzed 50 cases where DELISO’s output mismatched
the ground truth produced by MMS, and we found that:

1) 28 cases had incorrect hole(s) in the mesh, 2) 15 cases had
missing triangle(s), and 3) seven cases had duplicated
vertices. These cases are illustrated in Fig. 11. The first
problem is possibly due to the nonsmooth nature of the
piecewise trilinear interpolant, since in all 28 cases the holes
appeared in the faces of the cubic grid. It is important to
recall that DELISO is designed to reproduce the topology of
the trilinear interpolant inside each grid cube, but the
underlying algorithm requires the isosurface to be C2

continuous everywhere, which does not hold for the
piecewise trilinear isosurface. In practice, real-world data
sets such as medical images may induce “smoother”
piecewise trilinear fields when compared to the extreme
stressing from the random field, which should reduce the
incidence of such cases. Missing triangles, however,
occurred in the interior of cubic cells where the trilinear
surface is smooth. Those problems deserve a deeper
analysis, as one cannot say beforehand if the mismatches
are caused by problems in the code or numerical instability
associated with the initial sampling, ray-surface intersec-
tion, and the 3D Delaunay triangulation construction.

6.1.2 SNAPMC

Table 1 shows that SNAPMC with nonzero snap value causes
the mesh to be topologically inconsistent (Fig. 13a) in more
the 50 percent of the performed tests. The reason for this
behavior is in the heart of the technique: the snapping process
causes geometrically close vertices to be merged together
which may eliminate connected components, or loops, join
connected components or even create nonmanifold surfaces.
This is why there was an increase in the number of
mismatches when compared with SNAPMC with zero snap
value. Since nonmanifold meshes are not desirable in many
applications, the authors suggest a postprocessing for fixing
these topological issues, although no implementation or
algorithm for this postprocessing is provided.

6.1.3 MATLAB

MATLAB documentation does not specify the properties of
the implemented isosurface extraction technique. Conse-
quently, it becomes hard to justify the results for the high
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TABLE 1
Rate of Invariant Mismatches Using the PL Manifold Property,

Digital Surfaces, and Stratified Morse Theory for
1,000 Randomly Generated Scalar Fields

(the Lower the Rate the Better)

The Invariants �1 and �2 are Computed Only if the Output Mesh is a 2-
Manifold without Boundary. We run correctness tests in all algorithms for
completeness and to test tightness of the theory: algorithms that are not
topology-preserving should fail these tests. The high number of DELISO,
SNAPMC, and MATLAB mismatches are explained in Section 6.1.
1indicates zero snap parameter and 2indicates snap value of 0.3.



number of mismatches we see in Table 1. For instance,
Fig. 13b shows an example of a nonmanifold mesh extracted
using MATLAB. In that figure, the two highlighted edges
have more than two faces connected to them and the faces
between these edges are coplanar. Since we do not have
enough information to explain this behavior, this might be
the actual expected behavior or an unexpected side effect. An
advantage of our tests is the record of the observed behavior
of mesh topologies generated by MATLAB.

6.1.4 MACET

In our first tests, MACET failed in all consistency tests for a
5� 5� 5 grid. An inspection in the code revealed that the
layer of cells in the boundary of the grid has not been
traversed. Once that bug was fixed, MACET started to
produce PL manifold meshes and was successful in the
consistency test, as shown in Table 1.

6.2 Topology Correctness

The verification tests described in Sections 5.2 and 5.3 were
applied to all algorithms, although only MC33, DELISO, and
MCFLOW were expected to generate meshes with the same
topology of the trilinear interpolant. Our tests consisted of
one thousand random fields generated in a rectilinear 5�
5� 5 grid G. The verification test using Digital Surfaces
demanded a compact, orientable, 2-manifold without
boundary, so we set scalars equal to 1 for grid vertices in

the boundary of the grid. As stratified Morse theory
supports surfaces with boundary, no special treatment was
employed in the boundary of G. We decided to run these
tests using all algorithms for completeness and also for
testing the tightness of the theory, which says that if the
algorithms do not preserve the topology of the trilinear
interpolant, a mismatch should occur. Interestingly, with
this test, we were able to find another code mistake in
MACET that prevented it from terminating safely when the
SMT procedure was applied. By the time of the submission
of this paper, the problem was not fixed. For all nontopol-
ogy-preserving algorithms, there was a high number of
mismatches as expected.

One might think that the algorithms described in Figs. 7
and 9 do not cover all possible topology configurations
because some scalar fields are eventually discarded (lines 7
and 6, respectively). This could happen due to the presence of
ambiguous cells after refining the input grid to the maximum
tolerance (digital topology test) or critical points falling too
close to edges/faces of the cubic cells (SMT test). However,
we can ensure that all possible configurations for the trilinear
interpolation were considered in the tests. Fig. 10 shows the
incidence of each possible configuration (including all
ambiguous cases) for the trilinear interpolation in the
generated random fields. Dark bars correspond to the
number of times a specific case happens in the random field,
and the light bars show how many of those cases are accepted
by our verification methodology, that is, the random field is
not discarded. Notice that no significant differences can be
observed, implying that our rejection-sampling method does
not bias the case frequencies.

Some configurations, such as 13 or 0, have low incidence
rates and therefore might not be sufficiently stressed during
verification. While the trivial case 0 does not pose a
challenge for topology-preserving implementations, config-
uration 13 has six subcases whose level-sets are fairly
complicated [22], [30]. Fortunately, we can build random
fields in a convenient fashion by forcing a few cubes to
represent a particular instance of the table, such as case 13,
which produces more focused tests.

Table 1 shows statistics for all implementations. For
MC33, the tests revealed a problem with configuration 4, 6,
and 13 of the table (ambiguous cases). Fig. 12 shows the
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Fig. 10. The horizontal axis shows the case and subcase numbers for
each of the 31 Marching Cubes configurations described by Lopes and
Brodlie [22]. The dark bars show the percentage of random fields that fit
a particular configuration. The light bars show the percentage of random
fields which fit a particular configuration and do not violate the
assumptions of our manufactured solution. Our manufactured solution
hits all possible cube configurations.

Fig. 11. DELISO mismatch example. From left to right: holes in C0 regions; single missing triangle in a smooth region; duplicated vertex (the mesh
around the duplicated vertex is shown). These behavior induce topology mismatches between the generated mesh and the expected topology.

Fig. 12. MC33 mismatch example. From left to right: problem in the cases 4.1.2, 6.1.2, and 13.5.2 of marching cube table (all are ambiguous). Each
group of three pictures shows the obtained, expected, and implicit surfaces. Our verification procedure can detect the topological differences
between the obtained and expected topologies, even for ambiguous cases.



obtained and expected tiles for a cube. Contacting the
author, we found that one of the mismatches was due to a
mistake when coding configuration 13 of the MC table. A
nonobvious algorithm detail that is not discussed in either
Chernyaev’s or Lewiner’s work is the problem of orienta-
tion in some of the cube configurations [20]. The case 13.5.2
shown in Fig. 12 (right) is an example of one such
configuration, where an additional criterion is required to
decide the tunnel orientation that is lacking in the original
implementation of MC33. This problem was easily detected
by our framework, because the orientation changes the
mesh invariants, and a mismatch occurs.

DELISO presented a high percentage of �0 mismatches due
to the mechanism used for tracking connected components.
It uses ray-surface intersection to sample a few points over
each connected component of the isosurface before extract-
ing it. The number of rays is a user-controlled parameter and
its initial position and direction are randomly assigned.
DELISO is likely to extract the biggest connected component
and, occasionally, it misses small components. It is important
to say that the ray-sample-based scheme tends to work fine in
practical applications where small surfaces are not present.
The invariant mismatches for �1 and �2 are computed only if
no consistency mismatch happens.

For MCFLOW, we applied the verification framework
systematically during its implementation/development.
Obviously, many bugs were uncovered and fixed over
the course of its development. Since we are randomizing
the piecewise trilinear field, we are likely to cover all
possible Marching Cubes entries and also different cube
combinations. As verification tests have been applied since
the very beginning, all detectable bugs were removed,
resulting in no mismatches. The downside of MCFLOW,
though, is that typical bad quality triangles appearing in
Marching Cubes become even worse in MCFLOW, because
cubes of different sizes are glued together. MCFLOW

geometrical convergence is presented in the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.109 [36].

7 DISCUSSION AND LIMITATIONS

7.1 Quality of Manufactured Solutions

In any use of MMS, one very important question is that of the
quality of the manufactured solutions, since it reflects directly
on the quality of the verification process. Using random
solutions, for which we compute the necessary invariants,
naturally seems to yield good results. However, our random
solutions will almost always have nonidentical values. This

raises the issue of detecting and handling degenerate inputs,
such as the ones arising from quantization. We note that most
implementations use techniques such as Simulation of
Simplicity [14] (for example, by arbitrarily breaking ties
using node ordering) to effectively keep the facade of
nondegeneracy. However, we note that developing manu-
factured solutions specifically to stress degeneracies is
desirable when using verification tools during development.
We decided against this since different implementations
might employ different strategies to handle degeneracies and
our goal was to keep the presentation sufficiently uniform.

7.2 Topology and Geometry

This paper extends the work by Etiene et al. [15] toward
including topology in the loop of verification for isosurface
techniques. The machinery presented herein combined with
the methodology for verifying geometry comprises a solid
battery of tests able to stress most of the existing isosurface
extraction codes.

To illustrate this, we also submitted MC33 and MCFLOW

techniques to the geometrical test proposed by Etiene, as
these codes have not been geometrically verified. While
MC33 has geometrical behavior in agreement with Etiene’s
approach, the results presented in Section 6 show it does
not pass the topological tests. On the other hand, after
ensuring that MCFLOW was successful regarding topologi-
cal tests, we submitted it to the geometrical analysis, which
revealed problems. Fig. 13c shows an example of an output
generated in the early stages of development of MCFLOW

before (left) and after (right) fixing the bug. The topology
matches the expected one (a topological sphere); never-
theless, the geometry does not converge.

7.3 SMT versus DT

The verification approach using digital surfaces generates
detailed information about the expected topology because it
provides �0, �1, and �2. However, verifying isosurfaces with
boundaries would require additional theoretical results, as
the theory supporting our verification algorithm is only valid
for surfaces without boundary. In contrast, the verification
methodology using stratified Morse theory can handle
surfaces with boundary. However, SMT only provides
information about the Euler characteristic, making it harder
to determine when the topological verification process fails.
Another issue with SMT is that if a code incorrectly
introduces topological features so as to preserve �, then no
failure will be detected. For example, suppose the surface to
be reconstructed is a torus, but the code produces a torus plus
three triangles, each one sharing two vertices with the other
triangles but not an edge. In this case, torus plus three
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Fig. 13. Mismatches in topology and geometry. (a) SNAPMC generates nonmanifold surfaces due to the snap process. (b) MATLAB generates some
edges (red) that are shared by more than two face. (c) MCFLOW before (left) and after (right) fixing a bug that causes the code to produce the
expected topology, but the wrong geometry.



“cycling” triangles also has � ¼ 0, exactly the Euler char-
acteristic of the single torus. In that case, notice that the digital
surface-based test would be able to detect the spurious three
triangles by comparing �0. Despite being less sensitive in
theory, SMT-based verification revealed similar problems as
the digital topology tests have. We believe this effectiveness
comes in part from the randomized nature of our tests.

7.4 Implementation of SMT and DT

Verification tools should be as simple as possible while still
revealing unexpected behavior. The pipeline for geometric
convergence is straightforward and thus much less error-
prone. This is mostly because Etiene et al.’s approach uses
analytical manufactured solutions to provide information
about function value, gradients, area, and curvature. In
topology, on the other hand, we can manufacture only
simple analytical solutions (e.g., a sphere, torus, double-
torus, etc.) for which we know topological invariants. There
are no guarantees that these solutions will cover all cases of a
trilinear interpolant inside a cube. For this reason, we
employ a random manufactured solution and must then
compute explicitly the topological invariants. A point which
naturally arises in verification settings is that the verification
code is another program. How do we verify the verifier?

First, note that the implementation of either verifier is
simpler than the isosurfacing techniques under scrutiny.
This reduces the chances of a bug impacting the original
verification. In addition, we can use the same strategy to
check if the verification tools are implemented correctly. For
SMT, one may compute � for an isovalue that is greater than
any other in the grid. In such case, the verification tool should
result in � ¼ 0. For DT, we can use the fact that Majority
Interpolation always produces a 2-manifold. Fortunately,
this test reduces to check for two invalid cube configurations
as described by Stelldinger et al. [39]. Obviously, there might
remain bugs in the verification code. As we have stated
before, a mismatch between the expected invariants and the
computed ones indicates a problem somewhere in the pipe-
line; our experiments are empirical evidence of the techni-
que’s effectiveness in detecting implementation problems.

Another concern is the performance of the verification
tools. In our experiments, the invariant computation via
SMT and DS is faster than any isosurface extraction
presented in this paper, for most of the random grids. In
some scenarios, DS might experience a slowdown because it
refines the grid in order to eliminate ambiguous cubes (the
maximum number of refinement is set to 4). Thus, both
SMT and DS (after grid refinement) need to perform a
constant number of operations for each grid cube to
determine the DS or critical points (SMT). In this particular
context, we highlight the recent developments on certifying
algorithms, which produce both the output and an efficiently
checkable certificate of correctness [25].

7.5 Contour Trees

Contour trees [6] are powerful structures to describe the
evolution of level-sets of simply connected domains. It
normally assumes a simplicial complex as input, but there
are extensions to handle regular grids [32]. Contour trees
naturally provide �0, and they can be extended to report �1

and �2. Hence, for any isovalue, we have information about
all Betti numbers, even for surfaces with boundaries. This
fact renders contour trees a good candidate for verification

purposes. In fact, if an implementation is available, we
encourage its use so as to increase confidence in the
algorithm’s behavior. However, the implementation of a
contour tree is more complicated than the techniques
presented here. For regular grids, a divide-and-conquer
approach can be used along with oracles representing the
split and join trees in the deepest level of the recursion,
which is nontrivial. Also, implementing the merging of the
two trees to obtain the final contour tree is still involving
and error-prone. Our approach, on the other hand, is based
on regular grid refinement and voxel selection for the DT
method and critical point computation and classification for
the SMT method. There are other tools, including contour
trees, that could be used to assess topology correctness of
isosurface extraction algorithms, and an interesting experi-
ment would be to compare the number of mismatches
found by each of these tools. Nevertheless, in this paper, we
have focused on the approaches using SMT and DT because
of their simplicity and effectiveness in finding code
mistakes in publicly available implementations. We believe
that the simpler methodologies we have presented here are
more likely to be adopted during development of visualiza-
tion isosurfacing tools.

7.6 Topology of the Underlying Object

In this paper, we are interested in how to effectively verify
topological properties of codes which employ trilinear
interpolation. In particular, this means that our verification
tools will work for implementations other than marching
methods (for example, DelIso is based on Delaunay refine-
ment). Nevertheless, in practice, the original scalar field will
not be trilinear, and algorithms which assume a trilinearly
interpolated scalar field might not provide any topological
guarantee regarding the reconstructed object. Consider, for
example, a piecewise linear curve � built by walking through
diagonals of adjacent cubes ci 2 G and define the distance
field dðxÞ ¼ minfkx� x0k such that x0 2 �g. The isosurface
dðxÞ ¼ � for any � > 0 is a single tube around �. However,
none of the implementations tested could successfully
reproduce the tubular structure for all � > 0. This is not
particularly surprising, since the trilinear interpolation from
samples of d is quite different from the d. The inline figure
shows a typical output produced by VTK Marching Cubes
for the distance field d ¼ �. Notice, however, that this is not
only an issue of sampling rate because if the tube keeps going
through the diagonals of cubic cells, VTK will not be able
reproduce d ¼ � yet. Also recall that some structures cannot
even be reproduced by trilinear interpolants, as when �
crosses diagonals of two parallel faces of a cubic cell, as
described in [8], [32]. The aspects above are not errors in the
codes but reflect software design choices that should be
clearly expressed to users of those visualization techniques.

7.7 Limitations

The theoretical guarantees supporting our manufactured
solution rely on the trilinear interpolant. If an interpolant
other than trilinear is employed, then new results ensuring
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homeomorphism (Theorem 4.1) should be derived. The
basic infrastructure we have described here, however,
should be appropriate as a starting point for the process.

8 CONCLUSION AND FUTURE WORK

We extended the framework presented by Etiene et al. [15]
by including topology into the verification cycle. We used
machinery from digital topology and stratified Morse
theory to derive two verification tools that are simple and
yet capable of finding unexpected behavior and coding
mistakes. We argue that researchers and developers should
consider adopting verification as an integral part of the
investigation and development of scientific visualization
techniques. Topological properties are as important as
geometric ones, and they deserve the same amount of
attention. It is telling that the only algorithm that passed all
verification tests proposed here is the one that used the
verification procedures during its development. We believe
this happened because topological properties are particu-
larly subtle and require an unusually large amount of care.

The idea of verification through manufactured solutions
is clearly problem-dependent and mathematical tools must
be tailored accordingly. Still, we expect the framework to
enjoy a similar effectiveness in many areas of scientific
visualization, including volume rendering, streamline com-
putation, and mesh simplification. We hope that the results
of this paper further motivate the visualization community
to develop a culture of verification.
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