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Abstract—We consider the inverse electrocardiographic prob-
lem of computing epicardial potentials from a body-surface poten-
tial map. We study how to improve numerical approximation of
the inverse problem when the finite-element method is used. Be-
ing ill-posed, the inverse problem requires different discretization
strategies from its corresponding forward problem. We propose
refinement guidelines that specifically address the ill-posedness of
the problem. The resulting guidelines necessitate the use of hybrid
finite elements composed of tetrahedra and prism elements. Also,
in order to maintain consistent numerical quality when the inverse
problem is discretized into different scales, we propose a new fam-
ily of regularizers using the variational principle underlying finite-
element methods. These variational-formed regularizers serve as
an alternative to the traditional Tikhonov regularizers, but pre-
serves the L2 norm and thereby achieves consistent regularization
in multiscale simulations. The variational formulation also enables
a simple construction of the discrete gradient operator over irreg-
ular meshes, which is difficult to define in traditional discretization
schemes. We validated our hybrid element technique and the vari-
ational regularizers by simulations on a realistic 3-D torso/heart
model with empirical heart data. Results show that discretization
based on our proposed strategies mitigates the ill-conditioning and
improves the inverse solution, and that the variational formula-
tion may benefit a broader range of potential-based bioelectric
problems.

Index Terms—Forward/inverse electrocardiographic prob-
lem, hybrid finite-element method, regularization, variational
formulation.

I. INTRODUCTION

E LECTROCARDIOGRAPHY (ECG) investigates the rela-
tionship between the electrical activity of the heart and its

induced voltages measured on the torso surface. This relation-
ship can be characterized mathematically as a forward problem

Manuscript received November 15, 2010; revised January 22, 2011; accepted
February 14, 2011. Date of publication March 3, 2011; date of current version
May 18, 2011. The work of R. M. Kirby and C. R. Johnson was supported in part
by the NSF Career Award under Grant NSF-CCF0347791 and in part by the NIH
NCRR Center for Integrative Biomedical Computing (www.sci.utah.edu/cibc)
under Grant 5P41RR012553-12. Asterisk indicates corresponding author.

D. Wang and R. M. Kirby are with the Scientific Computing and Imaging
(SCI) Institute and the School of Computing, University of Utah, Salt Lake City,
UT 84112 USA (e-mail: dfwang@sci.utah.edu; kirby@sci.utah.edu).

∗C. R. Johnson is with the Scientific Computing and Imaging (SCI) Institute
and the School of Computing, University of Utah, Salt Lake City, UT 84112
USA (e-mail: crj@sci.utah.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2011.2122305

in which one estimates the body-surface potentials based upon
cardiac activities represented either by epicardial potentials or
current sources within the heart; or as an inverse problem where
the goal is to noninvasively estimate cardiac electrical activity
from voltage distributions measured on the body surface.

This paper studies one type of potential-based inverse ECG
problem: to reconstruct epicardial potentials from recorded
body-surface potential maps. This inverse problem is a basis
for some promising clinical applications, such as noninvasive
diagnosis [1], [2] and guidance for intervention [3], [4]. The un-
derlying bioelectric model is a potential-based boundary value
problem [5], [6]. ECG simulation involves solving the mathe-
matical equations over a geometric domain that approximates
the anatomical structure of a human body. Computational meth-
ods are applied to obtain a numerical solution suitable for clini-
cal purposes. In order to validate the results obtained, one needs
to ensure that the simulation accurately reflects the actual pro-
cess concerned, a step often known as validation and verification
(V&V) in the engineering literature [7].

The goal of this paper is to develop discretization and re-
finement strategies to be employed when solving the inverse
ECG problem with finite-element methods (FEM). Refinement
decreases discretization errors by increasing the resolution (or
fidelity) of the numerical approximation at the cost of increased
computational work. With such strategies in place, one can spec-
ify an acceptable discrepancy between the true and approximate
solutions and can tune (or refine) the numerical and geomet-
ric approximations accordingly. Although refinement methods
are widely used in many engineering fields including the ECG
community, they are mostly targeted toward the “forward sim-
ulation” [8]–[10], which may be inappropriate for the inverse
ECG problem [11].

The inverse problem requires different discretization consid-
erations from its corresponding forward problem because of its
ill-posed nature, i.e., small input errors may result in unbounded
errors in the solution. However, the literature on discretization
specifically for the inverse problem is limited. Although the im-
pact of discretization of the epicardium and the body surface
has been investigated [12], it still remains an open question as
to how discretization is related to the ill-conditioning, and ac-
cordingly how one should develop discretizations that optimize
the problem’s conditioning while minimizing the approximation
error. This paper aims to address this gap at a practical level.

To tackle the ill-posedness of an inverse problem, one typ-
ically needs “regularization” techniques, which impose con-
straints on the original problem so as to yield a better-posed
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problem [13]–[17]. While most regularization methods are ap-
plied in the problem-solving phase, it is worth noting that dis-
cretization itself is one form of regularization, impacting the
numerical conditioning of the discretized problem [18]. A sen-
sible discretization can be readily combined with classical reg-
ularization methods to achieve additional improvement to the
inverse problem solution.

Using a 2-D torso model, our prior study [11] proposed finite-
element refinement strategies specifically for the inverse ECG
problem and introduced hybrid finite elements in 2-D. This
paper extends our finite-element discretization study to 3-D for
simulations based on realistic human anatomical structures with
clinical applications.

Another major contribution of this paper is a new formula-
tion of regularizers that facilitates finite-element simulation un-
der multiscale simulations. Formed by the variational principle
underlying the FEM, the variational-formed regularizers work
within the classic Tikhonov regularization framework but have
several advantages over the traditionally implemented Tikhonov
regularizers. First, the variational regularizers keep the connec-
tion between the discretized model and its underlying contin-
uous model, and automatically conform to certain variational
properties inherently assumed by the discrete model resulting
from FEM. Second, the variational regularizers preserve their
norms, and thereby maintain consistent regularization when the
inverse ECG problem is computed under multiscale simulations.
Third, the variational formulation enables easy construction of
the discrete gradient operator, which is traditionally difficult
to obtain over irregular mesh. Fourth, it allows efficient impo-
sition of multiple constraints simultaneously. This formulation
may provide new insights into a broader range of potential-based
bioelectric problems.

This paper is structured as follows. Section II describes the
mathematical model of the forward/inverse ECG problem and its
discretization by FEM. Section III discusses the ill-posedness,
based on which we propose the discretization strategies for the
inverse ECG problem. Section IV presents the variational-form-
based regularization. Section V presents our simulation results
based on a realistic 3-D torso model. Section VI presents further
discussion and the proposed future work.

II. PROBLEM FORMULATION OF THE INVERSE PROBLEM

An inverse problem is typically solved within a framework
known as model-based optimization or partial differential equa-
tions (PDE)-constrained parameter estimation [19]. In such a
framework, one first builds a forward model that is able to pre-
dict measurement data if the source parameters (in our case,
epicardial potentials) are given. The forward model is often
governed by PDE. Then, the inverse model is formed as an op-
timization problem to determine the values of parameters such
that their resulting prediction is closest to the measurements.

In this section, we present the mathematical model of the
forward/inverse ECG problem. We then review how to convert
the continuous model into a discrete system by using FEM.

A. Mathematical Model

The potential field u within a torso is modeled by the Laplace
equation as follows:

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (1)

u(x) = uH (x), x ∈ ΓH (2)

�n · σ(x)∇u(x) = 0, x ∈ ΓT (3)

where Ω is the torso volume bounded by the epicardial surface
ΓH and the torso surface ΓT . uH is the epicardial potentials (a
Dirichlet condition), and σ(x) is the conductivity. Equation (3)
means no electric flux leaves the body into the air.

The forward problem estimates the potential field u(x) given
uH . The inverse problem aims to recover uH from u(x) that
reside on ΓT .

B. Finite-Element Discretization

Here, we describe how to apply the FEM to discretize (1)–
(3) over a realistic 3-D torso domain. A comprehensive FEM
formulation can be found in our previous paper [11]. The FEM
tessellates the 3-D domain Ω into a mesh, which is normally
composed of nonoverlapping tetrahedral, prismatic, or cubic
elements. One then builds an approximate solution that is a
combination of certain element-wise basis functions. The solu-
tion is identified by making it satisfy the differential equation in
the Galerkin sense.

We consider linear FEM: u(x) =
∑

i ûiφi(x), where ûi is
the voltage at node i, and φi(x) is the linear hat function asso-
ciated with node i and is nonzero only on its adjacent elements.
Substituting the expansion into the differential equation (1), ap-
plying the Galerkin method and integrating by parts, one will
get a linear system as follows:

(
AV V AV T

AT V AT T

)(
uV

uT

)

=
(
−AV H

−AT H

)

uH (4)

where mesh nodes are divided into three groups, indicated by
the subscripts: the nodes on the heart surface H , on the torso
surface T , and in the interior torso volume V . uV , uT , and
uH denote the vectors of voltages at each group of nodes. The
submatrices are given by

AJ K = (∇φj , σ∇φk ); j ∈ J, k ∈ K; J,K ∈ {V, T,H}
(5)

where (·, ·) means the inner product taken over the domain
Ω: (∇φi,∇φj ) =

∫
Ω ∇φi∇φj dΩ. The matrix on the left side

is known as the stiffness matrix and the right-side vector is
the “forcing term” induced by the known Dirichlet boundary
conditions.

Normally, no element spans from the heart surface to the
torso surface, and AT H = 0. From (4), we derive the relation
between the torso potentials uT and the epicardial potentials
uH as follows:

uT = KuH ,K = M−1N. (6)

Here, K is often referred to as the transfer matrix. M =
AT T − AT V A−1

V V AV T is well conditioned and invertible.
N = AT V A−1

V V AV H is severely ill-conditioned.
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Based on (6), the discretized forward ECG problem can be
stated as: calculate uT given uH and K. Its corresponding
inverse problem is given uT and K; find uH that minimizes the
functional ‖KuH − uT ‖ in certain appropriate norms.

III. DISCRETIZATION FOR INVERSE PROBLEM

A. Ill-Posedness of the Inverse Problem

Despite having a unique solution [20], the aforementioned
inverse ECG problem is severely ill-posed and its solution is
highly unstable. The ill-posedness stems from information of
the heart surface being attenuated when propagating through
the body volume conductor. Hence, the inverse calculation is
a process of amplification in which both the signal and noise
are magnified. We briefly discuss how the discretization process
translates the ill-posedness into an ill-conditioned numerical
model problem, i.e., the transfer matrix. We refer readers to our
previous study [11] for details.

The magnitude of amplification (hence the degree of ill-
conditioning) can be estimated by O((rT /rH )m ), where rH

and rT are the average distance from the center of the heart to
the heart surface and to the torso surface. It is an exponential
function in m, the spatial frequency of the epicardial potential
distribution. In a discrete problem, the spatial frequency ban-
dlimit is dictated by the resolution on the epicardium, in analogy
with the sampling theory about the bandlimit of a sampled signal
with its sampling rate. Therefore, arbitrarily refining the heart
surface may not be appropriate for solving the inverse problem.

We evaluate the conditioning of the discrete problem by ex-
amining the singular value decomposition (SVD) of the transfer
matrix K. Initially introduced in [21] and further developed
in [11], the SVD analysis reveals how each frequency compo-
nent of the epicardial potential contributes to the torso-surface
potential, and the contribution is given by the corresponding sin-
gular value. The SVD also builds the concept of the valid space
and the null space. The valid space of K is spanned by its right
eigenvectors corresponding to nontrivial singular values, and the
fraction of uH in that space can be recovered. The null space of
K corresponds to near-zero singular values, and the fraction of
uH in this space is not recoverable. Therefore, a better condi-
tioned transfer matrix can be characterized by a slowly descend-
ing singular value spectrum with a broader range of nonzero
singular values, whereas a poorly conditioned transfer matrix is
characterized by a large portion of near-zero singular values.

The SVD analysis provides a useful means for estimating the
conditioning of an inverse problem, regardless of regulariza-
tion methods, regularization parameters, input noise, or other
method-specific factors. Different discretization choices lead
to different singular value patterns of the transfer matrix. We
use this methodology to evaluate our discretization strategies as
follows.

B. Discretization Strategy for the Inverse Problem

In [11], we argue that through examining the solution proce-
dure given by FEM, one can see three factors that jointly dictate
the discretization quality for the inverse problem: 1) how ac-

curate one should represent the cardiac source uH ; 2) how to
approximate the volume conductor [the stiffness matrix on the
left side of (4)]; and 3) how to compute the heart-to-volume
projector AV H .

Section III-A has argued that the fidelity on the heart surface
determines how much information of epicardial potentials one
seeks to recover. Meanwhile, the discretization of the torso vol-
ume determines how much of that information can actually pass
through the body and be recoverable. The torso volume should
be discretized in the same resolution as the heart surface, oth-
erwise it will cause unnecessary, “artificial” ill-conditioning re-
flected as an expanded null space in the transfer matrix. Finally,
to better approximate the heart-to-volume projection, one needs
to refine the high potential gradient region around the heart.

Based on these considerations, we proposed the following
finite-element discretization guidelines for the inverse problem
and verified the guidelines on a 2-D torso model [11]. This
paper extends these guidelines to 3-D torso models. Results are
presented in Section V.

1) Set the resolution on the heart surface based on the prob-
lem of interest, but be cautious not to add additional fidelity
beyond what is needed.

2) While keeping the epicardial surface resolution fixed,
increase the resolution in the normal direction to the
heart surface. Such refinement captures the potential field
around the heart where the spatial gradient is high, thereby
improving the heart-to-volume projection AV H .

3) With the aforementioned two items in place, refine the vol-
ume conductor to a sufficient level so as to capture both
the features of body-surface measurement and the features
implied by the fidelity on the heart surface. For computa-
tional efficiency, exceeding that level is unnecessary.

4) Increasing the resolution of the torso surface is desirable,
but only when the new resolutions are associated with the
measured data.

C. Hybrid Finite Elements

The discretization guidelines mainly require refining the re-
gion around the heart while preserving the discretization of the
heart surface. For a tetrahedral element mesh, which is popular
in ECG simulation due to its simplicity, the previous require-
ment will lead to flat tetrahedra with high aspect ratios, which
may induce numerical instability by themselves [22].

To overcome this issue, we adopted a hybrid mesh scheme
that places layers of prismatic elements around the heart before
filling the rest of the body volume with tetrahedral elements.
Unlike tetrahedral elements, a prismatic element effectively de-
couples the resolution in its normal direction and the resolution
on its base [23], thus enabling us to refine the direction normal
to the heart without changing the resolution of the heart surface.

The hybrid mesh is simple to implement. Mesh generation
starts from triangulated bounding surfaces for each organ and
tissue. Prisms are padded around any organ by extruding its
triangulated surface into the body volume. The layers and the
thickness of prisms can be adapted when the potential gradient
is expected to change dramatically. The padded prisms form a
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new closed, triangulated surface, upon which standard tetrahe-
dral mesh generation can be performed to fill the rest of the
volume. The prisms and tetrahedra conform well at their bound-
ing interface.

D. Truncation from High-Order Finite Elements

An alternative to spatial refinement is to use high-order finite
elements, which achieve higher accuracy with more efficiency
than linear finite elements. High-order FEM often increases the
resolution uniformly, so we still need to limit the resolution
on the heart surface. The traditional way is to use transitional
elements but they are difficult to implement. Instead, we decom-
pose the discrete model (6) into a hierarchy of an element-wise
linear component, an element-wise quadratic component, and
so on. We then extract and solve only the linear component of
epicardial potentials, by truncating the transfer matrix properly.

The high-order finite elements achieve the goal of refining
the volume and the heart/torso interface, whereas the trunca-
tion keeps the epicardial resolution unchanged. Compared to
the method of hybrid mesh, the truncation scheme provides a
seamless solution for selective refinement. Conducted in the
polynomial space, the truncation maintains the smoothness of
the solution and circumvent the aspect-ratio problem that ob-
structs spatial refinement methods. The details of our truncation
scheme can be found in our previous work [24].

IV. REGULARIZATION VIA A NEW FAMILY OF

VARIATIONAL-FORM-BASED REGULARIZERS

A. Classic Tikhonov Regularization

The most common regularization for an inverse problem is
the Tikhonov method given as follows:

uH = argmin {‖KuH − uT ‖2 + λ2(‖LuH ‖2
2)} (7)

where ‖ · ‖2 is the Euclidean norm. The first term is the resid-
ual error and the second term is the regularizer constraining
certain properties of the epicardial potentials. There are three
basic Tikhonov schemes depending on the choice for L. The
zero-order Tikhonov (ZOT) takes L as an identity matrix, con-
straining the amplitude of epicardial potentials. The first-order
Tikhonov (FOT) takes L as a gradient operator, constraining
the spatial gradient. The second-order Tikhonov (SOT) takes L
as a surface Laplacian operator, constraining the curvature of
epicardial potentials.

B. Operators in a Variational Form

1) Motivation: Our study of variational formulation origi-
nated from the quest for a closed-form gradient operator defined
over a mesh: given a potential field uH located on some mesh
nodes, find a matrix LG such that LGuH gives the magnitude
of ∇uH located on the same set of nodes. The gradient operator
plays an important role in PDE-constrained optimization as a
basis for Newton’s method. For the inverse ECG problem, the
gradient operator over a heart surface enables gradient-based
regularization methods, which have reported superior results
in recovering spatio-temporal characteristics of epicardial data,

such as the FOT [25], [26] or recently total-variation regulariza-
tion [27].

Although a gradient field is not difficult to compute (by Taylor
approximation or Gauss–Green theorem), it is difficult to derive
an accurate discrete gradient operator in an explicit matrix
form, especially on irregular, unstructured meshes. The matrix
form requires representing the gradient at one node by the data
at its neighboring nodes, an ill-posed problem when mesh nodes
are irregularly distributed. The study [27] obtains the gradient
operator over the heart surface via the boundary element
method (BEM). This derivation can be found in [5, eq. (13)].

This method does not work for FEM because FEM and BEM
treat boundary conditions differently. BEM includes both the
Neumann boundary condition and the Dirichlet boundary con-
dition on the heart surface, thus enabling a gradient operator
relating the two. FEM only includes the Neumann boundary
condition, and applies the Dirichlet boundary condition later as
an external constraint. So, a gradient operator of this form is not
available.

2) Variational-Based Formulation: We borrow the name
“variational” from the context of FEM, upon which the formu-
lation is based. The main idea is to consider epicardial potentials
not as a vector, but as a continuous function represented by
finite-element expansion: ũH (x) =

∑
k uk

H φk (x), k ∈ H . The
potential field is evaluated by the continuous L2 norm, which
is defined as

‖ũH ‖L2 = (ũH , ũH )1/2 =
(∫

ΓH

ũH ũH ds

)1/2

. (8)

Substituting the finite-element expansion into (8) yields

‖(ũH )‖2
L2

=

⎛

⎝
∑

i

ui
H φi,

∑

j

uj
H φj

⎞

⎠ = uT
H MuH (9)

where M is the mass matrix over the heart. Similarly, one may
evaluate the L2 norm of the potential gradient field by

‖∇ũH ‖2
L2 =

⎛

⎝
∑

i

ui
H∇φi,

∑

j

uj
H∇φj

⎞

⎠ = uT
H SuH (10)

where S is the stiffness matrix over the heart. Detailed
definitions of M and S are given in Table I. The Euclidean
norm ‖ · ‖2 with an operator L has the property that

‖LuH ‖2
2 = uT

H LT LuH . (11)

Hence, if L is to describe the magnitude of the field ũH , it should
satisfy LT L = M. Such L can be computed as the Cholesky
factor of M and inserted into (7) for the ZOT representation, as
opposed to the traditional choice of an identity matrix.

If L is to describe ∇ũH , it should satisfy LT L = S, or
equivalently be the Cholesky factor of S. We name such L
the “variational-form” gradient operator because it is equivalent
to the real gradient operator in the variational principle. L can
be used in (7) for the FOT regularization.

Table I compares variational-formed operators with tradi-
tional operators up to the second order (the surface Laplacian).
One may extend this formulation to operators regarding even
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TABLE I
CHOICE OF L FOR TIKHONOV REGULARIZATION

higher-order Sobolev norms, provided that the finite-element
formulation maintains stronger differentiability—the varia-
tional Laplacian operator requires C1 continuous finite ele-
ments; higher order operators may need CP continuous ele-
ments. This paper only considers C0 elements and accordingly,
constraints up to first-order derivatives.

The Cholesky decomposition always exists because the mass
matrix, the stiffness matrix or matrices formed by higher or-
der derivatives are symmetric and at least positive semidefinite.
More discussion of their Cholesky decomposition will be pre-
sented in Section VI.

C. Norm Preservation

One advantage of the variational-form operators over con-
ventional discrete operators is that the former preserves the
norms under different resolutions—the continuous L2 norm is
independent of the discretization resolution, and the weights
made by FEM basis functions take mesh spacing into account.
Consequently, the variational operators achieve consistent regu-
larization when the inverse problem is computed under multiple
scales. In contrast, conventional regularizers are evaluated by
the Euclidean norm, which heavily relies on the discretization
resolution and cannot effectively relate the discrete model with
its underlying continuous field.

Taking the ZOT, for example, with the variational regularizer,
changing mesh spacing affects basis functions and then the mass
matrix, so the L2 norm of epicardial potentials is preserved.
With the conventional identity matrix, however, the regularizer’s
Euclidean norm is sensitive to the mesh resolution.

D. Imposition of Multiple Variational Regularizers

Tikhonov regularization with multiple spatial/temporal con-
straints [28], [29] is often desirable. Each constraint imposes
its own bias on the inverse solution, so combining several con-
straints may moderate the bias and provide a more comprehen-
sive account of the solution. Inverse solutions are sensitive to the
values of regularization parameters, and by distributing regular-
ization to multiple constraints one may improve the robustness
of the solution to any individual parameter.

The Tikhonov method with multiple constraints is given as

uH = argmin ‖KuH − uT ‖2
2 +

∑

i

λ2
i ‖LiuH ‖2

2 . (12)

Its solution is conceptually expressed as uH = (KT K +∑
i λ2

i (L
T
i Li))−1KT uT . For numerical stability, in practice,

the minimization is achieved by solving a linear least-squares

problem of the form

uH = argmin
∥
∥
∥
∥

(
K

λL

)

uH −
( uT

0

)∥
∥
∥
∥

2

2
. (13)

Equation (13) can be solved by standard routines such as the
QR factorization, or most efficiently by the bidiagonalization
algorithm [30]

With multiple constraints, λL is made by concatenating each
λiLi . Note that although (13) is in the Euclidean norm, if Li is
the variational regularizer,‖LuH ‖2 actually gives the value of
the continuous L2 norm.

To promote additional efficiency, one may construct a com-
pact constraint, denoted as L∗, that is equivalent to the superpo-
sition of all constraints

L∗T L∗ =
∑

i=1

λ2
i ‖LT

i Li‖2 , λ1 �= 0. (14)

Equation (13) then just takes L∗ in place of all Lis. Moreover,
since only the term LT

i Li is needed, one may directly use the
mass matrix or the stiffness matrix, without factorizing each Li .
The compact operator greatly saves memory when the problem
size is large and there are many constraints. It also improves
efficiency when all λis need to be optimized over a large number
of admissible values.

V. RESULTS

A. Simulation Setup

We tested our proposed discretization guidelines and the
variational-form-based regularization technique using finite-
element simulations of a phantom experiment consisting of a
live canine heart suspended in a human torso tank filled with
a homogeneous electrolytic medium [31]. This experiment en-
ables simultaneous recording of epicardial and torso potentials
in vivo. Both the heart and torso boundaries are triangulated
surfaces tessellated from MRI scans. Voltages were measured
at mesh nodes. The heart mesh consists of 337 nodes and 670
triangles, and epicardial potentials are recorded at each node
over a complete cardiac cycle. The torso surface consists of 771
nodes and 1538 triangles. From the surface meshes, we gener-
ated the volume meshes in different ways, in order to identify
the impact of discretization on the finite-element solution for
the inverse ECG problem. The mesh generation strategies will
be given with each test presented later.

With each mesh, we conducted a forward simulation to obtain
the torso potentials and the transfer matrix K. After adding noise
to the torso potentials, we inversely calculated the epicardial
potentials, electrograms, and isochrones, and compared these
reconstructed heart data with recorded data. Unless otherwise
stated, the inverse calculation uses the Tikhonov method given
in (7) and solved in (13), whereas the regularization parameter λ

was determined by an exhaustive search. While not optimal, the
Tikhonov method enables us to consistently isolate the impact
of changing the discretization.

The numerical conditioning of the discretized inverse prob-
lem is evaluated by examining the singular value spectrum
of the transfer matrix K and its components N and AV H .
Inverse solutions are measured both quantitatively and visually.
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Fig. 1. Singular values of the transfer matrices resulting from the sphere/torso
model. The torso mesh remains unchanged while three sphere meshes are tested.
Nh denotes the number of nodes of on the surface of each sphere.

Quantitative measures include the relative error (RE) and the
correlation-coefficients (CC) between the reconstructed epicar-
dial potentials (denoted as ûH ) and the measured potentials
(denoted as uH ). RE and CC are defined as follows:

RE =
‖ûH − uH ‖2

‖uH ‖2
(15)

CC =
(ûH − ûM )T (uH − uM )

‖ûH − ûM ‖2 · ‖uH − uM ‖2
(16)

where ûM and uM are scalars representing the mean value of ûH

and uH , respectively. Visual assessment of the inverse solutions
includes visualizing the reconstructed epicardial potential map
and the activation isochrone map. The activation time at each site
is determined by the time instant with the most negative temporal
derivative of its electrogram (i.e., the minimum du/dt).

B. Regularization via Discretization

1) Resolution of the Pursued Inverse Solution: Here, we
show how the desired fidelity of an inverse solution affects the
ill-conditioning of the inverse problem. We present a multiscale
simulation over a model composed of a sphere (approximating
the heart) contained in a torso tank. The spherical geometry
made it easier for us to set different discretization scales for the
heart. With the torso mesh unchanged, we tested three sphere
models, each with 134, 236, and 612 nodes on the surface. Fig. 1
shows that the ill-conditioning of the transfer matrix is wors-
ened with the increase of the heart resolution, or equivalently,
the fidelity of the inverse solution.

Fig. 1 indicates that arbitrary refinement may be inappropri-
ate for inverse problems—a discrete heart model of 612 nodes
already has singular values of K below double-digit precision.
Considering the extra geometric complexities, the inverse prob-
lem with a real heart is even more ill-conditioned than the sphere
model considered here. Therefore, we have a good reason to be-
lieve that one should cautiously discretize the heart surface based
on practical needs rather than perform arbitrary refinement.

2) Discretization of the Torso Volume: Here, we explore the
impact of the discretization of the torso volume. Keeping both

Fig. 2. Fixing the boundary discretization and refining the volume conductor.
Ne denotes the number of elements in each mesh. (A) Singular values of AV H .
(B) Singular values of K.

the torso surface and the heart surface unchanged, we set the
torso volume mesh in four resolutions. Fig. 2 shows the sin-
gular values of the resulting transfer matrix K and its compo-
nents AV H . Panel A shows that volume refinement significantly
improves the “heart-to-volume” projector AV H , because such
refinement well represents the high-gradient region around the
heart. The improvement of AV H subsequently improves K.

The way we interpret the singular value spectra of K in Panel
B exemplifies how to evaluate the conditioning of a discrete
inverse problem. With a good discretization (37 444 elements),
the singular values descend slowly, reflecting the intrinsic ill-
posedness of the underlying continuous problem. In contrast,
with a coarse discretization (10 454 elements), the singular val-
ues of K abruptly drops to near zero from the position 175
among a total of 337 values, enlarging the proportion of the
null space of K. This expansion of the null space represents a
supplementary ill-conditioning not stemming from the intrinsic
ill-posed nature, but rather caused by insufficient discretization.
As discussed in Section III-A, the resolution on the epicardium
sets the frequency bandlimit of potentials one seeks to recover,
whereas the resolution of the volume conductor determines the
bandlimit that is actually solvable. When the former exceeds the
latter, the formed transfer matrix K cannot hold the relationship
of the two frequency bandlimits, resulting in an artificially in-
troduced null space. This discrepancy should be and can be
avoided, so we regard the smoothing of singular values as a sign
of improvement in the conditioning of the inverse problem.

One may see that refinement from 27 361 elements to 37 444
elements does not noticeably change the singular value spectra
of the matrices concerned. This is because the improvement
brought by discretization is bounded by the ill-posed nature of
the continuum problem. Hence, overrefinement beyond a certain
level is not cost effective.

To further compare the quality of the numerical systems
shown in Figs. 2 and 3 shows their reconstructed epicardial
potential maps at several representative time instants in a car-
diac cycle. In early activation phase (3 ms after the QRS onset),
the refined mesh (Mesh 3) better reconstructs the amplitude than
the coarse mesh (Mesh 1). When epicardial potentials exhibit
diverse pattern (21 ms), the refined mesh outperforms the coarse
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Fig. 3. Epicardial potentials calculated from the meshes discussed in Fig. 2,
under 30-dB white noise. Ne denotes the number of elements each in mesh.
To effectively visualize the difference in potential patterns, the view is changed
at each instant. Epicardial potentials at 21 ms exhibit the most diverse spatial
pattern in the entire cardiac cycle, and hence is the hardest to recover.

mesh in recovering the saddle region in the center of the heart.
Also at this instant, the isopotential contours from Meshes 2
and 3 outline the negative minimum point located at the cen-
ter left of the measured potential map, while the contours from
Mesh 1 captures this feature poorly.

Fig. 4 presents the activation isochrones derived from the
epicardial potentials presented in Fig. 3. It shows that volume
refinement improves the recovery of the activation time, partic-
ularly eliminating artifacts in the activation map.

3) 3-D Hybrid Mesh Setup: The hybrid mesh was formed
by padding layers of prisms around the epicardium (or the sur-
face of any tissue). Prism elements then form a new closed
triangular surface (like an enlarged heart), from which we used
BioMesh3D [32] to generate tetrahedral mesh for the rest body
volume (see Fig. 5 for illustration). The refinement in the nor-
mal direction was achieved by making more layers of thinner
prisms.

4) Refining the Normal Direction: We explored the impact
of the resolution in the normal direction by refining a region of
prism layers around the heart while fixing the rest of the volume
mesh. We set the “prism zone” to be within 10 mm from the
epicardium, and create three hybrid meshes having one, two,
and four layers of prisms within the “10-mm prism zone.” The
thickness of prisms are 10, 5, and 2.5 mm accordingly. All three

Fig. 4. Activation isochrones derived from reconstructed epicardial potentials
in Fig. 3. Top row: Anterior view. Bottom row: Posterior view.

Fig. 5. (a) Cross section of a torso mesh, where the heart is surrounded by
two layers of prism elements. (b) Hybrid mesh at the heart-volume interface.

Fig. 6. Refining the resolution normal to the heart by prismatic elements.
(a) Singular values of AV H . (b) Singular values of K.

meshes share a coarse tetrahedral mesh in the volume (8106
tetrahedra), which is fixed so as to isolate the effects of refine-
ment in the normal direction. To isolate the effect induced by
prisms, we compared the hybrid meshes with a pure tetrahedral
mesh in approximate resolution.

Fig. 6 presents the singular values of the heart-to-volume
projector AV H and the transfer matrix K. Compared to the
pure tetrahedral mesh, all three hybrid meshes improve AV H

significantly and improve K moderately. Panel B shows that
refining the normal direction beyond a certain level may not
bring much difference in the resulting numerical system. Fig. 7
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Fig. 7. Activation time derived from epicardial potentials calculated from the
meshes in Fig. 6. (a) From measured potentials. (b) From the pure tetrahe-
dral mesh. (c) From the hybrid mesh with one layer of 10-mm-thick prisms.
(d) From the hybrid mesh with two layers of 5-mm-thick prisms. (e) From the
hybrid mesh with four layers of 2.5-mm-thick prisms.

Fig. 8. Epicardial potentials computed from hybrid meshes. (a) Exact value.
(b) Pure tetrahedral mesh. (c) Hybrid mesh with one layer of prisms. (d) Hybrid
mesh with two layers of prisms. (e) Hybrid mesh with four layers of prisms.
rgrad is the ratio of the computed value to the real value of ‖∇uH ‖, the norm
of the epicardial potential gradient field.

compares the activation map derived from the reconstructed
epicardial potentials. Hybrid meshes result in better recovery of
activation isochrones.

The effect of the normal-direction resolution is more evident
when the inverse problem is solved by the gradient-oriented
FOT. We implemented the FOT using the variational-formed
gradient operator. Fig. 8 shows the recovered epicardial poten-
tials at a representative instant, when the potentials exhibit the
most diverse spatial pattern. Refining the normal direction im-
proves RE and CC slightly, but recovers a larger proportion of
the potential gradient field on the epicardium, as indicated by
rgrad rising from 76% to 91%. rgrad is the ratio of the computed
value to the real value of the norm of the gradient field ‖∇uH ‖.
Maintaining sharp gradients is an important goal in inverse cal-
culation because the Tikhonov method tends to oversmooth its
inverse solution.

Such improvement is achieved in two ways. First, refinement
in the normal direction assumes higher gradients to be repre-
sented by discretization, thereby improving the transfer matrix.
Second, the refinement increases the magnitude of the stiffness
matrix, which then enhances the regularizing effect of the vari-
ational gradient operator (based on the stiffness matrix). This
test exemplifies how discretization choices may achieve regu-
larization effects and affect inverse solutions.

5) Volume Refinement With the Hybrid Mesh: This test was
meant to be a comparative study to the volume-refining test
presented in Section V-B2. Because the test uses tetrahedral
elements only, refining the volume inevitably changes the dis-
cretization of the heart-to-volume interface. With the hybrid
mesh, we are able to isolate the impact of volume refinement by

Fig. 9. Refining the volume while fixing the meshes around the heart by two
layer of 5-mm-thick prisms. Meshes 1, 2, and 3 contain 8106, 13 636, and
23 361 tetrahedral elements, respectively. (A) Singular values of N and AV H .
(B) Singular values of K.

fixing the prism mesh around the heart while refining the rest
of the volume. We set two layers of 5-mm-thick prisms so as
to reasonably approximate the gradient field around the heart.
The rest of the torso volume was filled with 8106, 13 635, and
23 361 tetrahedral elements, respectively, with the torso surface
triangulation unchanged. Fig. 9 presents the resulting AV H , N,
and K. It confirms our conjecture that the extension of singu-
lar values N and K are attributed to the refinement of interior
volume, not the refinement of the heart-volume interface. Note
that AV H was intact in this test because the discretization of
the heart-volume interface was fixed by prism elements.

C. Variational-Form Regularizers

1) Variational Gradient Operator in Regularization: Here,
we demonstrate the efficacy of the variational gradient opera-
tor given by Table I when used in the FOT regularization. We
compare the FOT with conventional ZOT and SOT. The ZOT
uses an identity matrix as regularizer. The SOT uses a discrete
Laplacian operator obtained by solving a least-squares prob-
lem arising from second-order Taylor expansion at each point,
proposed by [33]. Fig. 10 compares the epicardial potentials
reconstructed by the three methods. Overall, the FOT and SOT
perform closely, both outperforming the ZOT. The FOT some-
times outperforms the SOT in capturing local spatial patterns
or isopotential contours: e.g., the contours at 10 ms, the saddle
point at the heart center at 21 ms, and the isopotential contours at
27 ms. These observations are reasonable, for the Laplacian reg-
ularizer tends to smooth contours, whereas the gradient-based
regularizer preserves contours better.

2) Norm Preservation in Multiscale Simulation: In mul-
tiscale discretization, variational-form operators preserve the
norm because they consider the continuous L2 norm which is
irrespective of resolution. In contrast, conventional discrete op-
erators consider the Euclidean norm, which depends on the size
of discretization.

We illustrate this point by comparing the traditional regu-
larizer and the variational one under the ZOT regularization.
The traditional regularizer is an identity matrix, whereas the
variational-formed regularizer is derived from the mass matrix
given by Table I. Each regularizer was tested with two discrete
models: a coarse Mesh 1 and a uniformly refined Mesh 2. On the



WANG et al.: FINITE-ELEMENT-BASED DISCRETIZATION AND REGULARIZATION STRATEGIES FOR 3-D INVERSE ELECTROCARDIOGRAPHY 1835

Fig. 10. Epicardial potentials calculated under 30-dB SNR input white noise.
ZOT, FOT, and SOT denote the zero-, first-, and second-order Tikhonov regu-
larization. To better show spatial patterns, the view is rotated.

heart surface, Mesh 2 has four times as many nodes as Mesh 1,
i.e., the discrete problem yielded by Mesh 2 is four times the
size of that from Mesh 1.

Fig. 11 compares the L-curves resulting from the multiscale
test of each regularizer. Panel A shows the L-curves from the
identity matrix, and Panel B shows the L-curves from the mass
matrix. In Panel A, refinement pushes the L-curve to the upper
right, indicating that refinement increases both the residual error
and the constraint (here the solution norm). In contrast, in Panel
B, the L-curve is not significantly affected by refinement. Note
that Panels A and B have different axis scales.

Fig. 11 marks the value of λ associated with the corner of
each L-curve, which typically estimates a reasonable amount of
regularization one should apply. In Panel B, both the residual
error and the solution norm at the corner are preserved during
refinement. In Panel A, the residual error and the solution norm
at the corner are nearly doubled. Recall that the size of the in-
verse solution vector is increased by four times from Mesh 1
to Mesh 2, but ‖uH ‖, the Euclidean norm of the solution vec-
tor, is only doubled. This indicates that the traditional Tikhonov
regularization tends to oversmooth the inverse solution when
discretization is refined, causing inconsistent regularization un-
der multiscale simulations.

This inconsistency is also manifested in Fig. 12, where we
compare the inverse solutions at a time instant when the

Fig. 11. L-curves of the solution norm versus the residual error when ZOT
is performed. The inverse problem is discretized in two scales. Mesh 1 has
27 361 tetrahedral elements with 670 triangular elements on the heart surface.
Mesh 2 has 60 617 volume elements with 2680 triangles on the heart surface.
(a) Regularizer is the identity matrix, with the residual error and the regularizer
evaluated by the Euclidean norm. (b) Variational regularizer derived from the
mass matrix given by Table I, evaluated by the continuous L2 norm. λ indicates
the regularization parameter corresponding to the corner of L-curves.

epicardial potential pattern is the most diverse. When refining
Mesh 1 to Mesh 2, the identity-matrix regularizer yields incon-
sistent potential patterns, increasing the RE from 0.50 to 0.53.
In contrast, the variational-formed regularizer maintains the so-
lution pattern overrefinement, reducing the error from 0.48 to
0.42.

VI. DISCUSSION

A. Finite-Element Discretization

Our primary goal is to explore how the finite-element dis-
cretization of the ECG model influences the numerical condi-
tioning of the inverse ECG problem, so as to formulate a, numer-
ical problem optimal for inversion. While there are a large num-
ber of research studies targeted at stabilizing the ill-posedness
by various regularization techniques, few studies concentrate
efforts on improving the numerical quality of inverse problems
before their inverse solutions are sought. In fact, proper dis-
cretization strategies can be used in combination with regular-
ization methods so as to achieve additional improvement to the
inverse solution accuracy.
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Fig. 12. Epicardial potentials reconstructed under 30-dB SNR input noise by
ZOT using the traditional and the variational regularizers, corresponding to the
L-curves in Fig. 11. For each inverse solution, RE and CC are given.

To assess the impact of discretization, our methodology in-
cludes testing different finite-element discretization strategies
and then evaluating their resulting transfer matrix (the inverse
problem) by singular value analysis. We then evaluate the in-
verse solutions in terms of quantitative metrics, epicardial
potential patterns, and activation isochrone maps. The inverse
solutions are calculated by a fixed regularization method (mostly
SOT) in order to isolate the effect of discretization and to mini-
mizing the effect of regularization.

Our experiments based on 3-D models obtained consistent
results with our previous study in the 2-D case [11]. The re-
sults corroborate the inverse-problem discretization guidelines
proposed in Section III-B. Fig. 1 indicates that the epicardial
resolution for which we seek should be limited based on prac-
tical needs lest the discretized inverse problem become overly
ill-conditioned. Meanwhile, refining the volume conductor im-
proves the conditioning of the transfer matrix (see Fig. 2), the
reconstructed epicardial potentials (see Fig. 3), and activation
isochrones (see Fig. 4).

The use of hybrid meshes enables one to refine the high
gradient field around the heart without incurring aspect-ratio
problems. Such refinement improves the accuracy of the heart-
to-volume projection (see Fig. 6) and the reconstruction of epi-
cardial potential gradients (see Fig. 8), which in turn improves
the recovery of the activation isochrone map (see Fig. 7). It is
worth comparing the refinement in the normal direction to the
heart to previous studies that use the potential gradient or current
density (from a physical view) as a constraint in regularizing the
inverse ECG problem [26], [27]. The spatial refinement implic-
itly assumes that a higher gradient is being sought, so it achieves
a similar regularizing effect often referred to as “regularization
by discretization” [14], [34].

The CPU time of our ECG simulation consists of: 1) the
time for building the finite-element model and the minimization

problem; and 2) the time for solving the minimization. The first
time is dominant and is linear in the number of elements being
used. Hybrid meshes enables us to improve accuracy without
dramatically increasing the mesh size and hence the CPU time.
The time for minimizing (13) (for each value of λ) is 1–2 s in
MATLAB with four 2.66-GHz Intel Xeon cores, given that the
size of the linear problem is 771 × 337 (the number of nodes on
the torso and heart surfaces, respectively).

B. Variational-Form Regularizers

The central idea of the variational-form-based regularization
is to measure the potential field by the L2 norm in place of the
Euclidean norm. Because the L2 norm is inherently assumed
by common FEM (e.g., Galerkin formulation), the variational-
formed regularization automatically conforms to certain
variational principles underlying the discrete inverse problem
formulated by FEM. Defined over a continuous domain, the L2
norm is independent of discretization resolution, thereby en-
suring that the discretized problem is handled in conformity
to its underlying continuous problem. The Euclidean norm, in
contrast, does not reflect the features of the continuous problem.

The preservation of norms is important when applied to mul-
tiscale simulation of inverse problems, because it ensures regu-
larization be performed consistently among numerical problems
of different scales. Here, the consistency means that the balance
between the residual error and the regularizing term is main-
tained. The requirement of consistency is based on the under-
standing that all discrete problems should reflect the nature of
their common continuous origin. The consistency cannot hold
when the Euclidean norm is used. When conventional discrete
operators are used in the Tikhonov regularization, the residual
error and the regularizer may not increase by the same rate under
refinement. If the residual error increases faster than the regu-
larizer, more weight will be put on the residual error and the
inverse problem tends to be underregularized. Conversely, the
inverse problem will be overregularized. In our example of test-
ing ZOT method under multiscale discretization, Fig. 11 shows
that the preservation of L2 norm leads to consistent regular-
ization, which consequently leads to consistent reconstruction
of epicardial potentials, as shown by Fig. 12. The traditional
Euclidean-norm-based regularization does not exhibit the con-
sistency.

The introduction of resolution-consistent regularization may
pave the way for adaptive FEM to be used for solving inverse
problems. Despite its many successes in reducing complex-
ity and enhancing efficiency for solving PDE-based forward
problems, adaptive FEM has not yet been widely applied to in-
verse problems. By taking advantage of their natural consistency
within the FEM Galerkin framework, resolution-consistent reg-
ularization may solve the issues that arise with nonuniform vol-
umetric resolution.

It is straightforward to implement the variational-formed reg-
ularization in the L2 norm, by slightly modifying the implemen-
tation of traditional Tikhonov methods. The Euclidean norm of
the epicardial potentials uH is given by ‖uH ‖2 = (uT

H uH )1/2 ,
whereas the L2 norm of the continuous distribution ũH is given
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by ‖ũH ‖L2 = (uT
H MuH ), where the mass matrix M is given

in Table I. Evaluating the L2 norm is achieved by adding a
weighing matrix that is based on finite-element basis functions.
The norm of the residual error defined on the torso surface, or
the norm of any gradient field, can be obtained in a similar way
by modifying the weighing matrix accordingly. The weighing
matrix can be precomputed using the mesh information only.

The stiffness matrix and matrices formed by higher order
derivatives are positive semidefinite because the derivative of
any constant field is always zero. The Cholesky decomposition
for these matrices is not unique, but we do not believe that this
fact will effect the outcome of Tikhonov regularization because
the Tikhonov method considers the L2 norm of the regulariz-
ers. We selected a Cholesky factorization in a systematic way.
Assume, we decompose the stiffness matrix S. We take the se-
quence Sk = S + 1

k I , where I is the identity matrix. Sk → S
when k → ∞. Each {Sk} is positive definite and has a unique
Cholesky factor Lk . We take L = limk→∞Lk as the Cholesky
factor of S. The convergence of {Lk} holds because the op-
erators are bounded and their underlying vector space is finite
dimensional.

VII. CONCLUSION

We investigated how finite-element discretization can be con-
structed specifically for the inverse ECG problem so as to op-
timize its numerical conditioning. Extending our previous 2-D
study to 3-D, this paper provides discretization guidelines for
practical ECG simulations and their realization via a hybrid
mesh scheme. We also proposed a new family of variational
regularizers based on the continuous L2 norm. These regulariz-
ers are an alternative to the traditional Tikhonov regularization
but achieve consistent regularization over multiscale simulation.
The variational formulation also enables a simple construction
of the discrete gradient operator over an irregular mesh, which
is difficult to obtain with traditional discretization techniques.
The hybrid mesh scheme and the variational-formed regular-
ization were validated via simulation based on a realistic 3-D
torso/heart model with real heart data.

Future work includes coupling the maximum fidelity allowed
for the heart with other biophysical constraints (such as the
distributed current density source within the heart). Evaluating
the impact of tissue conductivity on the inverse ECG will also
be valuable, while the impact on the forward ECG has been
reported [35], [36]. Human tissue conductivities are estimated
by electrical impedance tomography, a technique under active
research both mathematically [37] and clinically [38].
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[7] I. Babuška, T. Strouboulis, C. Upadhyay, S. Gangaraj, and K. Copps,
“Validation of a posteriori error estimators by a numerical approach,” Int.
J. Numer. Methods Eng., vol. 37, pp. 1073–1123, 1994.

[8] D. Weinstein, C. Johnson, and J. Schmidt, “Effects of adaptive refinement
on the inverse EEG solution,” SPIE, vol. 2570, pp. 2–11, 1995.

[9] C. Johnson and R. S. MacLeod, “Nonuniform spatial mesh adaptation
using a posteriori error estimates: Applications to forward and inverse
problems,” Appl. Numer. Math., vol. 14, pp. 311–326, 1994.

[10] C. Johnson, “Computational and numerical methods for bioelectric field
problems,” Crit. Rev. Biomed. Eng., vol. 25, no. 1, pp. 1–81, 1997.

[11] D. Wang, R. Kirby, and C. Johnson, “Resolution strategies for the finite-
element-based solution of the ECG inverse problem,” IEEE Trans.
Biomed. Eng., vol. 57, no. 2, pp. 220–237, Feb. 2010.

[12] P. R. Johnston, S. J. Walker, J. A. K. Hyttinen, and D. Kilpatrick, “Inverse
electrocardiographic transformations: Dependence on the number of epi-
cardial regions and body surface data points,” Math. Biosci., vol. 120,
pp. 165–187, 1994.

[13] V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed. ed.
New York: Springer-Verlag, 2006.

[14] H. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems.
Norwell, MA: Kluwer, 2000.

[15] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Prob-
lems. New York: Springer-Verlag, 1996.

[16] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Prob-
lems. New York: Springer-Verlag, 2004.

[17] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems. Wash-
ington, DC: V. H. Winston & Sons, 1977.

[18] F. Natterer, “Error bounds for Tikhonov regularization in Hilbert scales,”
Appl. Anal., vol. 18, pp. 29–37, 1984.

[19] W. Bangerth and A. Joshi, “Adaptive finite element methods for the so-
lution of inverse problems in optical tomography,” Inverse Problems,
vol. 24, no. 3, p. 034011, 2008.

[20] Y. Yamashita, “Theoretical studies on the inverse problem in electrocardio-
graphy and the uniqueness of the solution,” J-BME, vol. 29, pp. 719–725,
1982.

[21] B. Messnarz, M. Seger, R. Modre, G. Fischer, F. Hanser, and B. Tilg, “A
comparison of noninvasive reconstruction of epicardial versus transmem-
brane potentials in consideration of the null space,” IEEE Trans. Biomed.
Eng., vol. 51, no. 9, pp. 1609–1618, Sep. 2004.

[22] J. Shewchuk, “What is a good linear finite element? interpolation, con-
ditioning, anisotropy, and quality measures,” in Proc. 11th Int. Mesh
Roundtable, 2002, p. 70.

[23] E. M. Karniakakis and S. P. Sherwin, Spectral/hp Element Methods for
CFD. Oxford, U.K.: Oxford Univ. Press, 1999.

[24] D. Wang, R. Kirby, and C. Johnson, “Finite element refinements for in-
verse electrocardiography: Hybrid shaped elements and high-order ele-
ment truncation,” Comput. Cardiol., vol. 36, pp. 193–196, 2009.

[25] R. Throne and L. Olson, “A comparison of spatial regularization with
zero and first order Tikhonov regularization for the inverse prob-
lem of electrocardiography,” Comput. Cardiol., vol. 27, pp. 493–496,
2000.

[26] D. S. Khoury, “Use of current density in regularization of the inverse
problem of electrocardiography,” in Proc. 16th Int. Conf. IEEE EMBS,
vol. 3–6, Baltimore, MD, 1994, pp. 133–134.

[27] S. Ghosh and Y. Rudy, “Application of l1-norm regularization to epicar-
dial potential solution of the inverse electrocardiography problem,” Ann.
Biomed. Eng., vol. 37, no. 5, pp. 902–912, 2009.

[28] G. F. Ahmad, D. H. Brooks, and R. S. MacLeod, “An admissible solution
approach to inverse electrocardiography,” Ann. Biomed. Eng., vol. 26,
pp. 278–292, 1998.



1838 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 6, JUNE 2011

[29] D. Brooks, G. Ahmad, and R. MacLeod, “Inverse electrocardiography by
simultaneous imposition of multiple constraints,” IEEE Trans. Biomed.
Eng., vol. 46, no. 1, pp. 3–18, Jan. 1999.

[30] L. Eldén, “Algorithms for the regularization of ill-conditioned least squares
problems,” BIT, vol. 17, pp. 134–145, 1977.

[31] R. MacLeod, B. Taccardi, and R. Lux, “Electrocardiographic mapping
in a realistic torso tank preparation,” in Proc. 17th IEEE Eng. Med. Bio.
Conf., 1995, pp. 245–246.

[32] BioMesh3D: Quality Mesh Generator for Biomedical Applications. Sci-
entific Computing and Imaging Institute (SCI), Univ. Utah, Salt Lake City.
(2011). [Online]. Available: http://www.biomesh3d.org

[33] G. Huiskamp, “Difference formulas for the surface laplacian on a trian-
gulated surface,” J. Comp. Phys., vol. 95, no. 2, pp. 477–496, 1991.

[34] H. Engl and A. Neubauer, “Convergence rates for Tikhonov regularization
in finite-dimensional subspaces of hilbert scales,” Proc. Amer. Math. Soc,
vol. 102, pp. 587–592, 1988.

[35] S. Geneser, R. Kirby, and R. MacLeod, “Application of stochastic finite
element methods to study the sensitivity of ECG forward modeling to
organ conductivity,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp. 31–40,
Jan. 2008.

[36] D. U. J. Keller, F. M. Weber, G. Seemann, and O. Dössel, “Ranking the
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