680 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Investigation of Smoothness-Increasing
Accuracy-Conserving Filters for
Improving Streamline Integration

through Discontinuous Fields

Michael Steffen, Sean Curtis, Robert M. Kirby, Member, IEEE, and Jennifer K. Ryan

Abstract—Streamline integration of fields produced by computational fluid mechanics simulations is a commonly used tool for the
investigation and analysis of fluid flow phenomena. Integration is often accomplished through the application of ordinary differential
equation (ODE) integrators—integrators whose error characteristics are predicated on the smoothness of the field through which the
streamline is being integrated, which is not available at the interelement level of finite volume and finite element data. Adaptive error
control techniques are often used to ameliorate the challenge posed by interelement discontinuities. As the root of the difficulties is the
discontinuous nature of the data, we present a complementary approach of applying smoothness-increasing accuracy-conserving
filters to the data prior to streamline integration. We investigate whether such an approach applied to uniform quadrilateral
discontinuous Galerkin (high-order finite volume) data can be used to augment current adaptive error control approaches. We discuss
and demonstrate through a numerical example the computational trade-offs exhibited when one applies such a strategy.

Index Terms—Streamline integration, finite element, finite volume, filtering techniques, adaptive error control.

1 INTRODUCTION

GIVEN a vector field, the streamlines of that field are lines
that are everywhere tangent to the underlying field.
A quick search of both the visualization and the application
domain literature demonstrates that streamlines are a
popular visualization tool. The bias toward using stream-
lines is in part explained by studies that show streamlines
to be effective visual representations for elucidating the
salient features of the vector fields [1]. Furthermore,
streamlines as a visual representation are appealing because
they are applicable for both two-dimensional (2D) and
three-dimensional (3D) fields [2].

Streamline integration is often accomplished through the
application of ordinary differential equation (ODE) integra-
tors such as predictor-corrector or Runge-Kutta schemes.
The foundation for the development of these schemes is the
use of the Taylor series for building numerical approxima-
tions of the solution of the ODE of interest. The Taylor series
can be further used to elucidate the error characteristics of
the derived scheme. All schemes employed for streamline
integration that are built using such an approach exhibit

e M. Steffen and R.M. Kirby are with the School of Computing and
the Scientific Computing and Imaging Institute, University of Utah,
Salt Lake City, UT 84112. E-mail: {msteffen, kirby}@cs.utah.edu.

o S. Curtis is with the Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27599. E-mail: seanc@cs.unc.edu.

e |.K. Ryan is with the Department of Mathematics, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061.

E-mail: jkryan@ut.edu.

Manuscript received 22 Feb. 2007; revised 30 Aug. 2007; accepted 17 Dec.
2007; published online 2 Jan. 2008.

Recommended for acceptance by A. Pang.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0014-0207.
Digital Object Identifier no. 10.1109/TVCG.2008.9.

1077-2626/08/$25.00 © 2008 IEEE

error characteristics that are predicated on the smoothness of
the field through which the streamline is being integrated.

Low-order and high-order finite volume and finite
element fields are among the most common types of fluid
flow simulation data sets available. Streamlining is com-
monly applied to these data sets. The property of these
fields that challenges classic streamline integration using
Taylor-series-based approximations is that finite volume
fields are piecewise discontinuous and finite element fields
are only C continuous. Hence, one of the limiting factors of
streamline accuracy and integration efficiency is the lack of
smoothness at the interelement level of finite volume and
finite element data.

Adaptive error control techniques are often used to
ameliorate the challenge posed by interelement discontinu-
ities. To paraphrase a classic work on the subject of solving
ODEs with discontinuities [3], one must 1) detect, 2) deter-
mine the order, size, and location of, and 3) judiciously
“pass over” discontinuities for effective error control. Such
an approach has been effectively employed within the
visualization community for overcoming the challenges
posed by discontinuous data at the cost of an increased
number of evaluations of the field data. The number of
evaluations of the field increases drastically with every
discontinuity that is encountered [3]. Thus, if one requires a
particular error tolerance and employs such methods for
error control when integrating a streamline through a finite
volume or finite element data set, a large amount of the
computational work involved is due to handling interele-
ment discontinuities and not the intraelement integration.

As the root of the difficulties is the discontinuous nature
of the data, one could speculate that if one were to filter the
data in such a way that it was no longer discontinuous,

Published by the IEEE Computer Society



STEFFEN ET AL.: INVESTIGATION OF SMOOTHNESS-INCREASING ACCURACY-CONSERVING FILTERS FOR IMPROVING STREAMLINE... 681

streamline integration could then be made more efficient.
The caveat that arises when one is interested in simulation
and visualization error control is how does one select a filter
that does not destroy the formal accuracy of the simulation
data through which the streamlines are to be integrated.
Recent mathematical advances [4], [5] have shown that such
filters can be constructed for high-order finite element and
discontinuous Galerkin (DG) (high-order finite volume)
data on uniform quadrilateral and hexahedral meshes.
These filters are such that they have the provable quality
that they increase the level of smoothness of the field
without destroying the accuracy in the case that the
“true solution” that the simulation is approximating is
smooth. In fact, in many cases, these filters can increase the
accuracy of the solution. It is the thesis of this work that
application of such filters to discontinuous data prior to
streamline integration can drastically improve the compu-
tational efficiency of the integration process.

1.1 Objectives

In this paper, we present a demonstration of a complemen-
tary approach to classic error control—application of
smoothness-increasing accuracy-conserving (SIAC) filters
to discontinuous data prior to streamline integration. The
objective of this work is to understand the computational
trade-offs between the application of error control on
discontinuous data and the filtering of the data prior to
integration.

Although the filtering approach investigated here has
been extended to nonuniform quadrilateral and hexahedral
meshes [6] and has one-sided variations [7], we will limit
our focus to an investigation of whether such an approach
applied to uniform quadrilateral DG (high-order finite
volume) data can be used to augment current adaptive error
control approaches. We will employ the uniform symmetric
filtering technique that is based upon convolution with a
kernel constructed as a linear combination of B-splines [5].
We will present the mathematical foundations of the
construction of these filters, a discussion of how the filtering
process can be accomplished on finite volume and finite
element data, and results that demonstrate the benefits of
applying these filters prior to streamline integration. We
will then discuss and demonstrate through a numerical
example the computational trade-offs exhibited when one
applies such a strategy.

1.2 Outline

The paper is organized as follows: In Section 2, an overview
of some of the previous work accomplished in streamline
visualization and in filtering for visualization, as well as the
local SIAC filter that we will be using, is presented. In
Section 3, we review the two numerical sources of error that
arise in streamline integration—projection (or solution)
error and time-stepping error. In addition, we will present
how adaptive error control attempts to handle time-
stepping errors introduced when integrating discontinuous
fields. In Section 4, we present the mathematical details of
the SIAC filters, and in Section 5, we provide a discussion of
implementation details needed to understand the applica-
tion of the filters. In Section 6, we provide a demonstration
of the efficacy of the filters as a preprocessing to streamline

integration, and in Section 7, we provide a summary of our
findings and a discussion of future work.

2 PREevious WoORK

In this section, we review two orthogonal but relevant areas
of background research: vector field visualization algo-
rithms and filtering. Both areas are rich subjects in the
visualization and image processing literature; as such, we
only provide a cursory review so that the context for the
current work can be established.

2.1 Previous Work in Vector Field Visualization

Vector fields are ubiquitous in scientific computing (and
other) applications. They are used to represent a wide range
of diverse phenomena, from electromagnetic fields to fluid
flow. One of the greatest challenges in working with such
data is presenting it in a manner that allows a human to
quickly understand the fundamental characteristics of the
field efficiently.

Over the years, multiple strategies have been developed
in the hope of answering the question of how best to
visualize vector fields. There are iconic methods [8], image-
based methods such as spot-noise diffusion [9], line-integral
convolution [10], reaction-diffusion [11], [12], and stream-
lines [13]. Each method has its own set of advantages and
disadvantages. Iconic (or glyph) methods are some of the
most common, but glyphs’ consumption of image real
estate can make them ineffective for representing fields that
exhibit large and diverse scales. Image-based methods
provide a means of capturing detailed behavior with fine
granularity but are computationally expensive and do not
easily facilitate communicating vector magnitude. Also,
extending image-based methods into 3D can make the
visualization less tractable for the human eye. Reaction-
diffusion and image-based methods are also computation-
ally expensive. Streamlines, which are space curves that are
everywhere tangent to the vector field, offer a good all-
around solution. Well-placed streamlines can capture the
intricacies of fields that exhibit a wide scale of details (such
as turbulent flows). They can easily be decorated with
visual indications of vector direction and magnitude.
However, placing streamlines is not a trivial task, and
calculating streamlines is a constant battle between compu-
tational efficiency and streamline accuracy. Placing (or
seeding) the streamlines by hand yields the best results, but
it requires a priori knowledge that is seldom available or
easily attainable. The simplest automatic placement algo-
rithms such as grid-aligned seeds yield unsatisfying results.
There has been a great deal of research in placement
strategies [14], [15], [16], [17], [18]. These strategies have
continuously improved computational efficiency, as well as
yielding appealing results—long continuous streamlines,
nicely distributed through the field. Another concern with
streamline integration is maximizing accuracy while mini-
mizing error and computational effort. Both Runge-Kutta
and extrapolation methods are commonly mentioned in the
literature—with the choice of which integration technique
to use being based on a multitude of mathematical and
computational factors such as the error per unit of
computational cost, availability (and strength) of error



682 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

estimators, etc. The lack of smoothness at element or grid
boundaries can cause large errors during integration,
leading some to utilize adaptive error control techniques
such as Runge-Kutta with error estimation and adaptive
step-size control [19], [20], [21]. The work presented in this
paper benefits from all the previous streamline placement
work, as our focus is on understanding and respecting the
assumptions upon which the time integrators commonly
used in streamline routines are built.

2.2 Previous Work in Filtering for Visualization

Filtering in most visualization applications has as its goal
the reconstruction of a continuous function from a given
(discrete) data set. For example, assume that fj, is the given
set of evenly sampled points of some function f(z). A filter
might take this set of points and introduce some type of
continuity assumption to create the reconstructed solution
f*(x). Filtering for visualization based upon discrete data is
often constructed by considering the convolution of the
“true” solution, of which f; is a sampling, against some
type of spline, often a cubic B-spline [22], [23], [24], [25],
[26], [27]. Much of the literature concentrates on the specific
use in image processing, though there has also been work in
graphic visualization [10], [28], as well as computer
animation [29]. The challenge in spline filtering is choosing
the convolution kernel such that it meets smoothness
requirements and aids in data reconstruction without
damage to the initial discrete data set.

There are many filtering techniques that rely on the use
of splines in filtering. A good overview of the evaluation of
filtering techniques is presented in [30]. In [31], Moller et al.
further discuss imposing a smoothness requirement for
interpolation and derivative filtering. In [22], the methods
of nearest neighbor interpolation and cubic splines are
compared. Hou and Andrews [23] specifically discuss the
use of cubic B-splines for interpolation with applications to
image processing. The interpolation consists of using a
linear combination of five B-splines with the coefficients
determined by the input data. This is a similar approach to
the one discussed throughout this paper. Another method
of filtering for visualization via convolution is presented
in [31]. This method chooses an even number of filter
weights for the convolution kernel to design a filter based
on smoothness requirements. The authors also discuss
classifying filters [31] and extend the analysis to the spatial
domain. We can relate our filter to those evaluated by
Mitchell and Netravali [25], where they design a reconstruc-
tion filter for images based on piecewise cubic filters, with
the B-spline filter falling into this class. In [25], it is noted
that a 2D separable filter is desirable, as is the case with the
B-spline filter that we implement. Further discussion on
spline filters can be found in [29], [32], and [33]. In [29],
a cubic interpolation filter with a controllable tension
parameter is discussed. This tension parameter can be
adjusted in order to construct a filter that is monotonic and
hence avoids overshoots. We neglect a discussion of
monotonicity presently and leave it for future work.

The method that we implement uses B-splines but
chooses the degree of B-spline to use based on smoothness
requirements expected from the given sampled solution
and uses this to aid in improved streamline integration.

The mathematics behind choosing the appropriate convolu-
tion kernel is also presented. That is, if we expect for
the given information to have k derivatives, then we use a
linear combination of kth order B-splines. To be precise,
we use 2k + 1 B-splines to construct the convolution filter.
The coefficients of the linear combination of B-splines are
well known and have shown to be unique [34], [35]. This
linear combination of B-splines makes up our convolution
kernel, which we convolve against our discrete data
projected onto our chosen basis (such as the Legendre
polynomial basis). This filtering technique has already
demonstrated its effectiveness in postprocessing numerical
simulations. In previous investigations, it not only filtered
out oscillations contained in the error of the resulting
simulation but also increased the accuracy of the approx-
imation [5], [7], [36]. This technique has also been proven to
be effective for derivative calculations [5].

The mathematical history behind the accuracy-increasing
filter that we have implemented for improved streamline
integration was originally proven to increase the order of
accuracy for finite element approximation through post-
processing [4], with specific extensions to the DG method
[5]1, [7], [36]. The solution spaces described by the
DG method contain both finite volume and finite element
schemes (as DG fields are piecewise polynomial (discontin-
uous) fields and thus contain as a subset piecewise
polynomial CY fields), and hence, the aforementioned
works provide us the theoretical foundations for a filtering
method with which the order of accuracy could be
improved up to 2k+1 if piecewise polynomials of
degree k are used in the DG approximation.

The mathematical structure of the postprocessor pre-
sented was initially designed by Bramble and Schatz [4] and
Mock and Lax [37]. Further discussion of this technique will
take place in Sections 4 and 5. Discussion of the application
of this technique to the DG method can be found in [5], [7],
and [36]. Most of this work will focus on symmetric
filtering; however, in [37], the authors mention that the
ideas can be imposed using a one-sided technique for
postprocessing near boundaries or in the neighborhood of a
discontinuity. The one-sided postprocessor implemented by
Ryan and Shu [7] uses an idea similar to that of Cai et al.,
where a one-sided technique for the spectral Fourier
approximation was explored [38].

There exists a close connection between this work and the
work sometimes referenced as “macroelements.” Although
our work specifically deals with quadrilaterals and
hexahedra, our future work is to move to fully unstructured
(triangle/tetrahedral) meshes. In light of this, we will
comment on why we think that there is sufficient previous
work in macroelements to justify our future work.
Macroelements, otherwise known as composite finite
element methods, specifically the Hsieh-Clough-Tocher
triangle split, are such that considering a set of triangles K,
we subdivide each triangle into three subtriangles. We then
have two requirements (from [39] and [40]):

Pg ={p e C'(K) : plg, € P*(K;),1<i<3},
Yx ={p(ai), 01p(ai), Oop(ai), Oyp(bi), 1 < i < 3}




STEFFEN ET AL.: INVESTIGATION OF SMOOTHNESS-INCREASING ACCURACY-CONSERVING FILTERS FOR IMPROVING STREAMLINE... 683

Bramble and Schatz [4] proposed an extension to
triangles using the following taken from the work of
Bramble and Zlamal [41]; in particular, they devised a
way to build interpolating polynomials over a triangle that
respect the mathematical properties needed by the post-
processor. These ideas are similar to the works in [42], [43],
and [44]. For the proposed extension of this postprocessor
to triangular meshes, convolving a linear combination of
these basis functions for macroelements with the (low-
order) approximation is used as a smoothing mechanism.
This allows us to extract higher order information from a
lower order solution.

3 SouRces oF ERROR AND ERROR CONTROL

In this section, we seek to remind the reader of the two main
sources of approximation error in streamline computations:
1) solution error, which is the error that arises due to the
numerical approximations that occur within a computa-
tional fluid mechanics simulation accomplished on a finite
volume or finite element space, and 2) time-stepping (that
is, ODE integration) error. We then discuss how adaptive
error control attempts to handle the second of these errors.

3.1 Solution Error

The solution error is the difference (in an appropriately
chosen norm) between the true solution and the approx-
imate solution given by the finite volume or finite element
solver. Consider what is involved, for instance, in finite
element analysis. Given a domain © and a partial
differential equation (PDE) that operates on a solution u
that lives over (), the standard finite element method
attempts to construct a geometric approximation Q = 7(Q)
consisting of a tessellation of polygonal shapes (for
example, triangles and quadrilaterals for 2D surfaces) of
the domain @ and to build an approximating function
space V consisting of piecewise linear functions based upon
the tessellation [45]. Building on these two things, the
goal of a finite element analysis is to find an approximation
@ € V that satisfies the PDE operator in the Galerkin sense.
The solution approximation error is thus a function of the
richness of the approximation space (normally expressed in
terms of element shape, element size, polynomial order
per element, etc.) and the means of satisfying the
differential or integral operator of interest (for example,
Galerkin method). In the case of standard Galerkin (linear)
finite elements, the approximation error goes as O(h?),
where h is a measure of the element size. Hence, if one
were to decrease the element size by a factor of two, one
would expect the error to decrease by a factor of four [45].
The use of high-order basis functions can admit O(h¥)
convergence [46] (where h is a measure of element size,
and k& denotes the polynomial order used per element).

Even if analytic time-stepping algorithms were to exist,
these approximation errors would still cause deviation
between the “true” streamline of a field and a streamline
produced on the numerical approximation of the answer.
The filters we seek to employ are filters that do not increase
this error (that is, are accuracy conserving)—in fact, the
filters we will examine can under certain circumstances
improve the approximation error.

3.2 Time-Stepping Error

In addition to the solution approximation error as previously
mentioned, we also must contend with the time-stepping
error introduced by the ODE integration scheme that we
choose to employ. To remind the reader of the types of
conditions upon which most time integration techniques are
based and provide one of the primary motivations of this
work, we present an example given in the classic time-
stepping reference [47]. Consider the following second-order
Runge-Kutta scheme as applied to a first-order homoge-
neous differential equation [47, p. 133]:

k= f(to, yo)s (1)

h h
k2=f<tn+§7?/0+§k1>, (2)
y1 = yo + hka, (3)

where  denotes the time step, y) denotes the initial condition,
and y; denotes the approximation to the solution given at
time level ty + h. To determine the order of accuracy of
this scheme, we substitute (1) and (2) into (3) and accomplish
the Taylor series to yield the following expression:

h3
y(to +h) —y1 = 2 (ftt +2fif + fyny
Ay + D) (o) + -

where it is assumed that all the partial derivatives in the
above expression exist. This leads us to the application of
Theorem 3.1 [47, p. 157] applied to this particular scheme,
which states that this scheme is of order k=2 if all the
partial derivatives of f(¢,y) up to order k exist (and are
continuous) and that the local truncation error is bounded
by the following expression:

ly(to +R) =l < Ch*H,

where C is a constant independent of the time step. The
key assumption for this convergence estimate and all
convergence estimates for both multistep (for example,
Adams-Bashforth and Adams-Moulton) and multistage
(for example, Runge-Kutta) schemes is the smoothness of
the right-hand-side function in terms of the derivatives of
the function. Hence, the regularity of the function (in the
derivative sense) is the key feature necessary for high-order
convergence to be realized.

Streamline advection through a finite element or finite
volume data set can be written as the solution of the
ODE system:

d =
S (t) = F((),

Z(t = 0) =7,

where F(Z) denotes the (finite volume or finite element)
vector-valued function of interest, and #, denotes the point
at which the streamline is initiated. Note that although the
streamline path Z(¢) may be smooth (in the mathematical
sense), this does not imply that the function F(x(t)) is
smooth. Possible limitations in the regularity of F directly



684 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

impact the set of appropriate choices of ODE time-stepping
algorithms that can be successfully applied [47].

3.3 Adaptive Error Control

One suite of techniques often employed in the numerical
solution of ODEs is time stepping with adaptive error control
(for example predictor-corrector and RK-4/5). As pointed out
in [32], such techniques can be effectively utilized in
visualization applications that require time stepping. It is
important, however, to note two observations that can be
made when considering the use of error control algorithms of
this form. First, almost all error control algorithms presented
in the ODE literature are based upon the Taylor series
analysis of the error and hence tacitly depend upon the
underlying smoothness of the field being integrated [47].
Thus, error control algorithms can be impacted by the
smoothness of the solution in the same way as previously
discussed. The second observation is that the error indicators
used, such as the one commonly employed in RK-4/5 [48] and
ones used in predictor-corrector methods, will often require
many failed steps to “find” and integrate over the disconti-
nuity with a time step small enough to reduce the local error
estimate below the prescribed error tolerance [3]. This is
because no matter the order of the method, there will be a
fundamental error contribution that arises due to integrating
over discontinuities. If a function f has a discontinuity in the
pth derivative of the function (that is, f ) is discontinuous),
the error when integrating past this discontinuity is on the
order of C[[f®)]](At)"*!, with p > 0, C being a constant, and
[]] being the size of the jump. Thus, streamline integration
over a finite volume field having discontinuities at the
element interfaces (that is, p = 0 on element boundaries) is
formally limited to first-order accuracy at the interfaces.
Adaptive error control attempts to find, through an error
estimation and time-step refinement strategy, a time step
sufficiently small that it balances the error introduced by the
jump term.

These two observations represent the main computa-
tional limitation of adaptive error control [3]. The purpose
of this work is to examine whether the cost of using
SIAC filters as a preprocessing stage can decrease the
number of refinement steps needed for adaptive error
control and thus increase the general efficiency of stream-
line integration through discontinuous fields.

4 THEORETICAL DISCUSSION OF
SMOOTHNESS-INCREASING
ACCURACY-CONSERVING FILTERS

In this section, we present a mathematical discussion of the
filters we employ in this work. Unlike the mathematics
literature in which they were originally presented, we do not
require that the filtering be accuracy increasing. It is only a
necessary condition for our work that the filters be
smoothness-increasing and accuracy-conserving. In this
section, in which we review the mathematics of the filter,
we will explain these filters in light of the original motivation
for their creation (in the mathematics literature)—increasing
the accuracy of DG fields.

As noted in Section 2, the accuracy-conserving filter that
we implement (provably) reduces the error in the L? norm
and increases the smoothness of the approximation. The

L? norm is the continuous analogy of the commonly used
discrete root-mean-square (weighted euclidean) norm [49].
Unless otherwise noted, our discussion of accuracy is in
reference to the minimization of errors in the L? norm. We
have made this choice as it is the norm used in the
theoretical works referenced herein and is a commonly
used norm in the finite volume and finite element literature.
The work presented here is applicable to general quad-
rilateral and hexagonal meshes [6]. However, in this paper,
we focus on uniform quadrilateral meshes as the presenta-
tion of the concepts behind the postprocessor can be
numerically simplified if a locally directionally uniform
mesh is assumed, yielding translation invariance and
subsequently localizing the postprocessor. This assumption
will be used in our discussion and will be the focus of the
implementation section (Section 5).

The postprocessor itself is a convolution of the numerical
solution with a linear combination of B-splines and is
applied after the final numerical solution has been obtained
and before the streamlines are calculated. It is well known
within the image-processing community that convolving
data with B-splines increases the smoothness of the data
and, if we are given the approximation itself, the order of
accuracy the numerical approximation [22], [23], [30].
Furthermore, we can increase the effectiveness of filtering
by using a linear combination of B-splines. Exactly how this
is done is based on the properties of the convolution kernel.
Indeed, since we are introducing continuity at element
interfaces through the placement of the B-splines, smooth-
ness is increased, which in turn aids in improving the order
of accuracy depending on the number of B-splines used in
the kernel and the weight of those B-splines. This work
differs from previous work in visualization that utilizes
B-spline filtering in that we are using a linear combination of
B-splines and in that we present a discussion of formulating
the kernel for general finite element or finite volume
approximation data to increase smoothness and accuracy.
As long as the grid size is sufficiently large to contain the
footprint of the filter, SIAC properties will hold. Given the
asymptotic results presented in [4] and [5], there will be
some minimum number of elements N above which
accuracy enhancement will also occur.

To form the appropriate kernel to increase smoothness,
we place certain assumptions on the properties of the
convolution kernel. These assumptions are based upon the
fact that finite element and finite volume approximations
are known to have errors that are oscillatory; we would like
to filter this error in such a way that we increase
smoothness and improve the order of accuracy. The first
assumption that allows for this is a kernel with compact
support that ensures a local filter operator that can be
implemented efficiently. This is one of the reasons why we
have selected a linear combination of B-splines. Second, the
weights of the linear combination of B-splines are chosen so
that they reproduce polynomials of degree 2k by convolu-
tion, which ensures that the order of accuracy of the
approximation is not destroyed. Last, the linear combina-
tion of B-splines also ensures that the derivatives of the
convolution kernel can be expressed as a difference of
quotients. This property will be useful in future work when
alternatives to the current derivative filtering [5] will be
explored for this postprocessor. The main option for
high-order filtering follows from the work of Thomée [34]
and is similar to that of Moller et al. [31].



STEFFEN ET AL.: INVESTIGATION OF SMOOTHNESS-INCREASING ACCURACY-CONSERVING FILTERS FOR IMPROVING STREAMLINE... 685

In order to further the understanding of the postpro-
cessor, we examine the one-dimensional (1D) postprocessed
solution. This solution can be written as

[i(a") = %/jc (kD) ket (7?’ _hx*) In(y) dy, (4)

where K211 jg a linear combination of B-splines, f;, is
the numerical solution consisting of piecewise polynomials,
and h is the uniform mesh size. We readily admit that the
notation we have used for the kernel appears awkward. It
has been chosen to be identical to the notation used in the
theoretical works upon which this work is based (for
example, [36]) to assist those interested in connecting this
application work with its theoretical foundations. As this is
the common notation used in that area of mathematics, we
hope to motivate it so that people will appreciate the
original notation. The rationale behind the notation K*® is
that a denotes the order of accuracy that we can expect from
postprocessing and b denotes the order of accuracy of the
numerical method (before postprocessing).

The symmetric form of the postprocessing kernel can be
written as

k
KQ(/c+1),k+1 (y) _ Z C?’(k+1)‘k+1d](k+])(y _ '7), (5)
y=—k

where B-splines of order (k+ 1) is obtained by convolving
the characteristic function over the interval [—3,3] with
itself k times. That is

7/’(1> = 50|[—1/2,1/2]7 7/’(k+1

k1) k41

)= y® 50‘[—1/241/2]- (6)

The coefficients, in (5) are scalar constants
obtained from the need to at least maintain the accuracy
of the approximation. That can be achieved by

2k

K2Rk forp=1,z,2° - 2* (7)

*P=D
as shown in [36] and [50]. We note that this makes the sum
of the coefficients for a particular kernel equal to one:

k
Z c?,,(kﬂ)“kﬂ -1
y=—k

Once we have obtained the coefficients and the B-splines,
the form of the postprocessed solution is then

L 1 [ k : ‘ y—
[z = E/, Z c§,<k+1>,k+1 -w“*”( -

g —

- 7) Tu(y) dy.
(8)

Although the integration in (8) is shown to be over the
entire real line, due to the compact nature of the convolu-
tion kernel, it will actually just include the surrounding
elements. A more specific discussion of this detail will take
place in the next section.

As an example, consider forming the convolution kernel
for a quadratic approximation, k= 2. In this case, the
convolution kernel that we apply is given by

KO (@) =25u® (2 +2) + L0 (@ + 1) + 00 ()

g 9
I c?,3¢(:s)(x —1)+ 62,31/}(3)(35 —2). (9)

The B-splines are obtained by convolving the characteristic
function over the interval [—1/2,1/2] with itself k times. In
this case, we have

%(4m2+12w+9), —%gxg—%,

P (z) = 8y * 6y * & = { 1(6 — 82?), —i<z <y,
4z —122+9), <z <3,

(10)

The coefficients, cz("*l)*k“, are found from convolving the

kernel with polynomials of degree up to 2k (K *p = p).
The existence and uniqueness of the coefficients is
discussed in [36]. In this case, p = 1,z, 2%, 2°, 2. This gives
us a linear system whose solution is

37
1020
c_
2 _ o1
c_1 180
437
€ 320
(6] _ 97
, 180
C2 37

1920

Notice the symmetry of the B-splines, as well as the
coefficients multiplying them. Now that we have deter-
mined the exact form of the kernel, we can examine the
kernel itself. The 1D function is pictured in the top of Fig. 1.
Notice that the emphasis of the information is on the
current element being postprocessed, and the neighboring
cells contribute minimally to the filtering process.

Fig. 1 plots not only the 1D convolution kernel used in the
quadratic approximation but also the projection of the
postprocessing mesh (that is, the support of the kernel, where
mesh lines correspond to the knot lines of the B-splines used
in the kernel construction) onto the approximation mesh in
two dimensions. That s, the top mesh shows the mesh used in
the quadratic approximation, f;(x,y), obtained by the finite
element or finite volume approximation with the mesh
containing the support of the B-splines used in the convolu-
tion kernel, K (%% (z, y) (given above), superimposed (shaded
area). The bottom mesh is the supermesh that we use in order
to obtain the filtered solution, f*(z*,y*). Integration is
implemented over this supermesh as an accumulation of
the integral over each supermesh element. In the lower image
in Fig. 1, we picture one element of the supermesh used in the
postprocessing with the Gauss points used in the integration.
Note that Gauss integration on each supermesh element
admits exact integration (to machine precision) since both the
kernel and approximation are polynomials over the sub-
domain of integration.

We note that our results are obtained by using the
symmetric kernel discussed above. Near the boundary of a
computational domain, a discontinuity of the vector field,
or an interface of meshes with different cell sizes, this
symmetric kernel should not be applied. As in finite
difference methods, the accuracy-conserving filtering tech-
nique can easily be extended by using one-sided stencils [7].
The one-sided version of this postprocessor is performed by
simply moving the support of the kernel to one side of the
current element being postprocessed. The purely one-sided
postprocessor has a form similar to the centered one, with
different bounds on the summation and new coefficients



686 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

K6’3(X *)

1
:
1
*
1
; £900y)
! T
y -
Vi 7
/ ]
Y /
f // //
9’(}( ¥ 7—7
/ 7
/
/7
/7
( /
] I
f I
1 I
£ I
1 I
| I
f f { I
| | o
I I L I
| ) L 7 7]
/7
! i 77
l T /7
l 7 / 7
| 7 / ]
) o T /7
d / 7
| 7777 / | ]
4 / ]
/ /7

Fig. 1. The convolution kernel for a 2D quadratic approximation when

element I, ; = [z; — % ; — ] x [y; — ", y; — 4] is postprocessed. The

B-spline mesh is shown (shaded area), as well as the approximation
mesh (in white). The bottom figure represents one quadrilateral element
and the points at which the postprocessor is evaluated.

2128 7], Similarly, a partially left one-sided postprocessor
is obtained by changing the bounds of the summation. In
each case, the use of 2k + 1 B-splines remains consistent.
The right one-sided postprocessed solution is a mirror
image of the left.

The 2D symmetric kernel is a product of the 1D kernels
with the form

k
KZ(k+1>"k+1(SL‘*7 y*) — Z 02(k+1),k+1 w(k:+1)(x* _ ’Yx)

= Yo
i (11)

. Z Cg{sk-%—l),k-%—l ¢<k+1)(y* . ’Vy),

W=k

[5]. The kernel is suitably scaled by the mesh size in both the
z- and y-directions. The same coefficients, cg(’““)vk“, as well
as B-splines, are used for both directions. This easily
extends to three dimensions as well (the kernel will be a
tensor product of three B-splines).

4.1 Putting It Together

Putting this filtering process together with the streamline
algorithm for a 2D quadratic approximation, we would
execute the following algorithm:

e Obtain the approximation over a given
quadrilateral or hexagonal mesh using a

A

Fig. 2. Diagram showing the time integration along a streamline as it
crosses element boundaries.

finite element or finite volume scheme
(Fig. 1).

e Form the postprocessing kernel using a
linear combination of B-splines, scaled
by the mesh size. This will form the
postprocessing mesh (Fig. 1, shaded area) .
The intersection of these two meshes forms
more subelements (Fig. 1, bottom).

—  Obtain the B-spline from ¢ = 8y & * 6.
— Obtain the appropriate coefficients
from K *p =p for p=1,z,2%, 23 2.

e Given the kernel for this quadratic
function, use RK-4 (or your favorite
ODE solver) to integrate the streamline,
where the right-hand-side function is

given by

K (ko k 1 ° 63,3 (22
P e o 3 (A
3

. 63,3 (2 "Y
Z c"";v ( hy

Wy==3

- ’Yy) fh(zla Zz) dzydz.
(12)

In Fig. 2, the time integration of a streamline as it crosses
element boundaries is shown. By using this postprocessor
as part of the time integration step, we have the ability to
impose a type of interelement continuity at the evaluation
points of the integration (denoted by the circles) by using
the solution information in the neighborhood of the point
(denoted by the shaded regions—that is, by using the
information in the footprint of the kernel) to regain
convergence.

5 IMPLEMENTATION OF SMOOTHNESS-INCREASING
ACCURACY-CONSERVING FILTERS

When computing more than one streamline in a given field, it
is often more efficient to postprocess the entire field ahead of
time. This allows us to simplify the implementation of the
postprocessing kernel given in (5) by exploiting the symmetry
of the postprocessor and the B-spline coefficients [5], [7], [36].
There is an additional advantage in the local behavior of the
postprocessor, specifically that the kernel needs information
only from its nearest neighbors and can be implemented by
doing small matrix-vector multiplications [5]. The matrix-
vector format in the modal basis in one dimension is found
from evaluating



STEFFEN ET AL.:

Fla / kD) k+1( T >
/77k’ Liyj h

th L+/

ﬂ/

L k
=Y N Al e ke,

J=—* =0

where

. y 1
C(u,k,x):gz AEHDE / D ()l () dy,

y=—k lis;

J

and gzﬁ

functlon on cell I; = (z; —

= are the basis functions of the projected

h
2%

+14). The modes on element

I; are given by ﬁ”, I=0,---,k. We further note that the
compact support of the 2k + 1 B-splines reduces the area of
the integral, which leads to a total support of 2k +1
elements, where &' = [3£H].

Furthermore, to provide ease of computation, we can
choose to compute the postprocessed solution at specific
points within an element. This allows us to calculate the
postprocessing matrix coefficients ahead of time and store
the values for future calculations. It also simplifies the
application in two and three dimensions, which are just
tensor products of the 1D postprocessor.

Consider a 2D application that uses four Gauss points
per element (two in each direction, denoted z,, n =1,2).
The matrix-vector representation to postprocess element

iy =lzi - M) x [y, —

K k
=YD 3D ) oy

my=—k my=—k"1,=0[,=0

C(mm I, Ky Zn(r)) : C(myv ly7 k, ZW(?J))

Notice that C(my, Iy, k, z,(x)) and C(my, 1y, k, z,(y)) contain
the same matrix values. The only new information plugged
into calculating the postprocessed solution is the data
provided on element /; ; and surrounding elements. That is,
the value of the data f; ;.

We rely on a 2D quadratic approximation over the
element [;; for further explanation. In this case, the
approximation is given by

h27 T 2,y,——] would be

[ (zn(@), 20(y) (14)

fulo) =100 + 100 (@) + 6 ()
4 f(ll (r) 1)( )+ f(2'0)¢5§2>(.r) (15)
+ f(()Q j (y)a

where the basis of the approximation is denoted with
¢i(x), $;(y). In many DG simulations, this basis is chosen
to be the Legendre basis, although mathematically it
is not required to be Let us denote by f;; the vector

AR AR A S a8

follows.

We then proceed as

e Obtainthe five coefficients and the quad-
ratic B-splines outlined in Section 4.
e TForn=1,2 evaluate the integral

INVESTIGATION OF SMOOTHNESS-INCREASING ACCURACY-CONSERVING FILTERS FOR IMPROVING STREAMLINE... 687

C(.]7 lv 27 x’n) -7

7—

>t [ 0wl v
72 Liyj
at the Gauss points,
matrix C.
® For each element in our 2D mesh, the post-
processed solution at the Gauss points
wouldbe thematrix-vectormultiplication:

r,. Denote this

3

3
f* (Z',“ y'n) = Z Z fi+m,v,j+mwaCy~

my=—3m,=—3

(16)

We note that it is only necessary to compute the
postprocessing matrix, C, once, even though we apply it in
each direction and on every element. This is the advantage
of the directionally uniform mesh assumption. As is shown
in [6], the postprocessing takes O(N) operations to filter
the entire field, where N is the total number of elements.
Each field presented in this paper was postprocessed in
less than 5 seconds. Once the postprocessing is accom-
plished, the only cost difference between the original and
the postprocessed field is the cost of the field evaluation.
From our analysis, the cost function for evaluation of the
field goes as C; P? 4+ Cy P, where P is the polynomial degree
of the field, d is the dimension of the field, and C, and C, are
constants independent of the degree. The first term relates
to the cost of the linear combination; the second term relates
to the cost of evaluating the polynomials. It is worth noting
that the postprocessed field has twice the number of
modes per dimension as the unprocessed field, and thus,
the cost of each postprocessed field evaluation is asympto-
tically 27 times the cost of an unprocessed field evaluation.

6 RESULTS

To demonstrate the efficacy of the proposed filtering
methodology when used in conjunction with classic
streamlining techniques, we provide the following tests on
a set of 2D vector fields. We provide these illustrative
results on 2D quadrilateral examples because it is easy to
see the ramifications of the filtering (as exact solutions are
available by construction and hence allow us to do
convergence tests); everything we have discussed and will
demonstrate holds true for 3D hexahedral examples also.
The three vector field examples (u, 0" = F(x,y) pre-
sented in this paper can be replicated using the set of
equations given below; they were obtained from [51]. The
domain of interest in all three cases is [-1,1] x [-1,1], and
the range is a subspace of IR?. Each field is then projected
(using an L? Galerkin projection) onto an evenly spaced
quadrilateral high-order finite volume mesh—a procedure
that mathematically mimics the results of a DG simulation.
For details as to the mathematical properties and numerical
issues of such projections, we refer the reader to [49].
Once projected to a (high-order) finite volume field, we
can then apply the postprocessor in an attempt to regain
smoothness at element interfaces and to increase accuracy
(in the sense of the minimization of the L? norm of the
difference between the true and the approximate solution).
For simplification reasons, the comparisons in this paper



688 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

TABLE 1
The L? and L*> Errors for the U and V Components of Field 1

U component

TABLE 3
The L? and L* Errors for the U and V Components of Field 3

U component

L2 error L error

N BEFORE AFTER BEFORE AFTER
Pl

20 | 1.2642E-02  4.8779E-04 | 1.3028E-01  2.0830E-03

40 | 4.4291E-03  3.8597E-05 | 4.8341E-02  1.7929E-04

80 | 1.3054E-03 2.7114E-06 | 1.7165E-02  1.3033E-05
[PQ

20 | 2.2576E-04  6.8329E-06 | 1.8986E-03  1.3061E-05

40 | 5.0880E-05  1.4086E-07 | 5.4698E-04  2.6435E-07

80 | 8.4056E-06  2.4689E-09 | 9.9905E-05  4.6007E-09

V component
L2 error L error

N BEFORE AFTER BEFORE AFTER
IP)l

20 | 1.8593E-02  8.2343E-04 | 3.5945E-01  3.5262E-03

40 | 6.8577E-03  6.4599E-05 | 1.2345E-01  2.9945E-04

80 | 2.0597E-03  4.4989E-06 | 4.2493E-02  2.1573E-05
[PJQ

20 | 2.5455E-04  1.1907E-05 | 4.0543E-03  2.1461E-05

40 | 6.5659E-05  2.0750E-07 | 1.1096E-03  3.9563E-07

80 | 1.1284E-05 3.4297E-09 | 1.9817E-04 6.6518E-09

L? error L°° error

N BEFORE AFTER BEFORE AFTER
]pl

20 | 5.8599E-03  2.0096E-04 | 5.8993E-02  6.5475E-04

40 | 2.0326E-03  1.4980E-05 | 2.1084E-02  5.1405E-05

80 | 5.9359E-04 1.0187E-06 | 6.2881E-03  3.5671E-06
]P>2

20 | 9.3092E-05  4.8121E-06 | 1.0252E-03  4.8288E-06

40 | 1.9834E-05 7.5189E-08 | 2.1987E-04  7.5451E-08

80 | 3.1548E-06  1.1748E-09 | 3.4352E-05  1.1789E-09

V component
L? error L error

N BEFORE AFTER BEFORE AFTER
Pl

20 | 7.3409E-03  7.3190E-05 | 8.9810E-02  2.5865E-04

40 | 2.6545E-03  5.0130E-06 | 3.4032E-02  1.8700E-05

80 | 7.8884E-04  3.2750E-07 | 1.1066E-02  1.2361E-06
]P)z

20 | 1.1326E-04  4.5073E-16 | 1.5893E-03  7.9936E-15

40 | 2.6867E-05 1.4891E-15 | 3.6759E-04 2.3981E-14

80 | 4.4509E-06 2.7195E-15 | 5.8067E-05 4.7962E-14

Results are shown for before and after postprocessing.

were limited to those regions of [—1,1)* for which the
symmetric postprocessing kernel remains within the do-
main. In general, the entire domain can (and should) be
postprocessed using a combination of the symmetric and
one-sided kernels as described in [7].

In Tables 1, 2, and 3, we present errors measured in the
L? norm and a discrete approximation of the L* norm
(sampled on a 1,000 x 1,000 uniform sampling of the
domain) for both the projected and postprocessed solutions.
The errors are calculated by comparing the projected and
postprocessed solutions against the analytic fields. This

TABLE 2
The L? and L™ Errors for the U and V Components of Field 2

U component

L? error L error

N BEFORE AFTER BEFORE AFTER
Pl

20 | 2.7581E-03  7.8928E-05 | 2.4325E-02 14777E-04

40 | 9.2500E-04  5.5474E-06 | 7.9316E-03  1.0683E-05

80 | 2.6559E-04  3.6589E-07 | 2.5096E-03  7.1213E-07
]PJZ

20 | 4.6335E-05 1.7024E-16 | 2.8118E-04 2.6645E-15

40 | 9.2945E-06 4.4493E-16 | 6.2435E-05  8.4377E-15

80 | 1.4251E-06 9.8346E-16 | 9.9100E-06  2.0428E-14

V component
L? error L error

N BEFORE AFTER BEFORE AFTER
Pl

20 | 3.2476E-03  8.4842E-05 | 3.9655E-02  1.7589E-04

40 | 1.0626E-03  5.8785E-06 | 1.2347E-02  1.2440E-05

80 | 3.0191E-04 3.8556E-07 | 3.8142E-03  8.2192E-07
IFDZ

20 | 4.8614E-05 3.9956E-16 | 4.2340E-04  9.3259E-15

40 | 9.6142E-06  8.1733E-16 | 8.6459E-05 1.6875E-14

80 | 1.4665E-06 1.9159E-15 | 1.3251E-05 3.9080E-14

Results are shown for before and after postprocessing.

Results are shown for before and after postprocessing.

error calculation is performed for various numbers of
uniform element partitions (N in each dimension) and
polynomial orders (IP¥). Both u and v components are
provided individually.

The three analytic fields used as examples are all of
the form:

z=x+y,
u = Re(r),
v= —Im(r).

Example Field 1

r=(z— (0.74 + 0.352)) (2 — (0.68 — 0.592))
(z— (=0.11 — 0.722)) (2 — (—0.58 + 0.641))
(2= (0.51 — 0.272)) (2 — (—0.12 + 0.842))".

Example Field 2

r=(z— (0.74 + 0.350)) (2 + (—0.18 — 0.19))
(z— (—0.11 — 0.722))(2 — (—0.58 + 0.642))
(z— (0.51 — 0.272)).

Example Field 3

r=—(z—(0.74+0.350))(z — (0.11 — 0.112))*
(z— (—0.11 + 0.722)) (2 — (—0.58 + 0.642))
(2= (0.51 — 0.27 % 1)).

As predicted by the theory, we see a decrease in the
L? error for all applications of the postprocessor. In addition,
we observe that when the postprocessing order matches
the original polynomial order of the analytical solution, we
regain the solution to machine precision (as predicted by the
theory). We note that this represents the “ideal” case—when
the filter is able to regain the exact solution. We also observe
a benefit in the L* norm—something not explicitly given



STEFFEN ET AL.: INVESTIGATION OF SMOOTHNESS-INCREASING ACCURACY-CONSERVING FILTERS FOR IMPROVING STREAMLINE... 689

TABLE 4
Error Comparison in Critical Point Location
Field 1
N =20 N =40
Critical Point Before After Before After
(0.74, 0.35) 0.008387  0.000995 | 0.003549  0.000052
(0.68, -0.59) 0.00268 0.000384 | 0.000802  0.000027
(-0.11, -0.72) | 1.977954  0.006531 | 0.003356  0.000428
(-0.58, -0.64) | 0.001955 0.000894 | 0.001471  0.000065
(0.51, 0.27) 0.002401  0.000938 | 0.001026  0.000062
Field 2
N =20 N =40
Critical Point Before After Before After
(0.74, 0.35) 0.008305  0.000392 | 0.003321  0.000021
(0.18, -0.19) 0.000198  0.000093 | 0.000270  0.000006
(-0.11, -0.72) | 0.001504 0.000197 | 0.000589  0.000014
(0.58, 0.64) 0.001049  0.000134 | 0.000772  0.000009
(0.51, 0.27) 0.002616  0.000481 | 0.000970  0.000032

Results are shown for before and after postprocessing.

by the theory but something upon which many of the
theoretical papers have commented is likely and has been
observed empirically [4], [5].

One of the nice consequences of the reduction in the
L> error of the fields is that the computation of field
“features” such as critical points are not hampered. As an
example, we computed a sampling of critical point locations
for two of the previously mentioned fields. Critical points
were computed using a Newton-Raphson algorithm with a
finite differencing of the field values for creating the
Jacobian matrix [48]. As the exact position of the critical
points are known, we can compare in the standard
euclidean norm the distance between the exact and computed
critical point location. In Table 4, we present the results of a
collection of computed critical point locations based upon the
projected and the postprocessed field. Note that in general,
the postprocessed field does no worse than the original field.

In Fig. 3, we present three vector field visualizations
produced by projecting the functions above over a
40 x 40 uniform mesh on the interval [—1,1] x [-1,1]. The
field approximations are linear in both the z- and
y-directions. The “true-solution” streamlines (denoted as
black lines in all three images) are calculated by performing
RK-4/5 on the analytical function. The blue streamlines
represent the streamlines calculated from the L?-projection
of the field. The red streamlines represent the streamlines
calculated from the postprocessed projection of the field.
All streamlines were calculated using RK-4/5 with an error
tolerance of 107°.

Note that in the cases presented, the streamline based
upon the postprocessed data more closely follows the
true solution. In these cases, we also observe that in regions
where bifurcations occur, the postprocessed solution follows
the true solution instead of diverging away like the non-
postprocessed solution. This behavior can be attributed to
the projection accuracy obtained due to the use of the
postprocessor.

Toameliorate the accuracy and smoothness issues induced
by jumps at element interfaces in the Ly-projected field, the
Runge-Kutta-Fehlberg adaptive-error-controlled RK-4/5
time-stepping method [52] was used with an error tolerance
of 1079 and no min/max step sizes. This tolerance was chosen
as a representative of what would be selected if one wanted
streamlines that were accurate to single-precision machine
zero. The smoothness of the analytical function and the

e OO

Powrmrnies JONNON

N yooff 2

e
SV
BANNA A
NN I S

&
13
2
&
°
2

Fig. 3. Three streamline integration examples based upon vector fields
generated using the methodology presented in [51]. Black streamlines
denote “exact” solutions, blue streamlines were created based upon
integration on an Ly-projected field, and red streamlines were created
based upon integration on a filtered field. In cases where the black
streamline is not visible, it is because the red streamline lines obfuscates
it. The streamline seed points are denoted by circles. Specific details
concerning the projected fields are given in the text.

postprocessed field would allow for efficient integration
using a standard RK-4 method; however, for comparison,
integration on all fields was performed using the same
adaptive RK-4/5 method with the same tolerances. Table 5
shows the number of accepted RK-4/5 steps and total number
of RK-4/5 steps (accepted plus rejected) required to compute
the streamlines in Fig. 3. In Table 6, we provide a timing
comparison based upon our nonoptimized Matlab imple-
mentation of the streamline algorithms running on an Intel
Pentium 4 3.2-GHz machine. Note that the ratio of filtered to
nonfiltered time per integration step is much less than the
ratio of the total number of integration steps required. Thatis,
even though the cost per integration step is greater on the
postprocessed field, the reduction in the total number of
integration steps required more than compensates for this
difference.

For most streamlines, the total number of RK-4/5 s’teps1
required for the postprocessed field is comparable to the
number of steps required for the analytical function. For this
error tolerance, the total number of steps required for the
Ly-projected field is asymptotically four times greater than

1. Here, “step” does not refer to a time step—the advancement of
time—but rather the execution of all the stages of the RK algorithm and
error estimation.



690 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

TABLE 5
Number of RK-4/5 Steps Required to Calculate Different
Streamlines on the Three Different Fields with the
Error Tolerance Set to 1076

No. of Accepted Steps Total No. of Steps
Streamline | Exact Lo Post Exact Lo Post
Field 1
1 36 177 33 43 523 42
2 159 132 47 211 358 54
3 52 722 65 64 2476 93
Field 2
1 26 118 25 34 398 35
86 65 41 106 135 45
3 27 89 27 46 263 49
Field 3
1 34 65 32 54 206 58
31 137 31 42 499 44
3 29 50 28 43 129 46

the number required for the postprocessed field (recall from
Section 5 that the postprocessed solution is asymptotically
four times more expensive to evaluate; hence, a computa-
tional win is attained when the postprocessed solution takes
less than four times the number of steps. In Table 6, we see
that we are not in the asymptotic worst case as the cost of
evaluating the postprocessed solution is only twice that of
the unfiltered field). This discrepancy is again due to the
RK-4/5 method drastically reducing the time step and
rejecting many steps to find discontinuities in the underlying
field. When tighter error tolerances are used or when coarser
discretizations are examined (which cause larger jumps in
the solution at element boundaries), the discrepancy
between the number of RK-4/5 steps required grows, and
likewise, with looser error tolerances or refined meshes, the
discrepancy decreases. To compare with another integration
method, Table 7 shows the results for the same tests with the
RK-3/4 method used by Stalling and Hege [19]. The
difference between the total number of steps required for
the Li-projected field and the postprocessed field is much
greater with RK-3/4 than with RK-4/5.

To further illustrate how discontinuities at element
boundaries affects the performance of RK-4/5, Fig. 4 shows
the cumulative number of RK-4/5 steps required for a
portion of one streamline.

TABLE 6
Number of Steps, Time per Integration Step (in Seconds),
and Ratio of Filtered to Nonfiltered Time per Step Required
to Calculate Different Streamlines on the Three Different
Fields with the Error Tolerance Set to 106

Lo Post-Processed

Streamline | Steps  Time/Step (sec) | Steps  Time/Step (sec)‘ Ratio
Field 1

1 523 0.00374 42 0.00693 1.853

2 358 0.00400 54 0.00705 1.763

3 2476 0.00372 93 0.00708 1.903
Field 2

1 398 0.00370 35 0.00719 1.943

2 135 0.00370 45 0.00710 1.919

3 263 0.00365 49 0.00707 1.937
Field 3

1 206 0.00364 58 0.00718 1.973

2 499 0.00365 44 0.00709 1.942

3 129 0.00364 46 0.00708 1.945

TABLE 7
Number of RK-3/4 Steps Required to Calculate Different
Streamlines on the Three Different Fields with the
Error Tolerance Set to 1076

No. of Accepted Steps Total No. of Steps

Streamline | Exact Lo Post | Exact Lo Post
Field 1

1 230 1897 229 237 3310 239

267 1562 264 277 2657 276

3 424 2070 560 429 3156 575
Field 2

1 123 1609 125 125 2869 133

208 1190 198 216 2046 206

3 290 1208 288 291 2389 293
Field 3

1 253 1675 249 255 3385 256

288 1075 289 288 1862 293

3 242 1337 243 242 2685 248

This study shows that there exist regimes based on
things such as the tolerance of the desired streamline and
the size of the jump discontinuities in which postprocessing
the solution prior to streamline integration provides a
computational benefit. The improved smoothness greatly
reduces the need for adaptive time-stepping schemes to
adapt the time step to account for discontinuities, reduces
the number of rejected steps, and allows for much larger
step sizes for the same error tolerance.

7 SUMMARY AND FUTURE WORK

Adaptiveerror control througherror prediction and time-step
refinementis a powerful concept thatallows one to maintain a
consistent error tolerance. When adaptive error control is
used for streamline integration through discontinuous fields,
the computational cost of the procedure is primarily
determined by the number and size of the discontinuities.
Hence, when one is integrating streamlines through a high-
order finite element or finite volume data set, most of the
adaptation occurs at the elementboundaries. There hasbeena
recent interest in the mathematical community in the
development of postprocessing filters that increase the
smoothness of the computational solution without destroying
the formal accuracy of the field; we have referred to these
filters as SIAC filters. In this paper, we have presented a
demonstration of a complementary approach to classic error
control—application of SIAC filters to discontinuous data
prior to streamline integration. These filters are specifically
designed to be consistent with the discretization method from
which the data of interest was generated and hence can be
subjected to the verification process [53]. The objective of this
work was to understand the computational trade-offs
between the application of error control on discontinuous
data and the filtering of the data prior to integration.

If one neglects the cost of the filtering step as being a fixed
“preprocessing” step to streamline integration (such as if one
expects to integrate many streamlines through the same
field), then the trade-off that arises can be expressed
succinctly as follows: does one take many adaptive integra-
tion steps (due to the presence of discontinuities) through the
original field, or does one take fewer adaptive steps through a
more expensive field to evaluate (that is, the postprocessed
field)? Through our empirical investigation, we find that
when the error tolerance required for streamline integration



STEFFEN ET AL.: INVESTIGATION OF SMOOTHNESS-INCREASING ACCURACY-CONSERVING FILTERS FOR IMPROVING STREAMLINE...

@
a
2
17} /
= 7
ol t=0
© *
x
g o Ly
s —4A— Post|
-,E —&— True
=
E
-1
o

691

—— L2
—=&— Post]
—&— True

Cumulative RK-4/5 Full Steps

.05 A A5 2 25

(@)

©

Fig. 4. The center graph shows Streamline 2 on the L, projected Field 1 integrated using RK-4/5. The left graph shows the streamline betweent = 0
and t = 0.3 and the cumulative number of RK-4/5 steps (including rejects) required for integration. Vertical lines on this graph represent multiple
rejected steps occurring when the streamline crosses element boundaries. The right graph shows the cumulative number of RK-4/5 steps required

for integration to ¢ = 2.0.

is low or when the jump discontinuities in the field are very
high, the strategy advocated in this paper provides a
computational win over merely using adaptive error control
on the original field (that is, the total computational work can
be greatly reduced). We do not advocate that the filtering as
presented here replace adaptive error control but rather thatit
augments current streamline strategies by providing a means
of increasing the smoothness of finite element/volume fields
without accuracy loss. In doing so, it allows the visualization
scientist to balance the trade-offs presented here for mini-
mizing the computational cost of streamline integration
through discontinuous fields.

As future work, we seek to extend the filtering
techniques presented herein to general discretizations (for
example, triangles and tetrahedra), as well as to gradients of
fields. We also will seek to understand the relationship
between postprocessing vector fields as a collection of
single fields versus developing postprocessing techniques
that preserve vector properties (such as divergence-free or
curl-free conditions). If this were solved, these postproces-
sing techniques could possibly be of great value as a
preprocessing stage prior to other visualization techniques
such as feature extraction or isosurface visualization.

ACKNOWLEDGMENTS

The first author would like to acknowledge support from the
US Department of Energy through the Center for the
Simulation of Accidental Fires and Explosions (C-SAFE)
under Grant W-7405-ENG-48. The second author would like
toacknowledge the NSFREU support provided as part of NSF
CAREER Award NSF-CCF0347791. The third author would
like to acknowledge the support from ARO under Grant
WO911NF-05-1-0395 and would like to thank Bob Haimes
(MIT) for the helpful discussions. The authors thank Nathan
Galli of the SCI Institute for his assistance in producing the
diagrams found in the text. S. Curtis was with the School of
Computing, University of Utah, Salt Lake City, Utah.

REFERENCES

[1] D.H.Laidlaw, R.M. Kirby, C.D. Jackson, ]J.S. Davidson, T.S. Miller,
M. da Silva, W.H. Warren, and M.J. Tarr, “Comparing 2D Vector
Field Visualization Methods: A User Study,” IEEE Trans.
Visualization and Computer Graphics, vol. 11, no. 1, pp. 59-70,
Jan./Feb. 2005.

(2]

B3]

4

(5]

o]

(]

8]
]
(10]

(11]

[12]

(13]

(14]

[15]

[1o]

(17

(18]

[19]

(20]

D. Weiskopf and G. Erlebacher, “Overview of Flow Visualiza-
tion,” The Visualization Handbook, C.D. Hansen and C.R. Johnson,
eds., Elsevier, 2005.

C.W. Gear, “Solving Ordinary Differential Equations with
Discontinuities,” ACM Trans. Math. Software, vol. 10, no. 1,
pp- 23-44, 1984.

J. Bramble and A. Schatz, “Higher Order Local Accuracy by
Averaging in the Finite Element Method,” Math. Computation,
vol. 31, pp. 94-111, 1977.

J. Ryan, C.-W. Shu, and H. Atkins, “Extension of a Post-Processing
Technique for the Discontinuous Galerkin Method for Hyperbolic
Equations with Application to an Aeroacoustic Problem,” SIAM
J. Scientific Computing, vol. 26, pp. 821-843, 2005.

S. Curtis, RM. Kirby, J.K. Ryan, and C.-W. Shu, “Post-Processing
for the Discontinuous Galerkin Method over Non-Uniform
Meshes,” SIAM ]. Scientific Computing, to be published.

J. Ryan and C.-W. Shu, “On a One-Sided Post-Processing
Technique for the Discontinuous Galerkin Methods,” Methods
and Applications of Analysis, vol. 10, pp. 295-307, 2003.

E. Tufte, The Visual Display of Quantitative Information. Graphics
Press, 1983.

J.V. Wijk, “Spot Noise Texture Synthesis for Data Visualization,”
Computer Graphics, vol. 25, no. 4, pp. 309-318, 1991.

B. Cabral and L. Leedom, “Imaging Vector Fields Using Line
Integral Convolution,” Computer Graphics, vol. 27, pp. 263-272,1993.
G. Turk, “Generating Textures on Arbitrary Surfaces Using
Reaction-Diffusion Textures,” Computer Graphics, vol. 25, no. 4,
pp- 289-298, 1991.

A. Witkin and M. Kass, “Reaction-Diffusion Textures,” Computer
Graphics, vol. 25, no. 4, pp. 299-308, 1991.

D. Kenwright and G. Mallinson, “A 3-D Streamline Tracking
Algorithm Using Dual Stream Functions,” Proc. IEEE Conf.
Visualization (VIS ’92), pp. 62-68, 1992.

D. Watanabe, X. Mao, K. Ono, and A. Imamiya, “Gaze-Directed
Streamline Seeding,” ACM Int’l Conf. Proc. Series, vol. 73, p. 170,
2004.

G. Turk and D. Banks, “Image-Guided Streamline Placement,”
Proc. ACM SIGGRAPH '96, pp. 453-460, 1996.

B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of
Arbitrary Density,” Proc. Eighth Eurographics Workshop Visualiza-
tion in Scientific Computing, 1997.

X.Ye, D. Kao, and A. Pang, “Strategy for Seeding 3D Streamlines,”
Proc. IEEE Conf. Visualization (VIS), 2005.

A. Mebarki, P. Alliez, and O. Devillers, “Farthest Point Seeding for
Efficient Placement of Streamlines,” Proc. IEEE Conf. Visualization
(VIS), 2005.

D. Stalling and H.-C. Hege, “Fast and Resolution Independent
Line Integral Convolution,” Proc. ACM SIGGRAPH 95,
pp- 249-256, 1995.

C. Teitzel, R. Grosso, and T. Ertl, “Efficient and Reliable
Integration Methods for Particle Tracing in Unsteady Flows on
Discrete Meshes,” Proc. Eighth Eurographics Workshop Visualiza-
tion in Scientific Computing, pp. 49-56, citeseer.ist.psu.edu/
teitzel97efficient.html, 1997.



692

(21]

[22]

(23]

[24]

(25]

[20]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

[36]

(371

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[43]
[40]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

Z. Liu and R.J. Moorhead, “Accelerated Unsteady Flow Line
Integral Convolution,” IEEE Trans. Visualization and Computer
Graphics, vol. 11, no. 2, pp. 113-125, Mar./Apr. 2005.

J. Parker, R. Kenyon, and D. Troxel, “Comparison of Interpolating
Methods for Image Resampling,” IEEE Trans. Medical Imaging,
vol. 2, no. 1, pp. 31-39, 1983.

H. Hou and H. Andrews, “Cubic Splines for Image Interpolation
and Digital Filtering,” IEEE Trans. Acoustics, Speech, and Signal
Processing, vol. 26, pp. 508-517, 1978.

A. Entezari, R. Dyer, and T. Moller, “Linear and Cubic Box Splines
for the Body Centered Cubic Lattice,” Proc. IEEE Conf. Visualiza-
tion (VIS '04), pp. 11-18, 2004.

D. Mitchell and A. Netravali, “Reconstruction Filters in Computer-
Graphics,” Proc. ACM SIGGRAPH 88, pp. 221-228, 1988.

G. Niirnberger, L. Slatexchumaker, and F. Zeilfelder, Local
Lagrange Interpolation by Bivariate C1 Cubic Splines. Vanderbilt
Univ., 2001.

P. Sablonniere, “Positive Spline Operators and Orthogonal
Splines,” . Approximation Theory, vol. 52, no. 1, pp. 28-42, 1988.
Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun, “Discrete
Multiscale Vector Field Decomposition,” ACM Trans. Graphics,
vol. 22, no. 3, pp. 445-452, 2003.

I. Thm, D. Cha, and B. Kang, “Controllable Local Monotonic Cubic
Interpolation in Fluid Animations: Natural Phenomena and
Special Effects,” Computer Animation and Virtual Worlds, vol. 16,
no. 3-4, pp. 365-375, 2005.

T. Moller, R. Machiraju, K. Mueller, and R. Yagel, “Evaluation and
Design of Filters Using a Taylor Series Expansion,” IEEE Trans.
Visualization and Computer Graphics, vol. 3, no. 2, pp. 184-199, June
1997.

T. Moller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel,
“Design of Accurate and Smooth Filters for Function and
Derivative Reconstruction,” Proc. IEEE Symp. Volume Visualization
(VVS ’98), pp. 143-151, 1998.

D. Stalling, “Fast Texture-Based Algorithms for Vector Field
Visualization,” PhD dissertation, Konrad-Zuse-Zentrum fiir
Informationstechnik, 1998.

D. Stalling and H.-C. Hege, “Fast and Resolution Independent Line
Integral Convolution,” Proc. ACM SIGGRAPH 95, pp. 249-256,
1995.

V. Thomée, “High Order Local Approximations to Derivatives
in the Finite Element Method,” Math. Computation, vol. 31, pp. 652-
660, 1977.

I. Shoenberg, “Contributions to the Problem of Approximation
of Equidistant Data by Analytic Functions, Parts A, B,” Quarterly
Applied Math., vol. 4, pp. 45-99, 112-141, 1946.

C.-W.S.B. Cockburn, M. Luskin, and E. Suli, “Enhanced Accuracy
by Post-Processing for Finite Element Methods for Hyperbolic
Equations,” Math. Computation, vol. 72, pp. 577-606, 2003.

M. Mock and P. Lax, “The Computation of Discontinuous
Solutions of Linear Hyperbolic Equations,” Comm. Pure and
Applied Math., vol. 18, pp. 423-430, 1978.

D.G.W. Cai and C.-W. Shu, “On One-Sided Filters for Spectral
Fourier Approximations of Discontinuous Functions,” SIAM J.
Numerical Analysis, vol. 29, pp. 905-916, 1992.

P.G. Ciarlet, “The Finite Element Method for Elliptic Problems,”
SIAM Classics in Applied Math., Soc. of Industrial and Applied
Math., 2002.

P.G. Ciarlet, “Interpolation Error Estimates for the Reduced
Hsieh-Clough-Tocher Triangle,” Math. Computation, vol. 32, no.
142, pp. 335-344, 1978.

J.H. Bramble and M. Zlamal, “Triangular Elements in the
Finite Element Method,” Math. Computation, vol. 24, no. 112, pp.
809-820, 1970.

P. Alfeld and L. Schumaker, “Smooth Finite Elements Based on
Clough-Tocher Triangle Splits,” Numerishe Mathematik, vol. 90,
pp- 597-616, 2002.

M. jun Lai and L. Schumaker, “Macro-Elements and Stable Local
Bases for Splines on Clough-Tocher Triangulations,” Numerishe
Mathematik, vol. 88, pp. 105-119, 2001.

O. Davydov and L.L. Schumaker, “On Stable Local Bases for
Bivariate Polynomial Spline Spaces,” Constructive Approximations,
vol. 18, pp. 87-116, 2004.

T.J.R. Hughes, The Finite Element Method. Prentice Hall, 1987.
G.E. Karniadakis and S.J. Sherwin, Spectral/HP Element Methods for
CFD. Oxford Univ. Press, 1999.

[47]

(48]
[49]

[50]

(51]

(52]

(53]

E. Hairer, S.P. Norrsett, and G. Wanner, Solving Ordinary
Differential Equations I: Nonstiff Problems, second revised ed.
Springer, 1993.

R. Burden and J. Faires, Numerical Analysis. PWS, 1993.

C. Canuto and A. Quarteroni, “Approximation Results for
Orthogonal Polynomials in Sobolev Spaces,” Math. Computation,
vol. 38, no. 157, pp. 67-86, 1982.

E. Murman and K. Powell, “Trajectory Integration in Vertical
Flows,” AIAA ., vol. 27, no. 7, pp. 982-984, 1988.

G. Scheuermann, X. Tricoche, and H. Hagen, “Cl-Interpolation
for Vector Field Topology Visualization,” Proc. IEEE Conf.
Visualization (VIS ’99), pp. 271-278, 1999.

R.L. Burden and ].D. Faires, Numerical Analysis, fifth ed. PWS,
1993.

I. Babuska and ].T. Oden, “Verification and Validation in
Computational Engineering and Science: Basic Concepts,”
Computer Methods in Applied Mechanics and Eng., vol. 193,
no. 36-38, pp. 4057-4066, 2004.

Michael Steffen received the BA degree in
computer science/mathematics and physics
from Lewis & Clark College, Portland, Oregon.
He then worked as a software engineer for the
Space Computer Corporation developing real-
time processors for airborne hyperspectral
sensors. Currently, he is a PhD student in
the School of Computing, University of Utah,
Salt Lake City, working in the Scientific Comput-
ing and Imaging Institute.

Sean Curtis received the BA degree in
German from Brigham Young University and
the BS degree in computer science from the
University of Utah. He is currently a PhD student
in computer science in the Department of
Computer Science, University of North Carolina,
Chapel Hill, where he is pursuing research in
graphics and simulation.

Robert M. Kirby received the ScM degrees in
computer science and in applied mathematics
and the PhD degree in applied mathematics
from Brown University. He is an assistant
professor of computer science in the School of
Computing, University of Utah, Salt Lake City,
and is a member of the Scientific Computing
and Imaging Institute, University of Utah. His
research interests lie in scientific computing
and visualization. He is a member of the IEEE.

Jennifer K. Ryan received the MS degree
in mathematics from the Courant Institute for
Mathematical Sciences, New York University,
in 1999 and the PhD degree in applied mathe-
matics in 2003 from Brown University. She held
the Householder postdoctoral fellowship at
Oak Ridge National Laboratory and is currently
an assistant professor in the Department of
Mathematics, Virginia Polytechnic Institute and
State University (Virginia Tech), Blacksburg.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


