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FILTERING IN LEGENDRE SPECTRAL METHODS

JAN S. HESTHAVEN AND ROBERT M. KIRBY

Abstract. We discuss the impact of modal filtering in Legendre spectral
methods, both on accuracy and stability. For the former, we derive sufficient
conditions on the filter to recover high order accuracy away from points of dis-
continuity. Computational results confirm that less strict necessary conditions
appear to be adequate. We proceed to discuss a instability mechanism in poly-
nomial spectral methods and prove that filtering suffices to ensure stability.
The results are illustrated by computational experiments.

1. Introduction

While the advantages of the use of spectral and pseudospectral methods for solv-
ing partial differential equations with smooth solutions are widely acknowledged
[3, 18, 8], the prospects of using such methods for problems with nonsmooth solu-
tions remain more controversial. This can be attributed mainly to the appearance
of the Gibbs phenomenon, appearing when approximating nonsmooth solutions us-
ing polynomials, and the often detrimental effect this has on the stability of the
computational scheme. Thus, it is often perceived that spectral methods are too
sensitive and lack robustness to allow the modeling of problems of realistic com-
plexity which, by their very nature, most often are dominated by under-resolved
and unresolved dynamics.

The literature is rich with ideas for overcoming this lack of robustness, all cen-
tered around the idea of introducing sufficient dissipation of the high modes without
sacrificing the accuracy. The exact process of doing so is less obvious as too much
dissipation clearly destroys the accuracy of the solution.

Recently, the use of spectral filters to regain robustness has received considerable
attention due to the effectiveness of this approach and the low computational cost
of applying such filters compared to alternatives, e.g., limiting. The filters are
characterized by modifying the expansion coefficients of the solution, thus leading
to a global modification of the solution.

For Fourier spectral and pseudospectral methods, early results showed the
promise of this for linear problems [21] and with experimental evidence for nonlin-
ear problems [20]. The first rigorous analysis of the approximation properties of
the filtered expansion is offered in [27], showing the potential of recovering spectral
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convergence anywhere away from the point(s) of discontinuity. A simple proof of
the stabilizing effect of this approach for linear problems can be found in [13]. An
overview of these results can be found in [16].

The use of filters in spectral and pseudospectral methods based on orthogonal
polynomials [5, 2, 9, 24, 17], appears to be equally powerful and is being used
increasingly to enable the modeling of complex time-dependent phenomena.

However, apart from Chebyshev-based methods, which one can consider as a
special case of Fourier methods, there is no substantial theory to support the use of
filters for general polynomial methods. Needless to say, given the extensive results
in the literature, there is little reason to doubt that filtering also works in this case.

In this paper we attempt to shed some light on the use of filtering in Legendre
spectral and pseudospectral methods. We first discuss some numerical experiments
in detail to establish some qualitative understanding of the impact of filtering in
terms of accuracy and stability. This sets the stage for a second look at the impact
of filtering, resulting in the derivation of sufficient, but likely not necessary, con-
ditions for accuracy improvements. The analysis is loosely based on the previous
work in [27] although some new developments are needed. This analysis elucidates
the nonuniform impact of the filter and shows how properties of the filter function,
e.g., smoothness, are key components of the accuracy improvements. This analysis
is, to the best of our knowledge, the first to yield a quantitative, although partial,
understanding of how the filter works in Legendre spectral methods. We subse-
quently discuss how the filter can be utilized as a stabilization in time dependent
problems, confirming numerical results both offered here and found widely in the
literature.

We would like to emphasize that spectral filtering, as considered here, is only one
of several different, but related ways of improving accuracy and stability of spectral
and pseudospectral methods. In particular, the physical space filters [11, 12, 26] and
spectral vanishing viscosity methods [25, 22, 23] are closely related. A discussion
of these methods and their relations can be found in [13, 16], and we shall not
discuss this further. The Gegenbauer reconstruction method [12] can likewise be
considered as a filter, albeit with focus on accuracy rather than stability. Other
stabilization techniques sometimes used are dealiasing [3] and over integration [19].

What remains is organized as follows. In Section 2 we recall the Legendre poly-
nomials and their properties as well as basic properties of Legendre expansions of
general functions. Section 3 offers some experimental evidence of the impact of fil-
tering, both on accuracy and stability of Legendre spectral methods. This sets the
stage for Section 4 where we revisit the filtered expansions and obtain partial but
rigorous results for the filter induced accuracy improvements possible and derive
sufficient conditions for arbitrary accuracy away from discontinuities. In this sec-
tion we also explain the stabilizing effect of the filter when solving time dependent
problems using Legendre spectral methods. Section 5 contains a few concluding
remarks.

2. Legendre polynomials and expansions

We focus the attention on polynomial expansions of the form

(1) u(x) =
∞∑

n=0

ûnPn(x), x ∈ [−1, 1].
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Here, Pn(x) represents the nth order Legendre polynomial, defined as the polyno-
mial solution to the Sturm-Liouville problem

(2) LPn(x) =
d

dx
(1 − x2)

d

dx
Pn(x) = −λnPn(x),

where
λn = n(n + 1).

The Legendre polynomials are normalized such that

Pn(±1) = (±1)n.

Furthermore, we have the center value

(3) Pn(0) = (−1)m2−2m

(
2m
m

)
, P ′

n+1(0) = (n + 1)Pn(0),

for n = 2m, while Pn(0) = 0 for n being odd as a consequence of the symmetry

(4) Pn(x) = (−1)nPn(−x).

We introduce the inner-product and the associated norm

(u, v) =
∫ 1

−1

u(x)v(x) dx, ‖u‖ =
√

(u, u),

and use this to define the usual spaces

L2[−1, 1] = {u | ‖u‖ < ∞} ,

and the associated higher Sobolev norms

Hp[−1, 1] =

{
u ∈ L2 | ‖u‖2

Hp[−1,1] =
p∑

i=0

‖u(i)‖2 < ∞
}

.

As the Legendre polynomials satisfy Eq. (2), we have

(5) (Pn, Pm) = δnmγn, γn =
2

2n + 1
.

Thus, for all u(x) ∈ L2 we recover the expansion coefficients, ûn, in Eq. (1) of the
form

(6) ûn =
1
γn

(u, Pn) .

Rather than evaluating the above integral exactly, one can use the Legendre-Gauss-
Lobatto quadrature

(7) ũn =
1
γ̃n

N∑
i=0

u(xi)Pn(xi)wi,

where (xi, wi) represent the Legendre-Gauss-Lobatto quadrature nodes and weights,
respectively (see e.g. [3]). The quadrature is exact if u(x)Pn(x) is a polynomial
of degree 2N − 1 or less. For general functions, ûn �= ũn, recognized as the alias-
ing error. In the present context, this is not essential and we shall not make an
effort to distinguish between these two sets of expansion coefficients (see [16] for a
discussion).
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For later use, let us define the discrete inner product and associated L2[−1, 1]-
equivalent discrete norm as

[uN , vN ]N =
N∑

i=0

uN (xi)vN (xi)wi, ‖uN‖2
N = [uN , uN ]N .

In computational methods, e.g., spectral methods, one is concerned with the trun-
cated expansion

(8) uN (x) =
N∑

n=0

ûnPn(x), x ∈ [−1, 1],

and how it behaves as N increases. In other words, we wish to understand how
u − uN , measured in some appropriate norm, decays when increasing N .

Insight into this can be gained by recalling Parsevals’s identity,

‖u‖2 =
∞∑

n=0

γn (ûn)2 ,

implying that

‖u − uN‖2 =
∞∑

n=N+1

γn (ûn)2 ,

i.e., the accuracy depends solely on the decay of the expansion coefficients, ûn, and
the behavior of γn, given in Eq. (5). Repeated integration by parts of Eq. (6) yields
(n �= 0),

ûn =
1

(−λn)q

1
γn

(Lqu, Pn) .

Recall that L essentially is a 2nd order operator, i.e., if u(x) ∈ H2q[−1, 1], we can
combine these results to obtain (q ≥ 0) [4],

‖u − uN‖ ≤ CN−2q‖u‖H2q[−1,1].

Likewise, we get the point wise estimate [4] (q > 1/2)

(9) ‖u − uN‖L∞[−1,1] ≤ CN−2q+1‖u‖H2q [−1,1].

Clearly, the smoothness of the solution as indicated by the decay of the expansion
coefficients is the main source of accuracy.

To illustrate this, consider an example to which we shall return again later.
Define the sequence of functions

(10) u(0)(x) =
{

− cos(πx) x ∈ [−1, 0],
cos(πx) x ∈]0, 1], u(i)(x) =

∫ x

−1

u(i−1)(s) ds.

Note, in particular, that this sequence is constructed such that u(q) ∈ Hq[−1, 1],
i.e., it serves to understand the behavior of the expansion as a function of the
truncation, N , and the regularity of the function being approximated.

To familiarize ourselves with these functions and the properties of the associated
expansions, we show in Figure 1 the first four functions as well as the pointwise
behavior of the error for the truncated expansions of these functions. As expected,
we see a clear relation between the convergence rate and the regularity of the
solution. To avoid complications we approximate the expansion coefficients, Eq. (6),
by those computed using very high order Gaussian quadratures, Eq. (7).
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Figure 1. The left column shows the first four functions in the
sequence, u(i), defined in Eq. (10). In the middle column we show
the pointwise error of the truncated Legendre expansion for each
function for increasing values of truncation, exemplified by N = 16,
N = 64, and N = 256. In the right column is shown the pointwise
error at three points, x = 0.1; 0.5; 1.0, in the interval.

This behavior is furthermore confirmed in Figure 2 which illustrates the decay
of the expansion coefficients, ûn, as well as the associated mean and pointwise error
for increasing values of N . Inspection confirms the convergence estimates.
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Figure 2. In a) we show the envelope, i.e., the upper bound, of
|ûn| for the first four functions in the sequence, u(i), defined in
Eq. (10). In b) we show the associated L2 error while c) shows the
corresponding L∞ error.

3. Filtering of polynomial expansions: A first look

As illustrated above, if the function being approximated possesses significant
regularity, we can expect the spectral expansion to be highly efficient for the repre-
sentation of the function and its spatial derivatives. In other words, only relatively
few terms are needed to produce a very accurate approximation. On the other hand,
for problems with limited regularity the situation is a bit more complex. Unfortu-
nately, this is generally the case for most interesting problems where the limited
regularity is caused by the solution itself or by a lack of resolution. This causes a
global deterioration in the accuracy and possibly a lack of pointwise convergence
in the case of a true discontinuity.

However, from the previous discussion we also appreciate that the decay of the
expansion coefficients, ûn, is intimately related to the accuracy. Thus, one could
ask whether it is possible to modify (e.g. attenuate in some prescribed way) the
expansion coefficients in such a way as to improve the accuracy of the truncated
expansion. This is the basic idea of modal or spectral filtering.

The question to consider is, of course, exactly how such a modification should
be made and attempt to seek an understanding of the consequences of modifying
the expansion coefficients. On one hand, one wishes to improve on the accuracy
away from the point, x = c, where u(x) loses smoothness. On the other hand, one
does not wish to make matters worse away from x = c. Finally, if u(x) is indeed
already smooth, the impact of the filter should be minimal and should not destroy
the convergence rate.

We shall consider filtered expansions of the kind

(11) FNuN (x) =
N∑

n=0

σ
( n

N

)
ûnPn(x),

where σ(η) is a real filter function, the specification of which is a central element.
As we shall discuss below, defining the filter function in the following way appears
to ensure convergence everywhere away from x = c and guarantees that convergence
is not destroyed for smooth functions.
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Figure 3. In a) we show filter function, σO(η) for the optimal fil-
ter, Eq. (12) for increasing values of p. b) shows a similar sequence
for the exponential filter, σE(η), given in Eq. (13).

Definition 3.1. The filter function, σ(η) ∈ Cp : R+ → [0, 1], p > 1, has the
following properties:

σ(η) :

⎧⎪⎪⎨
⎪⎪⎩

σ(0) = 1,
σ(k)(0) = 0, k = 1 . . . p − 1,
σ(η) = 0, η ≥ 1,
σ(k)(1) = 0, k = 1 . . . p − 1.

We shall call this a pth order filter.

In the following we consider two different filter functions. The first one is

(12) σO(η) = 1 − Γ(2p)
Γ(p)2

∫ η

0

[t(1 − t)]p−1
dt,

which is a 2p−1th order Birkhoff-Hermite interpolating polynomial, defining σO(η),
and Γ(x) is the Gamma function. This filter was first proposed in [27] and we shall
subsequently refer to it as the optimal filter due to its close connection to Definition
3.1.

The filter function, σO(η), is illustrated in Figure 3a for different values of p. Note
that as the order, p, increases, σO(η) approaches an inverted Heaviside function,
centered at η = 0.5. The strong condition on smoothness at σ(1) implies that
a substantial part of the high modes are getting modified, leaving only a small
fraction of the low modes almost unchanged.

This observation is one of the key reasons for the widespread use of the expo-
nential filter, σE(η), defined as

(13) σE(η) = exp (−αηp) .

The parameter, α, measures the modification of the maximum mode, i.e., σE(1) =
exp(−α). Typically, α = − log(εM ) where εM is the machine accuracy. Other
choices can also be used, e.g., decreasing α implies a smaller modification of the
high modes.
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In Figure 3b we illustrate this filter for increasing values of p. We note, in par-
ticular, that a significantly larger part of the modes remains essentially unchanged
for larger values of p when compared with the optimal filter, Eq. (12).

The exponential filter does not, however, conform to the definition of the filter
function given in Definition 3.1. In particular we have that

|σ(k)
E (1)| � (αp)k exp(−α),

which can be very far from zero for large values of k and p.

3.1. Improving accuracy. Let us consider the impact of the filter on the point-
wise accuracy as a function of the order, p, of the filter, the length, N , of the
expansion, and the regularity of the function being approximated.

We first apply the optimal filter, Eq. (12), on the polynomial representations of
the four test functions shown in Figure 1. In Figure 4 we show the pointwise error
associated with three different filter orders for the four test functions.

A few observations are worth making. For a function of fixed regularity (rows in
Figure 4), filtering can dramatically improve the accuracy of the expansion away
from the point of discontinuity. Also, increasing N , increases the size of the regions
away the nonsmooth point where the filtering is efficient. On the other hand, the
order of the filter may also impact the accuracy unfavorably, as illustrated for the
p = 2 filter (first column in Figure 4) which seems to limit the convergence rate
regardless of the regularity of the function. However, if p is sufficiently large, this
does not seem to adversely affect the pointwise error.

In Figure 5 a similar set of examples is presented, although based on the use
of the exponential filter, Eq. (13). Although quantitatively different from the re-
sults in Figure 4, the qualitative characteristics are the same in spite of the filter
not conforming to Definition 3.1. Indeed, for increasing values of p (columns in
Figures 4 and 5), the exponential filter appears superior in terms of the pointwise
error. Recalling the discussion related to Figure 3 this is expected and confirms the
intuitive understanding of the filter.

To understand in more detail the pointwise impact of the filter, we show in
Figure 6 the pointwise error at three different points in the domain as a function
of the expansion order, N , and the order, p, of the optimal filter, Eq. (12). From
this figure it is clear that there is a close relation between the order of the filter
and the pointwise convergence rate away from the point where the function loses
regularity. This seems independent of the regularity of the original function. In
contrast to this, very close to the point of discontinuity, the improvements are less
dramatic although certainly noticeable.

The same set of tests have been repeated with the exponential filter, yielding
similar results although the local behavior appears less systematic. For all practical
purposes, the results of the two filters are identical.
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Figure 4. In the left column is shown the pointwise error after
the optimal filter, Eq. (12), with p = 2 has been applied to the
Legendre expansions of the four test functions in Figure 1, with
N = 16, N = 64 and N = 256, for each function. The middle
column shows similar results for p = 6 while the right column
displays the results for p = 10.
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Figure 5. In the left column is shown the pointwise error after
the exponential filter, Eq. (13), with p = 2 has been applied to the
Legendre expansions of the four test functions in Figure 1, with
N = 16, N = 64 and N = 256, for each function. The middle
column shows similar results for p = 6 while the right column
displays the results for p = 10.
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Figure 6. Pointwise errors at specific points in the domain as
a function of the length of the expansion, N , the order of the
filter, p, used in the optimal filter, Eq. (12), and the regularity of
the function being approximated. In each figure are four graphs,
corresponding to u(0) to u(3), usually with the former being the
top and the latter the bottom graph. The rows corresponds to
pointwise errors at x = 0.1, x = 0.5, and x = 1.0, respectively,
while the columns reflects p = 2, p = 6, and p = 10.

3.2. Improving stability. To illustrate the impact of filtering on stability, let us
consider the simple problem

(14)
∂u

∂t
+ a(x)

∂u

∂x
= 0, x ∈ [−1, 1].

For simplicity we assume that a(±1) is positive but that a(x) in general can change
sign inside the domain. To complete the specification we have

u(−1, t) = g(t), u(x, 0) = f(x).

To solve this problem we use a standard Legendre collocation method, although we
shall impose the boundary conditions weakly rather than strongly. In other words,
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we seek a polynomial solution, uN (x, t), that satisfies

duN

dt

∣∣∣∣
xi

+ a(xi)
N∑

j=0

DijuN (xj)

= −l0(xi)
N(N + 1)

4
a(−1) [uN (−1, t) − g(t)] ,

(15)

where xi represents the Legendre-Gauss-Lobatto points and D is the differentiation
matrix originating from the Lagrange interpolation polynomial, li(x), based on xi,
i.e.,

li(x) = − (1 − x2)P ′
N (x)

N(N + 1)(x − xi)P ′
N (xi)

, li(xj) = δij , Dij =
dlj
dx

∣∣∣∣
xi

.

The exact entries of D can be found in [3, 16]. Also, further discussions and a
derivation of Eq. (15) can be found in [14, 15, 16], including a proof of stability for
a(x) being constant.

Let us consider a specific example for which

a(x) =
1
π

sin(πx − 1).

The exact solution to Eq. (14) is in this case [10],

u(x, t) = f

(
2 tan−1

[
e−t tan

(
πx − 1

2

)]
+ 1

)
,

where u(x, 0) = f(x) represents the initial condition, e.g., f(x) = sin(x).
One observes that ‖u‖ is bounded at all times but that the solution develops a

steep gradient around x = (1 − π)/π � −0.68 before it finally decays and takes a
constant value of u(x,∞) = sin(1).

In Figure 7 we compare the exact and computed solutions, obtained using the
Legendre collocation method with N = 256 and a fourth order Runge-Kutta scheme
in time. We clearly see the development of an instability in the unfiltered case (a),
resulting in a poor solution everywhere. This instability continues to grow with
continued integration.

Applying a weak exponential filter (p = 16) removes the stability problems,
leaving only traces of Gibbs oscillations close to the steep gradient. Continuing the
computation to t = 10, corresponding to 35000 time steps, confirms that we have
not just postponed the instability but eliminated it. Visually equivalent results can
be obtained by using the optimal filter, Eq. (12).

Furthermore, in agreement with the discussion in Section 3.1, we also find that
using the filter only modifies the solution locally while away from the sharp gradient,
the computed and exact solutions agree very well.

3.3. A summary. To summarize the above experiments, the key observations are
• The filter improves the accuracy, often dramatically, away from the point

of discontinuity.
• The amount of improvement is controlled by the order of the filter, p, and

not by the regularity of the function being approximated.
• Increasing the expansion order, N , narrows the region where the disconti-

nuity most severely impacts the convergence rate.
• Low order filters can destroy the expected accuracy even for smooth func-

tions.
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Figure 7. In a) we show the exact (dashed line) and computed
(full line) solutions to a variable coefficient linear problem at t =
4. The numerical scheme is a Legendre collocation methods with
N = 256. In b) we show the same problem, however, solved with
a weak (p = 16) filter applied. Also shown is the solution at t = 10.

• Filtering not only improves on the accuracy but may be essential to main-
tain the stability.

• The optimal filter and the exponential filter behaves similarly for all prac-
tical purposes.

As we shall see shortly, these observations conform well with the insight offered by
a more careful analysis.

4. A second look

The purpose of the above has been to illustrate the impact of the filter on a
polynomial expansion, both in terms of accuracy of the filtered expansion and
through the enhanced stability of a polynomial spectral method used to solve a
differential equation.

In the following we shall attempt an analysis to substantiate the main obser-
vations that allow us to have confidence in the use of filtering as a more general
approach to improve the accuracy of expansions and the stability of spectral meth-
ods based on orthogonal polynomials.

4.1. Impact on accuracy. Let us first seek an understanding of exactly what the
filter does and what conditions must be imposed on σ(η) to achieve this. Without
loss of generality, we shall subsequently assume that u(x) is piecewise Hp(p > 0)
and that x = c indicates the point of loss of regularity. Note that if |c| = 1, the fact
that the Legendre polynomials satisfies a singular Sturm-Liouville equations suffices
to guarantee convergence controlled by the regularity of u(x). Thus, without loss
of generality, we restrict the attention to cases where c is interior, i.e., |c| < 1.

Consider the filtered polynomial expansion

(16) FNuN (x) =
N∑

n=0

σ
( n

N

)
ûnPn(x), ûn =

1
γn

∫ 1

−1

u(x)Pn(x) dx,
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where γn is given in Eq. (5). Inserting ûn into Eq. (16) yields

(17) FNuN (x) =
∫ 1

−1

u(s)K0
N (x, s) ds,

where we have the filtered kernel

(18) K0
N (x, s) =

N∑
n=0

1
γn

σ
( n

N

)
Pn(s)Pn(x).

Let us define the sequence of functions (l ≥ 1),

Kl
N (x, s) =

N∑
n=1

σ
( n

N

) (
−1
λn

)l
Pn(s)Pn(x)

γn
.

Note that a special property of this is

LsK
l+1
N (x, s) = Kl

N (x, s), l = 1, 2, . . . ,

where Ls signifies the Sturm-Liouville operator, Eq. (2), with respect to s.

4.1.1. Filtering of smooth functions. Let us begin by assuming that

u(x) ∈ Hp[−1, 1], p > 1.

In this case we have already seen in Section 3.1 that the filter may destroy the
expected convergence rate if the order of the filter is too low.

It seems natural to require that filtering of a smooth function does not destroy
the rapid convergence rate. Thus, we must understand what conditions to impose
on the filter to ensure this. Necessary conditions on the filter are stated in the
following theorem.

Theorem 4.1. Assume that u(x) ∈ Hp[−1, 1] and that the filter, σ(η) ∈ Cp[0,∞],
p > 1, obeys

σ(η) =

⎧⎨
⎩

σ(0) = 1,
σ(η) = 0, η > 1,
σ(l)(0) = 0, l = 1 . . . p − 1.

Then
|u(x) −FNuN (x)| ≤ N1−p

∥∥∥u(p)
∥∥∥

L2[−1,1]
.

Proof. Let us write u(x) as

(19) u(x) =
∫ 1

−1

u(s)G0(x, s) ds, G0(x, s) =
∞∑

n=0

1
γn

Pn(s)Pn(x).

Note that G0(x, s) is nothing more than the L2-projection of the Dirac function,
δ(x − s), onto the space of polynomials.

As for Kl+1
N , we also define the sequence of functions

Gl(x, s) =
∞∑

n=1

(
−1
λn

)l
Pn(s)Pn(x)

γn
,

with the same property that

(20) LsG
l+1(x, s) = Gl(x, s), l = 1, 2, . . . .
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Assuming u(x) ∈ H2q[−1, 1], q ≥ 1, repeated integration by parts of Eq. (16) and
Eq. (19) yields

u(x) −FNuN (x) =
∫ 1

−1

Lq
su(s) [Gq(x, s) − Kq

N (x, s)] ds.

Using the special property, e.g., Eq. (20), of Gq and Kq
N , we have

|u(x) −FNuN (x)| ≤
∣∣∣∣
∫ 1

−1

QN (x, s)Lq
su(s) ds

∣∣∣∣ +
∣∣∣∣
∫ 1

−1

RN (x, s)Lqu(s) ds

∣∣∣∣ ,
where QN (x, s) and RN (x, s) take the form

QN (x, s) =
N∑

n=1

[
1 − σ

( n

N

)] (
−1
λn

)q
Pn(x)Pn(s)

γn
,

and

RN (x, s) =
∞∑

n=N+1

(
−1
λn

)q
Pn(x)Pn(s)

γn
.

We can bound the latter as

‖RN (x, s)‖2 ≤
∞∑

n=N+1

(
1
λn

)2q 1
γn

≤ N−4q+2.

The former function, QN (x, s), can be estimated in a similar fashion as

‖QN (x, s)‖2 ≤
N∑

n=1

[
1 − σ

( n

N

)]2
(

1
λn

)2q 1
γn

≤ N

γNλ2q
N

(
1
N

N∑
n=1

[
1 − σ

( n

N

)]2
(

λn

λN

)−2q
)

,

since γn ≥ γN . Furthermore, we have

(21) η2 ≤ λn

λN
≤ 2η2, η =

n

N
,

which yields the bound

‖QN (x, s)‖2 ≤ CN−4q+2

(
1
N

N∑
n=1

[
1 − σ

( n

N

)]2 ( n

N

)−4q
)

.

We recognize the sum as a Riemann sum, i.e.,∣∣∣∣
∫ 1

0

(1 − σ(η))2η−4q dη

∣∣∣∣ < ∞ ⇒ ‖QN (x, s)‖2 ≤ N−4q+2.

Potential problems with boundedness of the sum arise at η � 0. However, if we
assume that σ(η) is sufficiently smooth around η � 0 we can expand it as

σ(η) =
2q∑

k=0

1
k!

σ(k)(0)ηk +
∫ η

0

1
(2q + 1)!

σ(2q+1)(t)t2q+1 dt.
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Clearly, if σ ∈ C2q and {
σ(0) = 1,
σ(k)(0) = 0, k = 1 . . . 2q − 1,

then the integral is bounded.
In combination with the Cauchy-Schwarz inequality and p = 2q this yields the

result. �

This result conforms well with the observations made in Section 3.1. In partic-
ular, it confirms that the smoothness of σ(η) around η = 0 must exceed the global
smoothness of u(x) in order to not impact the convergence rate. Examples of this
can be found in Figures 4–6 for p = 2 where the second order nature of the filter is
the limiting factor.

The importance of the smoothness of σ(η) around the origin also supports the
observed very small differences between the optimal filter, Eq. (12), and the ex-
ponential filter, Eq. (13), as they both obey the conditions of Theorem 4.1 up to
machine accuracy, i.e., if α > − log(εM ), then exp(−α) is zero in finite precision.

4.1.2. Filtering of piecewise smooth functions. Let us now return to the more gen-
eral case where u(x) is piecewise Hp and loses regularity at x = c, |c| < 1. This
is more complicated as we need to understand how the error behaves as a function
of the distance |x − c|. As we shall see, we are not able to provide such results in
completeness but shall base a conjecture on a number of special cases.

Repeated integration by parts of Eqs. (16) and (19), carefully executed not to
cross the point of discontinuity, s = c, yield

u(x) −FNuN (x)

=
q−1∑
l=0

(1 − c2)
[
Ll

su(c−) − Ll
su(c+)

] [
∂

∂s
Gl+1(x, s)

∣∣∣∣
s=c

− ∂

∂s
Kl+1

N (x, s)
∣∣∣∣
s=c

]

−
q−1∑
l=0

(1 − c2)
∂

∂s

[
Ll

su(c−) − Ll
su(c+)

] [
Gl+1(x, c) − Kl+1

N (x, c)
]

+
∫ 1

−1

Lq
su(s) [Gq(x, s) − Kq

N (x, s)] ds,

(22)

provided that u(x) ∈ H2q (q ≥ 1) on x ∈ [−1, c−] and x ∈ [c+, 1].
To estimate the impact of the filter, we must then understand the behavior of

the following terms:

Gl(x, c) − Kl
N (x, c) =

N∑
n=1

(
1 − σ

( n

N

)) (
−1
λn

)l
Pn(c)Pn(x)

γn

+
∞∑

n=N+1

(
−1
λn

)l
Pn(c)Pn(x)

γn

= Q1
N (x, c) + R1

N (x, c),

(23)
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and

∂

∂s
Gl(x, s)

∣∣∣∣
s=c

− ∂

∂s
Kl

N (x, s)
∣∣∣∣
s=c

=
N∑

n=1

(
1 − σ

( n

N

)) (
−1
λn

)l
P ′

n(c)Pn(x)
γn

+
∞∑

n=N+1

(
−1
λn

)l
P ′

n(c)Pn(x)
γn

= Q2
N (x, c) + R2

N (x, c).

(24)

Before we continue, we need the following result.

Lemma 4.1. Let m > 0 be an integer. Then

1
γ2m

P2m(0) = (−1)m

[√
4m

π
+

√
1

16πm
+ O(m−3/2)

]
= (−1)m

∞∑
q=0

âqm
1/2−q,

where â0 = 2/
√

π, â1 = 1/4
√

π, etc.

Proof. The result follows directly by combining Eq. (5) and Eq. (3) with Stirling’s
asymptotic series

Γ(1 + x) =
√

2πxxxe−x

(
1 +

1
12x

+
1

288x2
+ O(x−3)

)
. �

Let us simplify matters and assume that the point of discontinuity, c, is in the
center of the domain, i.e., c = 0. We then have

Lemma 4.2. Assume that the point of discontinuity, c, is located at the center of
the domain, i.e., c = 0, and N � 1. Then filtering does not improve the pointwise
convergence rate at this point, independent of the choice of filter.

Proof. It suffices to show that R1
N (c, c) or R2

N (c, c) limits the convergence rate.
However, the latter is identically zero as P ′

n(0) ·Pn(0) = 0 due to symmetry. Thus,
we consider

R1
N (0, 0) = (−1)l

∞∑
n=N+1

1
λl

n

P 2
n(0)
γn

= (−1)l
∞∑

m=M+1

γ2m

λl
2m

4m

π

(
1 + O(m−1)

)
where the last simplification follows from Lemma 4.1 and using N = 2M since
P2m+1(0) = 0.

Assume now that N is large enough to recover

|R1
N (0, 0)| ≤ CN−2l+1 + O(N−2l+2).

Thus, for l = 1, we cannot expect pointwise convergence unless u ∈ Hp[−1, 1],
p > 1/2 due to the jump term, consistent with Eq. (9). Similarly, we see algebraic
convergence is obtained at the same rate as predicted in Eq. (9), i.e., the filter has
no impact right at the point of discontinuity. �

Let us now consider the situation away from the point of discontinuity. Before
doing so, we recall the following two results, both essentially established in [27].
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Lemma 4.3. Let n and M be integers. Then for any g(x) ∈ C2n[0, 1], n ≥ 2 we
have

M∑
m=1

(−1)mg
(

m
M

)
=

1
2

[g(1) − g(0)]

+
n−1∑
l=1

M−2l+1 B2l

(2l)!
(4l − 1)

(
g(2l−1)(1) − g(2l−1)(0)

)
+ O

(
M−2n+1

)
.

Here B2l represents the Bernoulli numbers.

Lemma 4.4. Let n ≥ 2 and M be integers. Then we have
∞∑

m=M+1

(−1)mm−α = −1
2
M−α

+
n−1∑
l=1

M−α−2l+1 B2l

(2l)!
(4l − 1)

Γ(α + 2l − 1)
Γ(α)

+ O
(
M−α−2n+1

)
,

where Γ(x) is the Gamma function.

We shall also use the following result:

Lemma 4.5. Assume l > 0. Then (n �= a),(
n

n − a

)l

=
∞∑

p=0

b̂pn
−p, b̂p =

(
p + l − 1

l − 1

)
ap.

Proof. The result follows directly by considering the standard result for Z-trans-
forms as

1
(z − a)l

=
∞∑

n=0

b̂nz−n,

where

b̂n =
(

n − 1
l − 1

)
an−l,

for n ≥ l and b̂n = 0 otherwise. �
We again restrict the attention to a special case, all with c = 0, i.e., the point of

discontinuity is at the center of the domain. In this case we have the following.

Lemma 4.6. Assume that the point of discontinuity, c, is located at the center of
the domain, i.e., c = 0, and N � 1. Then∣∣Q1

N (±1, 0) + R1
N (±1, c)

∣∣ = O(N−p)

and ∣∣Q2
N (±1, 0) + R2

N (±1, c)
∣∣ = O(N−p),

provided the filter, σ(η), is of order p, as defined in Definition 3.1.

Proof. Let us first consider the terms in Eq. (23), evaluated at (x, c) = (±1, 0) as

Q1
N (±1, 0) =

M∑
m=1

(
1 − σ

( m

M

)) (
−1
λ2m

)l
P2m(0)

γ2m

=
(

−1
λ2M

)l M∑
m=1

(
1 − σ

( m

M

)) (
λ2m

λ2M

)−l
P2m(0)

γ2m
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and

R1
N (±1, 0) =

∞∑
m=M+1

(
−1
λ2m

)l
P2m(0)

γ2m

=
(

−1
λ2M

)l ∞∑
m=M+1

(
λ2m

λ2M

)−l
P2m(0)

γ2m

where 2M = N , and we have used the fact that Pn(0) = 0 for n being odd.
Assuming that M � 1, now consider (m > 0),(

λ2m

λ2M

)−l

= (2M)2l 1
(2m)l(2m + 1)l

=
M2l

ml

1
(m + 1/2)l

=
( m

M

)−2l ∞∑
p=0

b̂pm
−p,

where the coefficients, b̂p, are given in Lemma 4.5.
Combining this with the result of Lemma 4.1 we recover

P2m(0)
γ2m

(
λ2m

λ2M

)−l

=

(
(−1)m

∞∑
q=0

âqm
1/2−q

)
×

(( m

M

)−2l ∞∑
p=0

b̂pm
−p

)

= (−1)m
( m

M

)−2l ∞∑
r=0

(
r∑

p=0

âr−pb̂p

)
m1/2−r

= (−1)m
( m

M

)−2l ∞∑
r=0

ĉrm
1/2−r.

The coefficients can be found directly, e.g.,

ĉ0 =
2√
π

, ĉ1 = −4l − 1
4
√

π
.

Utilizing this, we obtain

Q1
N (±1, 0) =

(
−1
4

)l ∞∑
r=0

ĉr

[
M−2l−r+1/2

M∑
m=1

(−1)m (1 + σ(η)) η−2l−r+1/2

]
,

with η = m/M and

R1
N (±1, 0) =

(
−1
4

)l ∞∑
r=0

ĉr

[ ∞∑
m=M+1

(−1)mm−2l−r+1/2

]
.

Combining the two, yields

Q1
N (±1, 0) + R1

N (±1, 0) =
(
−1
4

)l ∞∑
r=0

ĉr

×
[
M−2l−r+1/2

M∑
m=1

(−1)mg(η) +
∞∑

m=M+1

(−1)mm−2l−r+1/2

]
,

where
g(η) = (1 + σ(η)) η−2l−r+1/2.
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Inspection reveals that the two sums in the above can be expressed to arbitrary
accuracy using Lemmas 4.3 and 4.4 to obtain

Q1
N (±1, 0) + R1

N (±1, 0)

=
(
−1
4

)l ∞∑
r=0

ĉr ×
[
1
2
M1/2−2l−r (g(1) − g(0) − 1)

n−1∑
q=1

M−2q+3/2−2l−r B2q

(2q)!
(4q − 1)

[
Γ(2l + r − 3/2 + 2q)

Γ(2l + r − 1/2)
+ g(2q−1)(1) − g(2q−1)(0)

]

+O(M−2l−r−2n+3/2)
]

.

Note that since n, l > 0, the remainder vanishes for M increasing. We see immedi-
ately, that if 2l − 1/2 > p, we have

2l − 1/2 > p :
∣∣Q1

N (±1, 0) + R1
N (±1, 0)

∣∣ = O(M−p).

In this case, the smoothness of the function dominates that of the filter and the
latter sets the convergence rate.

In the complementary case, e.g., 2l − 1/2 < p, we eliminate the first term by
requiring that

g(1) − g(0) = 1.

However, from Theorem 4.1, g(0) = 1, and we must require g(1) = 0 as stated in
Definition 3.1.

The second term can be controlled by requiring smoothness of the filter, i.e., we
can choose n such that

p − 2l + 3/2 < 2n < p − 2l + 5/2,

to control the coefficient, M−2q+3/2−2l−r, ensuring that M−2n+3/2−2l−r is bounded
by M−p. With this we have

g(2q−1)(1) − g(2q−1)(0) = −Γ(2l + r − 3/2 + 2q)
Γ(2l + r − 1/2)

.

From Theorem 4.1 we recover

σ(k)(0) = 0, k = 1 . . . p − 1,

which suffices to guarantee that

g(2q−1)(0) = 0, 0 ≤ q ≤ n − 1.

We also note that

d2q−1η−2l−r+1/2

dη2q−1

∣∣∣∣
1

= −Γ(2l + r − 3/2 + 2q)
Γ(2l + r − 1/2)

.

Thus, provided that
d2q−1σ(η)η−2l−r+1/2

dη2q−1

∣∣∣∣
1

= 0,

for 0 ≤ q ≤ n − 1, we recover

2l − 1/2 < p :
∣∣Q1

N (±1, 0) + R1
N (±1, 0)

∣∣ = O(M−p).
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Using Leibniz’s rule for differentiation of products one easily finds that since 2n < p,
this is guaranteed if σ(k)(1) = 0 for k = 1 . . . p − 1 as required in Definition 3.1.
This completes the proof for Q1

N (±1, 0) + R1
N (±1, 0).

However, the result for Q2
N (±1, 0)+R2

N (±1, 0) can be obtained in a similar way.
In particular, we recover that

P ′
2m−1(0)
γ2m−1

= − (2m − 1)(2m − 2)
2m + 1

P2m(0)
γ2m

,

from which the equivalent first expansion is recovered as

P ′
2m−1(0)
γ2m−1

= −(−1)m (2m − 1)(2m − 2)
2m + 1

∞∑
q=0

âqm
1/2−q =

∞∑
q=0

ãqm
3/2−q.

In a similar way, we recover(
λ2m−1

λ2M

)−l

=
( m

M

)−2l
(

m

m − 1/2

)l

=
( m

M

)−2l ∞∑
p=0

b̃pm
−p,

where b̂n are given in Lemma 4.5 with a = 1/2.
With this, the procedure for Q1

N (±1, 0)+R1
N (±1, 0) carries through for M � 1,

thus completing the proof. �

Let us define

k0 = inf
{
k ∈ N :

∣∣Lk
su(c−) − Lk

su(c+)
∣∣ �= 0

}
,

i.e., a measure of regularity. Let us also define the broken norm

|||u|||p =
(
‖u‖2

Hp[−1,c−[ + ‖u‖2
Hp]c+,1]

)1/2

.

We are now ready to state the following main result.

Theorem 4.2. Assume that the point of discontinuity, c, is located at the center of
the domain, i.e., c = 0, and the filter σ(η), is order p > 1, as defined in Definition
3.1.

Then
|u(±1) −FNuN (±1)| ≤ CN1−p|||u|||p,

for N � 1.

Proof. Recall that

u(±1) −FNuN (±1)

=
q−1∑
l=0

[
Ll

su(0−) − Ll
su(0+)

] [
∂

∂s
Gl+1(±1, s)

∣∣∣∣
s=0

− ∂

∂s
Kl+1

N (±1, s)
∣∣∣∣
s=0

]

−
q−1∑
l=0

∂

∂s

[
Ll

su(0−) − Ll
su(0+)

] [
Gl+1(±1, 0) − Kl+1

N (±1, c)
]

+
∫ 1

−1

Lq
su(s)

[
Gl+1(±1, s) − Kq

N (±1, s)
]

ds.

Clearly, if k0 ≥ 2q, the first two terms vanish, and the result follows from Theorem
4.1 by taking p = 2q.
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On the other hand, if k0 < 2q, we recover

|u(±1) −FNuN (±1)|

≤
q−1∑
l=0

∣∣Ll
su(0−) − Ll

su(0+)
∣∣ ∣∣∣∣ ∂

∂s
Gl+1(±1, s)

∣∣∣∣
s=0

− ∂

∂s
Kl+1

N (±1, s)
∣∣∣∣
s=0

∣∣∣∣
−

q−1∑
l=0

∂

∂s

∣∣Ll
su(0−) − Ll

su(0+)
∣∣ ∣∣Gl+1(±1, 0) − Kl+1

N (±1, c)
∣∣

+
∫ 1

−1

Lq
su(s)

∣∣Gl+1(±1, s) − Kq
N (±1, s)

∣∣ ds.

Borrowing the result from Lemma 4.6, we immediately recover

|u(±1) −FNuN (±1)| ≤ CN1−2q|||u|||2q ,

again recovering the desired result with p = 2q. �

Based on this partial result, and the extensive experiments provided previously,
we make the following conjecture.

Conjecture 1. Assume that the point of discontinuity, c, is located in the interior
of the domain and that the filter σ(η), is order p > 1, as defined in Definition 3.1.

Then for all x �= c,

|u(x) −FNuN (x)| ≤ CN1−p|||u|||p,
where C is a constant depending on |x − c|.

The conjecture is in line with all previous results and similar in spirit to that
obtainable for filtered Fourier expansions [27]. In this latter work, a finite set of
points of discontinuities is considered and this extension can likewise be pursued
in the above also, the key being the proof of Lemma 4.6 for arbitrary separation
between x and c. However, the lack of translation invariance of the orthogonal
polynomials makes it difficult to see how to accomplish this within the current
approach.

Further insight into the working of the filter can be gained by leaving the rigor of
the above discussion and consider the effect of filtering a polynomial representation
of a general function. Consider

uN =
N∑

n=0

ûnPn(x),

and the filtered function

FNuN =
N∑

n=0

σ(n)ûnPn(x).

For simplicity, let us assume that

σ(n) = 1 −
( n

N

)p

.

We note that this does not strictly adhere to Definition 3.1 but it does contain the
minimum smoothness around n = 0 to avoid the destruction of the accuracy of
the native expansion. Furthermore, the results presented in Section 3.1 using the
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exponential filter, Eq. (13), suggest that the smoothness of the filter around η = 1,
required to complete the proof of Theorem 4.2, may be sufficient but not necessary.

To appreciate the action of the filter on the function, consider

uN (x) −FNuN (x) =
N∑

n=0

(1 − σ(n))ûnPn(x)

= N−p
N∑

n=0

npûnPn(x).

This yields

|uN (x) −FNuN (x)| ≤ N−p

∣∣∣∣∣
N∑

n=0

ûnλp/2
n Pn(x)

∣∣∣∣∣
= N−p

∣∣∣∣∣
N∑

n=0

ûn

(
d

dx
(1 − x2)

d

dx

)p/2

Pn(x)

∣∣∣∣∣
= N−p

∣∣∣∣∣
N∑

n=0

ûn

(
(1 − x2)

d2

dx2
− 2x

d

dx

)p/2

Pn(x)

∣∣∣∣∣ .

This highlights the nonuniformity with which the filter modifies the function, uN .
In fact, we have the following two extreme cases:

|x| � 0 : |uN (x) −FNuN (x)| ≤ N−p

∣∣∣∣∣
N∑

n=0

ûn
dp

dxp
Pn(x)

∣∣∣∣∣ = N−p

∣∣∣∣ dp

dxp
uN (x)

∣∣∣∣
and

|x| � 1 : |uN (x) −FNuN (x)| ≤
√

2
p

Np

∣∣∣∣∣
N∑

n=0

ûn
dp/2

dxp/2
Pn(x)

∣∣∣∣∣ =
√

2
p

Np

∣∣∣∣ dp/2

dxp/2
uN (x)

∣∣∣∣ .
This highlights the nonuniformity with which the filter modifies a general function,
uN . Clearly, the impact of the filter can be expected to be strongest in the interior of
the domain and weakens as one approaches the boundaries. It is worth emphasizing
that while the impact of the filter is minimized at the boundaries of the domain,
the function is modified everywhere.

4.2. Impact on stability. With some added understanding of the impact on ac-
curacy of the use of a filter, let us consider the impact a filter may have on stability,
as observed in Section 3.2.

Consider the linear problem

(25)
∂u

∂t
+ a(x)

∂u

∂x
= 0, x ∈ [−1, 1].

For simplicity we assume that a(±1) is positive but that a(x) in general can change
sign inside the domain. The data is given as

u(−1, t) = g(t), u(x, 0) = f(x).
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As in Section 3.2 we seek a polynomial solution, uN (x, t), that satisfies

duN

dt

∣∣∣∣
xi

+ a(xi)
N∑

j=0

DijuN (xj)

= −l0(xi)
N(N + 1)

4
a(−1) [uN (−1, t) − g(t)] .

(26)

To first expose the source of potential instabilities, write Eq. (26) as
∂uN

∂t
+ N1uN + N2uN + N3uN = −IN (l0(x))

N(N + 1)
4

a(−1) [uN (−1, t)] ,

where IN represents the interpolation. We have defined the three operators

N1uN =
1
2

∂

∂x
INa(x)uN +

1
2
IN

(
a(x)

∂uN

∂x

)
,

N2uN =
1
2
IN

(
a(x)

∂uN

∂x

)
− 1

2
IN

∂a(x)uN

∂x
,

N3uN =
1
2
IN

∂a(x)uN

∂x
− 1

2
∂

∂x
INa(x)uN .

To understand stability in an energy sense, consider

[uN ,N1uN ]N =
1
2

[
uN ,

∂

∂x
INa(x)uN

]
N

+
1
2

[
uN , IN

(
a(x)

∂uN

∂x

)]
N

.

The accuracy of the Gauss-Lobatto quadrature allows integration by parts of the
first term to recover

[uN ,N1uN ]N =
1
2

[
a(1)u2

N (1) − a(−1)u2
N (−1)

]
.

By inspection we immediately have

[uN ,N2uN ]N ≤ 1
2

max
x

|ax|‖uN‖2
N .

Finally, consider

[uN ,N3uN ]N ≤ C
(
‖uN‖2

N + ‖N3uN‖2
N

)
.

Realizing that N3uN is simply the commutation error between interpolation and
differentiation, we recover

‖N3uN‖2
N ≤ CN2−2q‖u(q)‖2

N ,

by the classic result [4, 1] for commutation errors in Legendre-Gauss-Lobatto col-
location methods. Note that the constant, C, depends on a and its derivatives but
not on N . A similar result can be obtained for a Legendre-Galerkin method as
the source is to be found in the lack of commutation between differentiation and
projection/interpolation and not in the aliasing errors.

This yields the result
d

dt
‖uN‖2

N ≤ −a(1)u2
N (1) − max

x
|ax|‖uN‖2

N + C
(
‖uN‖2

N + N2−2q‖u(q)‖2
N

)
.

Clearly, the latter term, originating from N3uN is not controlled and may, thus,
drive the scheme unstable. This can be expected to be a particular problem when
q is low, i.e., for problems with limited regularity.

As illustrated in the examples in Section 3.2, this is a real effect and may well
drive the scheme unstable even for smooth problems which develop steep marginally
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resolved gradients. We also observed, however, that filtering appears to be able to
control this effectively.

To obtain an intuitive understanding of how the filter can stabilize this instability,
let us approximate the filter as

σ(η) = 1 − αηp.

While this may be, but likely is not, insufficient to recover spectral convergence
as stated in Conjecture 1 it satisfies the minimum requirements from Theorem
4.1. Furthermore, it is a simple approximation to the exponential filter, Eq. (13),
which, for high values of p, modifies the solution significantly less than when using
the optimal filter, Eq. (12).

Now consider

FNuN =
N∑

n=0

σ
( n

N

)
ûnPn(x) = uN (x) − α

Np

N∑
n=0

npûnPn(x)

� uN (x) + (−1)p/2+1 α

Np

N∑
n=0

ûn

(
d

dx
(1 − x2)

d

dx

)p/2

Pn(x)

= uN (x) + (−1)p/2+1 α

Np

(
d

dx
(1 − x2)

d

dx

)p/2

uN (x).

This can be recognized as a forward Euler approximation with time step ∆t of

(27)
duN

dt
= (−1)p/2+1ε

(
d

dx
(1 − x2)

d

dx

)p/2

uN , ε =
α

∆tNp
.

Summation over all nodes and repeated integration by parts yields

1
2

d

dt
‖uN‖2

N ≤ −ε‖u(p/2)
N ‖2

N ≤ −εN−p‖uN‖2
N .

We observe immediately that the filtering process is dissipative as one would in-
tuitively expect. Furthermore, filtering corresponds approximately to solving a
dissipative equation which is, however, well-posed and stable even in the absence
of boundary conditions.

If one assumes, as is most often done, that the filter is applied after each time
step, the analogy between the filter and the dissipative problem above allows one
to consider the combined problem as that of solving the modified equation

(28)
∂u

∂t
+ a(x)

∂u

∂x
= (−1)p/2+1ε

(
d

dx
(1 − x2)

d

dx

)p/2

u, x ∈ [−1, 1],

subject to the same boundary conditions as Eq. (25) due to the special singular
nature of the dissipative term. This approximation is valid to an O(∆t) splitting
error in time.

Now considering the ordinary exponential filter, Eq. (13), we can repeat the
above line of arguments using the representation

σE(η) = 1 +
∞∑

k=1

1
k!

(−αηp)k.
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Using this in the stability analysis above, we recover a new term of the form

−
∞∑

k=1

(−1)kp/2+k 1
k!

αk

Npk

[
uN ,

(
d

dx
(1 − x2)

d

dx

)pk/2

uN

]

≤
∞∑

k=1

1
k!

αk

Npk
‖u(pk/2)

N ‖2
N ≤ ‖u‖2

N

∞∑
k=1

1
k!

αk = α exp(α)‖uN‖2
N .

Thus, we recover the stability statement for the filtered problem as
d

dt
‖uN‖2

N ≤− a(1)u2
N (1) − max

x
|ax|‖uN‖2

N

+ C
(
‖uN‖2

N + N2‖uN‖2
N

)
− α exp(α)

∆t
‖uN‖2

N .

Using an explicit time integration scheme, ∆t ∝ N−2 [13, 16], implies that

α exp(α) ≥ C

suffices to recover stability. Clearly, this can always be done, thus confirming the
ability of the exponential filter to fully stabilize the instability observed in Section
3.2.

5. Concluding remarks

Although filtering in spectral and pseudospectral polynomial methods for solv-
ing time-dependent partial differential equations is widely used, a rigorous theory
remains largely unknown. With the expected increasing use of high-order and spec-
tral methods in the future, it seems timely to build at least some foundation for
such techniques.

In this paper we have initiated this by shedding some light on the impact of filter-
ing in Legendre spectral methods, both in terms of accuracy of the expansion and
in terms of the stability and robustness that filtering adds to the method. In the
latter case, a simple example and subsequent analysis highlights the stabilization
offered by the filter which essentially acts as a high-order dissipative term added
to the equation. A central observation is that the dissipative operator is nonuni-
form and singular at the boundaries, thus not requiring any additional boundary
conditions [2].

In terms of accuracy, the results are only partial but, nevertheless, confirm the
computational experiments, showing that filtering can restore high-order accuracy
away from points of discontinuity. The smoothness of the filter is a critical pa-
rameter to ensure that the filter does not adversely affect the accuracy of smooth
functions, i.e., a step function as used in classical dealiasing methods [3] may be
good for stability but impacts the accuracy adversely.

The filter properties, defined in Definition 3.1, are sufficient but may not be
necessary. In fact, one could conjecture, based on computational results, that the
conditions in Theorem 4.1 are both necessary and sufficient.

While the analysis provides some foundation for the use of spectral filtering in
polynomial methods, it leaves one important question open: How does one choose
the order of the filter, p, in a particular application.

At this point in time, this is largely a question with answers based on experience.
However, with the understanding we have developed here, some guidelines can be
offered.
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In time-dependent computations, the primary concern is often stability, i.e., one
must choose p sufficiently low to increase the local dissipation, to ensure a stable
computation. Choosing p too low, however, will impact the accuracy significantly
throughout the computational domain. Thus, if one finds that p = 4 is needed for
stability, this indicates severe under resolution and one should explore an increase
in the resolution, hopefully with the award that p can also be increased.

A useful guideline is to seek to use as high a value of p as possible without
destroying stability. The range of p = 6 . . . 16 is generally reasonable. Higher
values of p have little effect and having to decrease p below 6 most often indicates
that one tries to do too much with too little. Using a filter is a matter of striking
a balance. However, with a bit of experience and a few tests, one often gains
significant advantages in terms of both accuracy and robustness.
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