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to Study the Sensitivity of ECG Forward
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Abstract—Because numerical simulation parameters may signif-
icantly influence the accuracy of the results, evaluating the sen-
sitivity of simulation results to variations in parameters is essen-
tial. Although the field of sensitivity analysis is well developed, sys-
tematic application of such methods to complex biological models
is limited due to the associated high computational costs and the
substantial technical challenges for implementation. In the specific
case of the forward problem in electrocardiography, the lack of ro-
bust, feasible, and comprehensive sensitivity analysis has left many
aspects of the problem unresolved and subject to empirical and in-
tuitive evaluation rather than sound, quantitative investigation. In
this study, we have developed a systematic, stochastic approach
to the analysis of sensitivity of the forward problem of electro-
cardiography to the parameter of inhomogeneous tissue conduc-
tivity. We apply this approach to a two-dimensional, inhomoge-
neous, geometric model of a slice through the human thorax. We
assigned probability density functions for various organ conduc-
tivities and applied stochastic finite elements based on the gener-
alized polynomial chaos-stochastic Galerkin (gPC-SG) method to
obtain the standard deviation of the resulting stochastic torso po-
tentials. This method utilizes a spectral representation of the sto-
chastic process to obtain numerically accurate stochastic solutions
in a fraction of the time required when employing classic Monte
Carlo methods. We have shown that a systematic study of sensi-
tivity is not only easily feasible with the gPC-SG approach but can
also provide valuable insight into characteristics of the specific sim-
ulation.

Index Terms—Electrocardiographic forward problem, poly-
nomial chaos, stochastic finite elements, stochastic Galerkin,
stochastic processes, uncertainty quantification.

I. INTRODUCTION

THE forward problem of electrocardiography provides
valuable information for both basic science and clinical

medicine and has a well-established set of solution approaches
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[1]–[3]. Computational electrocardiographic models based on
realistic human physiology include many input parameters,
such as the geometric discretization of the torso organs, the
conductivities of the tissues, and the representation of cardiac
sources. Inherent in each model parameter are “errors” asso-
ciated with quantifying and simplifying the physiology so that
numerical implementations remain tractable. These errors can
result, for example, from simplifications or abstractions of the
physics or geometry (modeling errors), lack of instrumentation
precision in obtaining model parameters (parameter errors)
as well as from natural variations over patient populations.
Quantification and control of such errors are critical to the
simulation process; only then can scientists judiciously eval-
uate which components of the model are critically sensitive
to variations and hence may require additional refinement
or more accurate measurements. In the specific case of the
electrocardiographic forward problem, tissue conductivity is
an example of an input parameter that is very difficult to accu-
rately obtain; establishing conductivity in realistic conditions
requires careful experiments and complex interpretation with
often widely varying results [4]–[6]. The role of such varia-
tions in conductivity on simulations is the topic of extensive
ongoing research and discussion, with no obvious means of
resolution available [7]–[13].

The goal of this study was to present and show the utility
of a novel methodology of sensitivity analysis first presented
in [14]–[16] that is applicable to a wide range of problem in
bioelectric fields. To demonstrate its feasibility, we utilized the
approach to evaluate the effects of variations and uncertainty
in the conductivity values assigned to organs in a two-dimen-
sional model of the human thorax. The mathematical framework
presented herein extends naturally for use on three-dimensional
models; we focus on a two-dimensional model for the sake of
clarity of presentation.

Sensitivity analysis in computational modeling provides a
quantitative description of the dependence of the solution on
various model parameters and input values. Such analysis can
provide insight into the relative impact of parameter variation
on solution accuracy, which, in turn, has implications regarding
the underlying mechanisms of the model system. Sensitivity
analysis methods were first developed for the assessment of
mathematical models of control systems [17]–[19] and have
a strong tradition in the analysis of mechanical systems [20].
However, the value of the sensitivity approach extends beyond
these initial applications. The approach is especially useful
for biological systems as they typically require a high level
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of simplification and abstraction to encapsulate physiological
mechanisms in tractable simulations. Many parameters in
biological simulations are approximations based on experiments
and in many cases, the interplay between such parameter
approximations and other modeling assumptions is not clear.
Such an approach can identify aspects of the model that
may be simplified or reduced without significantly impacting
the solution accuracy.

Several methods for carrying out sensitivity analysis exist, but
they are not widely applied to complex systems due to their com-
putational cost and difficulty of implementation. For example,
sampling-based sensitivity methods such as Monte Carlo [21],
[22], Latin Hypercube [23], [24], response surface [25], relia-
bility-based methods [26], [27], and the Fourier amplitude sen-
sitivity test [28] are often impractical due to the large number
of repetitions necessary to obtain statistically valid results. The
time required to compute sufficient samples for accurate so-
lutions often forces researchers to revert to highly undersam-
pled “brute-force” methods [29], [30]. Sometimes referred to
as “sensitivity testing,” this technique investigates the model re-
sponse to an extremely reduced set of model parameter com-
binations, and thus fails to provide robust quantification of the
model sensitivity.

Several methods exist to directly calculate sensitivity coeffi-
cients rather than to extract them from large numbers of test sim-
ulations. One scheme is based on the coupled direct method in
which the model equations are differentiated with respect to the
parameters of interest and the resulting set of sensitivity equa-
tions is solved simultaneously with the model equations [31].
Another class of techniques relies on the Green’s function or ad-
jointmethod,alsobasedondifferentiationofthemodelequations.
In this case, one constructs an auxiliary set of Green’s functions
thus minimizing the number of differential equations that must
then be solved to obtain sensitivity coefficients [32], [33]. Exam-
ples of differential analysis methods include the Neumann [34]
and Taylor series [35], [36] expansions, and perturbation anal-
ysis [37]–[39]. These methods are computationally efficient, but
require that theperturbation termsbesmall, i.e., only limitedvari-
ations in parameters are possible, and can be very cumbersome to
apply to complex simulations. Moreover, for nonlinear systems,
the resulting equations for these analytical methods can be math-
ematically intractable.

In summary, most sensitivity analysis techniques to date have
suffered from one of the following limitations: 1) they are ex-
pensive to compute (in comparison with solving the single deter-
ministic model problem); 2) they require extensive mathemat-
ical adaptation or manipulation of the original model (such as
computing Fréchet derivatives of an already complex system);
or 3) they restrict the range of parameter or model perturbations
in a way that hampers one’s ability to answer the sensitivity
questions of interest.

In contrast to all the approaches described above, the general-
ized polynomial chaos-stochastic Galerkin (gPC-SG) technique
attempts to alleviate these limitations by treating the input data
and model parameters as stochastic processes and solving the
resulting stochastic computational system of equations in order
to obtain information about the sensitivity of the system. To ac-
complish this, it is necessary to assume a particular probability

density function (PDF) for the parameters of interest, which ar-
guably allows for even more subtlety in the sensitivity analysis.
Once the stochastic solution is obtained through an orchestrated
combination of deterministic model solutions, one can compute
and examine the standard deviation and higher statistical mo-
ments of the result. Such information provides a quantitative
description of the sensitivity and uncertainty of the system to
the parameters.

Based on the Wiener–Hermite polynomial chaos expan-
sion [40], gPC has been applied to a range of problems in
computational mechanics [41]–[49]. This technique has also
recently been introduced into other disciplines such as thermo-
dynamics [50]–[52] and physical chemistry [53], [54], in part
because it leads to efficient solutions to stochastic problems
of interest, i.e., not only parameter sensitivity and uncertainty
quantification.

To improve the computational efficiency of this method, we
employ the stochastic Galerkin method to solve a generalized
polynomial chaos representation of the stochastic system. The
stochastic Galerkin method represents stochastic processes via
orthogonal polynomials of random variables and utilizes spe-
cific sets of orthogonal polynomials to achieve computationally
efficient representation of random processes with arbitrary prob-
ability density functions. Such expansions exhibit fast conver-
gence rates when the stochastic response of the system is suffi-
ciently smooth in the random space, e.g., bifurcation behavior is
absent. The stochastic Galerkin method is an efficient means of
reducing the stochastic governing equations to a system of de-
terministic equations that can then be solved via conventional
numerical techniques.

We present here a development of the stochastic Galerkin
method adapted to the forward problem of electrocardiography.
With this approach it is possible to carry out a Galerkin pro-
jection of the governing equations onto the polynomials basis
functions defined by gPC. Such a gPC-SG approach is capable
of both applying relatively large perturbations in the model
parameters and tolerating large variations in the responses. This
method has been successfully applied to model uncertainty in
complex stochastic solid and fluid problems [47], [48], [55]
and is especially well suited to electrocardiographic forward
problems because they are linear with relatively well behaved
solutions. In this study, we demonstrated the feasibility of the
gPC-SG approach by successfully applying it to a realistic
two-dimensional model of the electrocardiographic forward
problem. The results of this evaluation support some previous
findings using other, less complete sensitivity studies but also
suggest some new criteria for the creation of geometric models
for bioelectric field problems.

II. METHODS

The methods section is partitioned into two subsections,
Section II-A outlines the standard approach we adopted for
the electrocardiographic forward problem while Section II-B
describes application of the gPC-SG technique to the standard
ECG forward problem.
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A. Electrocardiographic Forward Problem

The electrocardiographic forward problem is a quasi-static
approximation of Maxwell’s equations expressed as follows:

(1)

(2)

(3)

where denotes the torso domain, and denote the
epicardial (Dirichlet) and torso (Neumann) boundaries, respec-
tively, is the potential field on the domain , is
the known epicardial potential boundary function, is the
symmetric positive definite conductivity tensor, and denotes
the outward facing normal with respect to the torso.

1) Numerical Methodology: Solving (1)–(3) for any but the
simplest geometries requires a numerical approximation, typi-
cally based on methods such as boundary elements or finite el-
ements [1]. In order to facilitate the subsequent application of
the stochastic Galerkin method, we employed a high-order fi-
nite-element method [56]–[58].

High-order elements refer to the polynomial order of the
basis functions used to describe spatial variation of the vari-
able(s) of interest. Basis functions with greater than first/linear
degree provide a means of capturing more rapid variations in the
system—and potentially achieving higher accuracy—without
the need for refining the geometric mesh used to describe the
domain under study. For this study, we first compared results
using basis functions of first, second, and third degree and
determined second degree to be adequate for all experimental
results presented in this study.

We utilized a triangular tessellation of the domain with
the set denoting indexes of the mesh nodes as the geometric
basis for the finite element computations. For the case of linear
finite elements, this set consisted of the indexes for the triangle
vertices, and for the case of nodal high-order finite elements, the
set contained indexes for nodes at the triangle vertices as well as
the edge and internal discretization nodes. We then decomposed
the set into two nonintersecting sets, and , representing
nodal indexes that lie on the Dirichlet boundary (and hence de-
note positions at which the potentials are known) and nodal in-
dexes for which the solution is sought (i.e., the degrees of
freedom of the problem), respectively.

Let denote the global finite element interpolating basis
functions, which have the property that where
denotes a node of the mesh for . Solutions are then of the
form:

(4)

(5)

where the first term of (5) denotes the sum over the degrees of
freedom of the problem of the values at the unknown vertices
weighted by the basis functions and the second term denotes

Fig. 1. Two-dimensional geometric model of the torso: Conductivity values
were assigned according to the different regions of the torso slice which con-
sisted of lungs, skeletal muscle, subcutaneous fat, and a miscellaneous category
denoted torso cavity. Orientation of the slice is according to a standard radio-
logical view, looking towards the head of a supine subject.

the same sum for the (known) Dirichlet boundary conditions of
the solution.

Substituting the expansion (5) into the differential (1), multi-
plying by a function from the test space , taking
inner products, and integrating by parts yields a linear system
of the form

(6)

where denotes a vector containing the solution of the system
(i.e., potential values at the nodal positions in ) and and
denote the stiffness matrix and right-hand-side function, respec-
tively, given by the following expressions:

(7)

(8)

In the expressions above, , and denote the inner
product taken over the entire spatial domain . Both the stiffness
matrix and right-hand-side vector are functions of the conduc-
tivity. The stiffness matrix in (6) is positive definite, and hence
solution of the linear system is amenable to iterative methods
such as the preconditioned conjugate gradient method [59].

2) Geometric Model: The geometric model for this study
consisted of a single two-dimensional slice of the Utah Torso
Model [9], [60]. We adaptively refined the original mesh to
achieve higher spatial density near the epicardial surface in
order to improve numerical solution accuracy. Fig. 1 contains
a diagram of the model showing regions representing lungs,
skeletal muscle, subcutaneous fat, and a miscellaneous category
denoted “torso cavity.” The segmentation of the tissues ensured
that boundaries always resided at the edges of elements and we
assumed constant conductivity values over each organ region
and hence within every element of that region. Although we
did not consider anisotropy in this study, the model would
easily support the assignment of conductivity tensors for each
element.

3) Simulation Input Data: Boundary Conditions and Con-
ductivity Parameters: Solving a particular case of the forward
problem requires tissue conductivity values, which we obtained
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TABLE I
CONDUCTIVITY VALUES CORRESPONDING TO ORGANS IN THE MODEL AND

THE PERCENT AREA OF THE DOMAIN CONTRIBUTED

from the literature [61] and summarized in Table I. Dirichlet
boundary conditions took the form of potential values along
the epicardial surface of the geometric model. For this, we uti-
lized a set of potentials interpolated from 64-channel measure-
ments performed on a human subject during open-chest ablation
therapy for severe cardiac arrhythmia [61].

B. Sensitivity Quantification Through the Stochastic
Galerkin Method

We now present the gPC-SG approach as applied to the ECG
forward problem starting with a brief general overview of the
gPC-SG formulation, followed by a description of our specific
implementation of this methodology.

1) General Formulation: The stochastic Galerkin method
represents any stochastic process by a weighted sum of
orthogonal polynomials [47], [48], [55], [62], which are func-
tions of a vector of random variables of known PDF. In the
case of this study, the random processes of interest are the (sto-
chastic) conductivity values attributed to different organs within
the torso. The random variables of interest will be chosen to
represent the distributions from which conductivity values are
sampled. We denote the stochastic orthogonal polynomial set
as and can write

(9)

For any reasonable random process, this infinite summation can
be truncated to terms and the polynomial weights are
projections of the random input onto the random polynomials

(10)

in the stochastic domain , where the random measure space
is appropriate for the probability density function of the random
variable vector . The stochastic coefficients of the trial expan-
sion (as in the finite element method) are found by solving the
resulting system for the random solution coefficients.

To apply this general approach to the specific case of an
elliptical forward problem such as that in (1), we consider a
stochastic conductivity tensor expressed in terms of an

-dimensional random variable vector ,
where the PDFs of the random vector components are known
or assumed. Because the conductivity tensors are physically
constrained to be non-negative and nonzero, the PDF must be
similarly constrained. The components of the random vari-
able vector denote the different random variables necessary
to describe the process of interest. When examining a sto-
chastic process whose PDF is known, the smallest number of

independent and uncorrelated random variables necessary to
represent the process are typically obtained by such methods
as Karhunen–Loeve (KL) expansion [63]. For example, if one
were to model two tissue classes as stochastic and independent
(in the statistical sense), a two-dimensional random variable
vector would be utilized with the two components assigned to
each tissue class respectively. The resulting stochastic versions
of (1)–(3) are then

(11)

(12)

(13)

where the solution is now also a function of the sto-
chastic variable vector and thus has a random distribution with
mean, variance, and higher stochastic moments. The conduc-
tivity tensor and solution field, as random processes, can be rep-
resented via the generalized stochastic Galerkin expansions as

(14)

(15)

where the functions are orthogonal polynomials ranging
up to th degree and must be chosen to be large enough so
that the solutions will meet the accuracy requirements for the
particular system of interest. Convergence rates of the system
depend on the choice of orthogonal polynomials for the under-
lying probability density functions of the random model param-
eter. Each probability distribution has a corresponding optimal
set of orthogonal polynomials [62]; e.g., for Gaussian random
functions, Hermite polynomials provide the best convergence,
whereas the Legendre polynomials are best utilized for func-
tions of uniform distributions, etc. When the stochastic response
contains a discontinuity, e.g., near a bifurcation point, piecewise
polynomials [64], [65] can be employed to circumvent the dif-
ficulty.

Substituting the above expressions into the stochastic elliptic
system given by (11)–(13) and projecting (in the Galerkin sense)
the resulting system into the random space spanned by the basis
polynomials leads to the following linear system:

For

(16)

where denotes the inner product
over the appropriate probability measure space. The probability
measure within the integration is determined by the PDF of the
random variables used. By using numerical quadrature to eval-
uate the inner product [47], [55], [62], with the appropriate
boundary conditions (discussed in Section II-B-II), the system
reduces to a large linear combination of elliptic equations for the
coefficients . Since the unknowns are now only functions
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of space, standard finite element techniques can be employed to
transform this into a large linear system of deterministic stiff-
ness equations and right-hand-side vectors.

2) Implementation Details: In this study, we systematically
investigated the effect of conductivity variability by individually
perturbing the conductivity values of the organ groups within
a two-dimensional cross section of the human torso, assuming
uniform distributions for the conductivity variability. For the
polynomial set , we employed the Legendre polynomials
defined on , as these are most efficient for expressing
random processes with uniform (or nearly uniform) distribu-
tions.

Under these assumptions, we express the conductivity as fol-
lows:

(17)

where is uniformly distributed on the interval
for each point . We have then

and . Under
our assumptions, only two terms are needed to represent the
randomness of the conductivity. This does not imply that two
polynomial chaos terms are sufficient to represent the random
(and possibly non-uniformly distributed) process denoting the
potential in the torso; the number of terms utilized to repre-
sent the stochastic processes is denoted . Because we were
interested in perturbing organ groups individually, we set the
first mode to the prescribed (deterministic) value for
each organ over all computational experiments. We then set

to a nonzero value (corresponding to the half length of
the uniform interval) for the organ group of interest and set

for each of the remaining organs. For example, with
a 50% uniform interval, conductivity for that organ varied from
0.5 to 1.5 times that nominal (deterministic) value with equal
probability of any value in that range.

Under the assumption that the boundary conditions were
known and had no stochastic variability (i.e., were determin-
istic), the system of equations reduces to the following (for

):

(18)

(19)

(20)

with the appropriate boundary conditions (given in
Section II-B2).

Equations (16) and (18)–(20) comprise a large deterministic
system. To make concrete the form of this system under our
assumptions, let and denote the stiffness matrices gen-
erated with and respectively, and let and
denote the right-hand-side vectors based upon boundary condi-
tions for corresponding to and , respectively.
The linear system of equations that results is

(21)

Fig. 2. Diagram of the large linear system resulting from the linear combination
of stiffness matrices and right-hand sides. The � values corresponds to inner
products of the stochastic basis polynomials, with � = C , � = C ,
� = C , � = C , � = C and � = C . The matrices S and S
are as described in the text.

for , where denotes the vector of finite ele-
ment degrees of freedom expressing the th stochastic mode.
Given degrees of freedom for each finite element spatial
discretization (i.e., the dimensions of the stiffness matrices
and are ), then the total dimension of the new stochastic
linear system is . The extension of this methodology
to three spatial dimensions consists of populating the equation
above with stiffness matrices and right-hand-side vectors from
a three-dimensional finite element model.

Fig. 2 shows a schematic of the type of system we solved
via iterative methods to obtain the stochastic moments of the
solution given a third-degree stochastic Galerkin discretization
(i.e., ). Note that the choice of has been made to
help simplify the presentation of the figure.

3) Postprocessing: Given the stochastic modes, we calcu-
lated the mean and standard deviation of the solution as

These modes are fields over the problem domain and hence
we could visualize them over the entire two-dimensional slice
through the torso surface.

In all the simulations presented here, we assumed uniform
distributions for the stochastic conductances and found that
using stochastic polynomials of degree seven (i.e., ) were
sufficient to capture the stochastic behavior of the potentials in
the torso. To verify this choice, we accomplished a comparison
between Monte Carlo and the proposed methodology for one
of the experiments presented in our work. We found that mean
and standard deviations calculated from the simulation of 6000
Monte Carlo trials were the same to four significant figures
as those computed using degree seven stochastic polynomials.
However, the Monte Carlo trials required more than 2700 times
the CPU time required to compute the same result using the
proposed methodology. This performance discrepancy would
be further exacerbated in the case of an even larger number of
Monte Carlo trials.

III. RESULTS

We present here results of a sensitivity analysis of variations
in organ conductivity in a two-dimensional model of the human
thorax. The epicardial potentials applied to the inner boundary
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Fig. 3. Effects of stochastic variation in conductivities of three organs on torso potentials: These contour plots correspond to the stochastic behavior of the electrical
potential across a slice through the torso resulting from stochastic organ conductivities. (a) shows the mean for a stochastic interval of �50% from the reference
lung conductivity, while (b) shows the associated standard deviation. The bottom two panels show the standard deviation for 50% stochastic variation in (c) muscle
and (d) fat, respectively. In each figure depicting the standard deviation of torso potentials, the region of varying conductivity is indicated by the dotted contours.
All units in the plot are millivolts.

are taken from measurements on an exposed human heart during
surgery for resolution of persistent ventricular arrhythmias. For
this report, we selected a time instant late (85 ms after onset) in
the QRS complex as representative and present plots of mean
and standard deviation of computed potential on the geometric
model oriented in the standard radiological view (looking from
the feet toward the head with the subject facing upward). For
all of the results, we examine conductivity intervals of 50
or smaller, as these ranges fall well within the distributions of
experimentally obtained values [4]–[6].

Fig. 3 shows results for variations of 50% in the conduc-
tivity of lung, muscle and fat. Panel (a) shows the mean poten-
tials resulting from variations in lung conductivity. As expected,
the mean behavior was virtually identical for all organ conduc-
tivity experiments. The roughly dipolar nature of the epicardial
boundary conditions and the similarly dipolar but considerably
smoothed potential distribution on the torso surface are also ev-
ident in this figure. Such attenuation and smoothing is evident
when comparing the two distinct maxima of the right ventric-
ular potentials that fuse into a single maximum as the current
travels out to the torso surface. Panels (b)–(d) show the spa-
tial distribution of standard deviation over the thorax for vari-
ations in each of the three major organs. For variations in lung
conductivity, there is a large region of high standard deviation
(0.21–0.23 mV)—the highest standard deviation values for any
simulation experiments at the 50% level—over the left postero-
lateral region of the thorax. The same region showed maximal
standard deviation for variations in muscle conductivity but at
a value less than half that seen for variations in lung conduc-
tivities. Variations in lung conductivity also produced elevated
but submaximal standard deviations in the region on the right
posterolateral aspects of the thorax, a region once again shared
(albeit at relatively lower amplitudes) in the results for variation
in muscle conductivity. In contrast, for variations in subcuta-
neous fat conductivity, only one region located in left antero-

lateral area showed elevated standard deviation values and even
there, the amplitude was an order of magnitude smaller (0.03
mV) than the maximum for variations in lung conductivity.

We performed experiments with artificially rotated epicardial
potentials to determine the effect of epicardial potential orien-
tation on variations in torso potential and standard deviation.
Fig. 4 shows one such example in which panel (a) contains mean
results for a 90 rotation in epicardial potentials relative to those
shown in Fig. 3. The associated patterns of standard deviation
shifted in response to the altered epicardial potentials but not in
a way that reflected a simple rotation. For example, a compar-
ison of panel (d) in both figures, both showing the standard de-
viation from a 50% variation in fat conductivity, shows that for
the original orientation, a single area of elevated standard devi-
ation exists (Fig. 3), while rotating the same potentials resulted
in three widely separate regions of elevated standard deviation
(Fig. 4).

Fig. 4 also illustrates the effect of scaling on sensitivity of
torso potentials to variations in conductivity. Panels (b) and (c)
appear almost identical in pattern but amplitudes vary by a factor
of approximately 5, equal to the ratio of the respective range of
variation in conductivity (50% versus 10%).

Another finding shown in Fig. 4 is the nature of interactions
between variations of conductivity in multiple organs. Panels
(b)–(d) show standard deviations for variations in a single organ
while panels (e) and (f) show results from allowing simulta-
neous variation of both lung and fat conductivity. We selected
a level of variation for each component that generated approx-
imately equal individual variance in the forward solutions; the
combined effects are certainly a function of the relative levels
of variation in the individual parameters. In one combined case,
panel (e), conductivities are coupled through a single random
variable while in the other case, panel (f), variations are func-
tions of two independent variables. In both instances, there are
features in the maps of cumulative standard deviation that ap-



GENESER et al.: APPLICATION OF STOCHASTIC FINITE ELEMENT METHODS 37

Fig. 4. Effects of multiple stochastic dimensions on the variance of the torso potentials: These contour plots correspond to the stochastic behavior of the electrical
potential across the torso surface resulting from stochastic conductivity with uniform distribution where the epicardial potentials have been rotated clockwise 180 .
(a) shows the mean torso potentials for stochastic lung conductivity with values varying within �50% from the reference value, while (b) depicts the standard
deviation. (c) depicts the standard deviation for stochastic lung conductivity of�10% as a function of a single random variable. (d) depicts the standard deviation
for stochastic fat conductivity of�50% as a function of a single random variable. (e) depicts the standard deviation for stochastic lung conductivity of�10% and
stochastic fat conductivity of�50% where both stochastic lung and fat are a function of the same single random variable. (f) depicts the results of stochastic lung
and fat conductivity variation from the same components as in (e), but each is a function of two independent and uncorrelated random variables. In each figure
depicting the standard deviation of torso potentials, the region of varying conductivity is indicated by the dotted contours. The numerical value of the maximum is
included in each plot and all units in the plot are millivolts.

pear to originate from one or the other of the associated single-
parameter maps. However, the cumulative distributions are not
simple algebraic sums of the single-parameter distributions, in-
dicating complex interactions between the conductivities of dif-
ferent organs. Another finding illustrated in the figure was the
larger standard deviations of potential resulting from indepen-
dent variation of multiple conductivities as compared to varia-
tions linked to a single random variable.

IV. DISCUSSION

The main purpose of this study was to present a novel ap-
proach to parameter sensitivity analysis that could have appli-
cation to a wide range of bioelectric and biomedical simulation
problems.

A thorough sensitivity analysis as described here has dis-
tinct advantages over the approaches used in most previously
reported studies that have sought to establish the effects of con-
ductivity variation on forward ECG and EEG problems [7], [10].
Most notably, rather than investigating only a small subset of
model parameter value combinations, in a full statistical anal-
ysis one is able to explore the impact of a continuous range
of organ conductivity values on torso potentials. In addition,
this approach provides a complete spatial distribution of the ef-
fects of parameter variation on the forward solution rather than

a single value (typically the root mean squared of the differ-
ence between solutions) as with most other investigations of this
type. Thus, it is possible to observe that variations in organ re-
gions result in standard deviations with widely different spatial
distributions as illustrated by Figs. 3 and 4. Analysis of these
spatial patterns, in turn, can suggest a correspondence between
the effect of source potentials, problem domain geometry, and
the location and value of the conductivity variations upon the
resulting potentials throughout the problem domain. It is these
relationships that reveal features of, in this case, the electrocar-
diographic forward problem and its implementation under real-
istic conditions.

Although we do not report on a complete sensitivity analysis
of the forward problem, there are some observations that illus-
trate the utility of the stochastic approach—observations that are
not possible using the more typical analyses from past studies.

As an example of the insights stochastic analysis can provide,
we noted that the mean potentials across the torso cross sec-
tion were extremely similar for multiple distributions of organ
conductivities. This finding is expected due to the symmetry of
the conductivity probability distributions examined and the rel-
atively linear behavior of the elliptic problem with respect to the
conductivities. In contrast, we noted distinct differences in the
spatial distribution of the standard deviations for variations in
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conductivity of the various organs. By generating spatial distri-
bution of mean potential and standard deviation over the entire
cross section, we were able to observe the relationship between
these parameters and the geometry of the organ boundaries and
thus visualize the effects of changing conductivities. For ex-
ample, Fig. 3 shows that the structure of mean potential [shown
in (a)] did not obviously reflect underlying organ boundaries
whereas maps of standard deviation in (b) and (c) show breaks
in the iso-value lines that align with the boundary of the lungs
and muscle, respectively. The standard deviation from variation
in subcutaneous fat [depicted in (d)] shows a weaker association
with internal organ boundaries.

Our findings appear to contradict those of Klepfer et al., who
determined that both skeletal muscle and fat conductivities had
greater affect than lung conductivity on the three-dimensional
forward problem of electrocardiography [7]. These findings,
however, were based on the assumption of skeletal muscle
anisotropy; indeed, in the case of isotropic skeletal muscle
conductivities (as were used in our study), the effects of muscle
conductivity were significantly less than for lung conductivi-
ties. The fat conductivities have elevated impact in the study
by Klepfer et al., perhaps because the difference between the
two fat conductivity values investigated was significantly larger
than the intervals examined here. A full comparison of results
will require the use of equivalent, three-dimensional models.

The accuracy of a geometric model depends not only on con-
ductvity values but also—and perhaps even more so—on the
proximity of the various organs to the bounding surfaces of the
problem and the geometric accuracy of the regions of different
conductivity. The stochastic approach we describe here is also
suited to an analysis of such geometric variation, a project be-
yond the scope of this report. Ultimately, one would like to allow
variation in both conductivity and geometry and determine the
influence of these variations on the forward solution. To address
the question of the role of anisotropy of the skeletal muscle de-
scribed by Klepfer et al. [7] would then require an additional pa-
rameter in the variational analysis. Conceptually, all this is pos-
sible using our approach—conversely, the computational cost
of any of the more traditional approaches of sensitivity analyses
would become all the more insurmountable if one were to vary
all the relevant parameters simultaneously.

Orientation of the epicardial potentials greatly affected the
spatial characteristics of both the mean potentials and especially
their standard deviation. Figs. 3 and 4 illustrate these effects for
epicardial potentials rotated by approximately 90 , as shown in
panel (a) of both figures. The effect of rotation on mean potential
was predictably a rotation of the same pattern, slightly distorted
by the asymmetric shape of the torso cross section. The effect
on standard deviation was, however, markedly more complex,
indicating a more complex relationship between potential distri-
bution and placement of the regions of different conductivity. At
this point, it is difficult to draw many general conclusions about
this relationship but it does appear that the organ conductivities
impact the potentials most significantly when they are located in
close proximity to regions of large amplitudes of epicardial po-
tentials. Such regions of large source strength induce large cur-
rent flow and one can expect this flow to change most in regions
of large conductivity change. In addition, we noted that the re-

gions of greatest standard deviation did not necessarily occur at
the organ boundaries or even within the large organs, but rather
near the torso boundary itself. Such findings suggest a form of
remote effect, i.e., changes in conductivity in one region alter
most strongly the potentials in another region, perhaps because
in these regions, the current has already passed through large
regions of changing conductivity and the cumulative effects of
deflection and attenuation have grown.

We also observed that the combined effect of conductivity
variations in two different organs is not additive, and thus
cannot be predicted by the individual stochastic behavior of
single organ regions. We found that standard deviation for
combinations of stochastic organs was typically larger than
for the individual organs, suggesting that in concert, errors
are compounded. Moreover, although some features of the
standard deviation distribution from combined variation were
present in one or the other of the equivalent maps of the indi-
vidual variations, there were also unique features only visible
in the combined distribution. These findings emphasize the
importance of quantifying the collective (rather than individual)
impact of organ conductivities upon the full model and further
underscore the value of the gPC-SG method in enabling such
forms of analysis.

The studies presented here were based on a two-dimensional
simplification of a three-dimensional problem. The gPC-SG
approach is not intrinsically limited to two dimensions and for
this forward problem extends naturally to three, as outlined
briefly in Section II. The simplification from three to two
dimensions also necessitates care in interpreting the findings
as they apply to this problem and especially the importance of
extending them to a full, three-dimensional model. One obvious
effect of the simple model was that computed torso surface
potentials were larger than what one would expect from a
three-dimensional model. This is clearly a result of the reduced
torso volume relative to the extent of the epicardial sources,
which decreases the electrical load on the source potentials
and thus increases the potential amplitude throughout the cross
section.Onecannotreliablyspeculateupontheequivalentchange
in amplitude of standard deviations in a three-dimensional
model, although the linearity of the problem suggests the
likelihood of similar scaling. We do note that the patterns
visible in the cross section generally projected more or less
radially to the outer boundary (the torso surface contour).
However, the effect of a three-dimensional model on spatial
distributions of standard deviation is difficult to anticipate
and awaits the results from ongoing studies in our laboratory
with three-dimensional implementations of this approach.

While we present a gPC-SG analysis of the influence of
conductivity on a specific problem in electrocardiography,
this approach can be extended to a number of other biological
problems, including that of source localization in the brain
from extracranial measurements of electric potentials or mag-
netic fields. Technical hurdles have previously made this sort
of analysis prohibitive due to the large number of samples
necessary or the complexity of implementation. The gPC-SG
approach provides a framework capable of overcoming these
hurdles. The computational tractability of gPC-SG also allows
for investigating the effects of multiple stochastic parameters
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or even multiple random-dimensional stochastic parameters in
a reasonable amount of time.
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