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DIFFERENTIAL EQUATIONS WITH RANDOM INPUTS∗
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Abstract. We introduce a numerical method, multilevel designed quadrature for computing the
statistical solution of partial differential equations with random input data. Similar to multilevel
Monte Carlo methods, our method relies on hierarchical spatial approximations in addition to a
parametric/stochastic sampling strategy. A key ingredient in multilevel methods is the relationship
between the spatial accuracy at each level and the number of stochastic samples required to achieve
that accuracy. Our sampling is based on flexible quadrature points that are designed for a prescribed
accuracy, which can yield less overall computational cost compared to alternative multilevel methods.
We propose a constrained optimization problem that determines the number of samples to balance
the approximation error with the computational budget. We further show that the optimization
problem is convex and derive analytic formulas for the optimal number of points at each level.
We validate the theoretical estimates and the performance of our multilevel method via numerical
examples on a linear elasticity and a steady state heat diffusion problem.
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ture, hierarchical spatial approximation
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1. Introduction. The computer simulation of science and engineering problems
is subject to various uncertainties, ranging from modeling inaccuracies to measure-
ment errors. The ever-growing field of uncertainty quantification develops efficient
mathematical tools to address such challenges in numerical simulations. In this paper
we adopt the main ideas in multilevel Monte Carlo methods [15] to estimate statistical
moments for solution of random partial differential equations (PDEs). Let hi denote
the resolution size (e.g., mesh size) for level i ∈ {0, . . . , L} associated with spatial or
temporal approximation/discretization with hL < · · · < h1 < h0, E the mathematical
expectation operator, and Qi the quantity of interest (e.g., a linear functional of the
PDE solution) for that approximation, where Qi is random due to the randomness
in the PDE. Multilevel Monte Carlo exploits the linearity of expectations and writes
the “true” expectation on the finest level as

E[QL] = E[Q0] +

L∑

i=1

E[Qi −Qi−1].
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MULTILEVEL DESIGNED QUADRATURE A1413

Assuming the spatial/temporal discretizations are convergent, then Qi is expected to
be an increasingly accurate estimate for Q as i increases, so the variance of Qi−Qi−1

becomes smaller as i is increased. This smaller variance implies that Monte Carlo
estimates for these differences require fewer samples for larger i but require a large
number of samples for small i. This idea constitutes the main strategy of multilevel
Monte Carlo, which saves significant computational cost by requiring fewer functional
evaluations for terms associated with finer resolutions (which are more expensive to
generate). Each term in the summation above can be estimated by Mi samples

E[Qi −Qi−1] =
1

Mi

Mi∑

j=1

Q
(j)
i −Q

(j)
i−1,

where ML < · · · < M1 < M0 and Q
(j)
i is a stochastic sample of Qi. Our main goal in

this paper is to take Q = Q(u), where u is the solution to a parametric PDE,

−∇ · (a(y,x)∇u(y,x)) = f(x),(1)

where the differential operators act on the spatial (x) variable, y is a Euclidean N -
dimensional parameter that we model as a random variable, and a is some prescribed
diffusion coefficient depending on y. The randomness in y makes Q(u) a stochastic
quantity.

The original multilevel approaches for stochastic approximations are based on
Monte Carlo sampling [15]. As examples, readers are referred to [8, 21, 28, 29] for
works on Monte Carlo-based approximation of random PDEs. To further enhance the
performance of multilevel methods, it is possible to use deterministic sampling tech-
niques which exhibit higher convergence rates for smooth dependence on the random
variables [18, 19, 31]. Additional sample-based approaches for approximating random
PDEs include collocation and quadrature approaches [3, 5, 14, 23, 30] and multi-
level methods such as multi-index Monte Carlo [20, 26] and multi-index quasi-Monte
Carlo [13, 17, 28]. These methods use sample-based quadrature or collocation-based
polynomial approximations with respect to y to estimate the expectation. The main
challenge for the existing quadrature-based work is the onerous dependence on the
number of quadrature points to achieve a particular polynomial integration accuracy
for large N .

In particular, these approaches utilize sparse grid methods and so are restricted
to the number of samples that are dictated by the sparse-grid construction; however,
there are alternative methods that can achieve similar accuracy with fewer sample
points.

Our contributions in this paper are as follows. In this work we exploit the flexibil-
ity of “designed quadrature” [27], a framework for constructing unstructured multi-
variate quadrature rules, to generate quadrature rules for general quadrature grid sizes
and polynomial integration accuracy. This increased flexibility allows us to formulate
convex optimization problems using some a priori error and cost analysis for parame-
terized elliptic PDE. Taking the analysis in [31] as a template for multilevel estimates
in tandem with designed quadrature allows us to formulate optimization problems
over the number of samples allocated at each level to minimize the cost/error of the
procedure, subject to accuracy/cost constraints. The optimization solution, which
we derive explicitly and analytically, prescribes a particular number of samples that
should be allocated at each level. This information would only be partially helpful
for inflexible constructions like sparse grids. The flexibility offered by designed quad-
rature, however, allows one to generate quadrature grids whose cardinality exactly
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A1414 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

matches the output of the optimization. This allows us to use designed quadrature
in a multilevel framework. We compare the performance of our method with other
sampling techniques, namely, sparse grids for moderate dimensions and quasi-Monte
Carlo for higher dimensions, in our numerical examples, and observe considerable
computational acceleration, sometimes achieving two orders of magnitude speed-up.

The paper is organized as follows. In section 2 we introduce the problem and
briefly discuss polynomial approximation for PDEs with random inputs, which moti-
vates the use of polynomial-based quadrature rules. Section 3 discusses the abstract
multilevel procedure, and section 4 describes designed quadrature and augmentations
for use in this paper. Section 5 introduces the optimization problem to determine the
number of function evaluations for each approximation level, provides an explicit solu-
tion to this problem, and finally summarizes the entire multilevel designed quadrature
algorithm.

Section 6 presents numerical results for random PDEs, including a heat diffusion
equation and a linear elasticity problem, both of the form (1), where the logarithm of
a has an affine dependence on y.

2. Polynomial approximation of parameterized elliptic PDEs. This sec-
tion discusses the approximation of parameterized elliptic PDEs using global polyno-
mial approximation in the parametric variable. We review results from [10, 11] that
establish high-order convergence of best n-term polynomial approximations. We will
subsequently use these results to motivate a multilevel algorithm.

2.1. Notation and problem formulation. On an open, bounded spatial do-
main D ⊂ Rd, we consider the following parameterized elliptic PDE for the parame-
terized solution u:

−∇ · (a(y,x)∇u(y,x)) = f(x) ∀(y,x) ∈ Γ×D,
u(y,x) = 0 ∀(y,x) ∈ Γ× ∂D,(2)

where f ∈ H−1(D) is a given inhomogenous term and the parameter set Γ is deter-
mined by the state space y. We assume that y consists of N mutually independent
random variables, i.e., y := (y1(ω), . . . , yN (ω)) ∈ RN , where ω is the event variable
on a complete probability space (Ω,F , P ). Each random variable yj takes values in
Γj ⊂ R with probability density ρk(yk). The independence assumption then implies

that y ∈ Γ = ⊗Nj=1Γj and has joint density ρ(y) :=
∏N
i=1 ρi(yi). We will assume

throughout that, since y is a dimension-N vector, a(y,x) has a finite-dimensional
stochastic representation.

The main purpose of this section is to justify that polynomial approximations in
the y variable can be effective. To make this argument, we assume, as is common
(e.g., [9]) an affine dependence of the diffusion coefficient a on the parameters y:

a(y,x) = a0(x) +

N∑

i=1

ai(x)yi(ω),(3)

where {aj}Nj=0 are the given functions. In the examples presented in section 6, we will
actually assume that log(a−a0) has affine dependence on the parameter. However, in
this section we make the affine assumption to motivate the polynomial approximation
strategy.

Although the system (2) involves a finite-dimensional coefficient a(y,x), such a
coefficient typically results from truncation of an infinite-dimensional random field
a(ω,x) where ω ∈ Ω. If, for example, the coefficient is in L2(Ω, L2(D)) then a
Karhunen–Loéve expansion can be used to represent it, i.e.,
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MULTILEVEL DESIGNED QUADRATURE A1415

a(y,x) = a0(x) +

∞∑

i=1

ai(x)yi(ω),

where {yi}i≥1 are mean-zero, uncorrelated random variables. A truncation of this
infinite sum along with an additional assumption of independence then results in
model (2). A study of errors committed on the solution u by truncating an infinite-
dimensional diffusion coefficient to a finite-dimensional series has been considered both
in the affine case as presented above [10, 11] and also in the case when log(a − a0)
has an affine dependence on y [6].

In order to ensure well-posedness of (2), we make the assumption that there are
positive deterministic constants A and Ā such that the inequalities

0 < A ≤ inf
x∈D

a(y,x), sup
x∈D

a(y,x) ≤ Ā <∞(4)

hold almost surely.
This assumption guarantees that (2) results in a well-posedH1

0 (D)-valued solution
map y 7→ u(y, ·) almost surely.

2.2. Parametric regularity and approximation by polynomials. We will
propose an algorithm to solve (2) that utilizes polynomial approximations in the para-
metric (y) variable. We motivate this strategy in this section by recalling established
results indicating that best polynomial approximations can achieve high-order con-
vergence rates. The discussion in this section contains specializations of the results
in [9, 10, 11].

The essential idea to constructing polynomial approximations is to consider an
n-term polynomial approximation of the form

u(y,x) ≈ uΛn(y,x) =
∑

λ∈Λn

yλcλ(x),

where cλ are H1
0 (D)-valued coefficients, Λn ⊂ NN0 is a size-n multi-index set, and we

have used multi-index notation:

yλ :=

N∏

i=1

yλii , λ = (λ1, . . . , λd) ⊂ NN0 .

We will restrict our attention to downward-closed index sets Λn, i.e., those such that

λ ∈ Λn =⇒ ν ∈ Λn ∀ ν ∈ NN0 satisfying ν ≤ λ,

where ν ≤ λ is true if the inequality is componentwise true. We also define a polyno-
mial space defined by Λn:

PΛn := span
{
yλ

∣∣ λ ∈ Λn
}
.

Under our uniform well-posedness assumption (4), the solution map

Γ 3 y 7→ u(y, ·) ∈ H1
0 (D)

of the parametric PDE (2) is holomorphic in a certain open region around Γ in CN .
This holomorphy property allows one to construct a y-Taylor series approximation to
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A1416 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

truncate this series to a finite number of terms and to estimate the truncation. The
result is that one can conclude that there exists a set Λn such that

sup
y∈Γ
‖u(y, ·)− uΛn(y, ·)‖H1

0 (D) ≤ C exp(−cn1/N ),(5)

where C, c are constants that depend on N ; see (3.186) in [9]. Thus, we obtain expo-
nential convergence tempered by the curse of dimensionality. An alternative analysis
in [11] considers errors via a Stechkin estimate of the truncated tail and allows one to
overcome the curse of dimensionality, yielding the estimate

sup
y∈Γ
‖u(y)− uΛn(y)‖H1

0 (D)) ≤ C(p)n−q, q :=
1

p
− 1,(6)

where C(p) with p < 1 depends on the `p summability of the diffusion coefficient
functions:

N∑

j=1

‖aj‖pL∞(D).

For more details, see Theorem 1.2 in [11]. The main message is that both results (5)
and (6) suggest that polynomial approximations in the parametric variable can be
very accurate under reasonable assumptions on the model elliptic problem (2) as n
increases. In particular, we note that one can obtain a (possibly high) algebraic rate
of decay in the error with respect to the dimension of the polynomial space.

Our main goal in this article is to consider sequential or hierarchical approxima-
tion using polynomial approximation in the y variable. To this end, for i = 1, 2, . . .
we will identify a sequence {Λj}j≥1 of nested index sets, having cardinality nj = |Λj |,
on which to construct a sequence of polynomial approximations. The previous discus-
sion suggests that error decaying like n−qj might be expected in this case. Our main
innovation is the application of novel collocation-based methods for forming exact
polynomial quadrature rules on PΛn , which results in orders of magnitude savings
compared to alternative approaches. The construction of these nodal sets and the
identification of the associated multi-index sets will be discussed later.

3. Hierarchical, multilevel approximation. Section 2.2 discussed the accu-
racy of best polynomial approximations constructed from polynomial spaces associ-
ated with certain multi-index sets Λn. Our ultimate goal is to compute expectations
(integrals), but accurate approximation with quadrature rules with respect to general
sets Λn is challenging. Existing methods frequently address this problem with sparse
grids [31]. In this paper we use a different strategy: we present a particular method
for constructing quadrature schemes that is more flexible than more standard schemes
such as low-discrepancy sets and sparse grid constructions. This flexibility comes at
the cost of solving a nonconvex optimization problem in the quadrature construction.

Many subsections below discuss ingredients from a multilevel algorithm proposed
in [31]. We will blend this algorithm with our distinct quadrature scheme.

3.1. Spatial approximation. Our spatial discretization is via finite element
methods. We consider a sequence of hierarchical finite element spaces Ui (where i is
the level index) corresponding to a mesh parameter hi; we assume hi > hi+1 for all
i ≥ 0. Being hierarchical, the finite element spaces satisfy

U0 ⊂ U1 ⊂ · · · ⊂ UL ⊂ H1
0 (D)
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MULTILEVEL DESIGNED QUADRATURE A1417

for some fixed maximum level index L. Each space Ui is composed of standard
piecewise polynomial shape functions with maximum mesh spacing hi. Accordingly,
ui(y) ∈ Uhi denotes the finite element solution computed as the approximation of the
true solution u(y). For simplicity, in all our examples we construct fine-scale meshes
by iterative uniform division of coarse-level meshes. In other words, we consider
hi = η−ih0, where h0 is the size of the coarsest mesh with a fixed refinement integer
η > 1. We also assume that there exist positive constants CH and α independent of
the mesh size hi, such that for all i ∈ N0

E‖u− ui‖H1
0 (D) ≤ CHhαi ,(7)

where, e.g., Eu ≡ E[u] [7]. The constant α is dependent on the regularity of u, the
diffusion coefficient a, and right-hand side data f . These constants CH and α will
play a role in our numerical framework; by assuming the asymptotic behavior (7),
we will compute approximations to these constants from finite element solutions on
coarser meshes. More detailed analyses of finite element errors and related types of
estimation are provided in [32].

3.2. Stochastic approximation. We use polynomial approximation over Γ for
approximation in the stochastic (y) variable. Specifically, we consider collocation-
based methods, and hence we assume continuity in y, i.e., u ∈ C0(Γ;H1

0 (D)). This
approach is philosophically identical to the approach in [31], but here our approach
differs in that we index directly by the number of collocation points M , which later
will yield a direct connection to cost of the procedure.

We define an operator SM , indexed by the number of points M , SMu : C0(Γ)→
L2
ρ(Γ), which is an approximation to the mathematical expectation. We leave these

interpolation operators unspecified for the moment and will return to them in
section 4.

However, we here articulate assumptions that we make on SM : First, we assume
that there is an operator H(u) : L2

ρ(Γ;H1
0 )→ R that satisfies

H(ui) ≤ CHh
β
0 , H(ui − ui−1) ≤ CHh

β
i(8)

for some positive constant CH and β. This first assumption concerns errors between
consecutive spatial solutions as the mesh is refined. Our second assumption is that
there exists positive constants CS and r such that

‖Eu− SMiu‖H1
0 (D) ≤ CSM−ri H(u) ∀u ∈ L2

ρ(Γ;H1
0 ),(9)

where similarly to spatial approximation, SML
denotes the most accurate stochastic

operator and SM0
is the least accurate one, i.e., M0 ≤ M1 ≤ · · · ≤ ML. We provide

analysis in section 4.2.3 motivating that quadrature rules adhering to (9) can be
constructed. Note that we do not disallow situations in which the number of samples
can be identical in consecutive levels. The key factor in these estimates is the rate r
which is associated with the properties of the quadrature rule that will be shown to
be higher in the case of our quadrature rule and the hierarchical spatial error. It is
noted that the norm ‖ui‖H1

0 (D) is bounded by a constant, whereas ‖ui − ui−1‖H1
0 (D)

decays with hβi , which depends on the mesh size at level i. This feature is the main
feature of the multilevel approximation, making it more efficient than a single-level
approximation.

The assumptions we have made above are based heavily on the assumptions in
[31], but ours are slightly different since we assume explicit dependence on the size of
the collocation mesh M .
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A1418 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

3.3. Multilevel approximation. The formulation for the multilevel method
uses a simple telescoping sum; e.g., for the spatial approximation, the finest level is
approximated as

uL =

L∑

i=0

(ui − ui−1) :=

L∑

i=0

∆ui,

where u−1 := 0. The idea for the multilevel approximation is to use a more (less)
accurate stochastic approximation, i.e., SMi with large (small) i, to measure the
integral of telescopic discrepancy ∆ui for small (large) i [4, 7, 16]. This strategy leads
the authors in [31] to propose the computational estimator:

EuL ≈ ũL :=

L∑

i=0

SML−i [ui − ui−1].(10)

This formula uses different levels of the stochastic operator on hierarchical finite
element approximations and relates these approximations via the index i. As seen,
as the level index increases and the discrepancy between ui and ui−1 decreases, a
less accurate stochastic operator SML−i is used to compute the expectation of that
discrepancy.

4. Multilevel approximation with designed quadrature. Designed quad-
rature (DQ) is a recently developed quadrature rule for integration in multiple dimen-
sions that computes moment-matching quadrature rules via optimization [27]. Due
to its generic formulation, quadrature rules with various combinations of dimension,
order, and weight function on general geometries can be generated.

4.1. DQ. Given an index set Λ with n = |Λ|, DQ seeks to compute an M -point
quadrature rule with nodes {ym}Mm=1 ⊂ Γ and weights {wm}Mm=1 satisfying

∫

Γ

p(y)ρ(y)dy =

M∑

m=1

wmp(ym), p ∈ PΛ.

It accomplishes this by directly solving moment-matching conditions subject to geo-
metric constraints on M nodes X ∈ RdM and positive constraints on the weights
w ∈ RM ,

R(d) = V (Y )w − e1/π0 = 0,
yj ∈ Γ, j = 1, . . . ,M,
wj > 0, j = 1, . . .M,

(11)

where R is the vector of PΛ moment-matching residuals, d = (Y ,w) is the vector
of decision variables consisting of nodes Y and w, V (Y ) is the Vandermonde matrix
(constructed with L2

ρ(Γ) orthonormal polynomials spanning PΛ), π0 is the L2 norm
of the zeroth-order polynomial in PΛ, and e1 is the cardinal unit vector in the first
direction in Rn. In its original form, an index set, geometry, weight function, residual
tolerance, and a tentative number of points M are specified in the first step. The
node positions are also initialized uniformly at random. The method then uses pen-
alty function methods to transform constrained root finding into an unconstrained
minimization problem and subsequently solves a quadratic minimization problem via
a Gauss–Newton algorithm. An additional Tikhonov regularization is used to remedy
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MULTILEVEL DESIGNED QUADRATURE A1419

ill-conditioned matrices during Newton’s iterations. To find the appropriate number
of points in the original DQ approach, we typically start with a larger number of
points than needed, which results in ||R|| < δ initially; we then decrease the number
of points successively (as much as possible) without making ||R|| > δ. If we start with
a smaller number of points than required, i.e., ||R|| > δ in the initialization, then we
increase the number of points successively until the residual satisfies ||R|| < δ. In
other words, if the tentative quadrature size at the beginning is small, the number
of points is increased successively, and if it is large, it is decreased successively. We
refer the readers to [27] for more complete details of this algorithm that we omit here.
Specifically, an empirical recommendation on the initial size of the quadrature rule
is found based on a similar sparse grid rule. In the following sections, we describe in
more detail some novel augmentations of this algorithm that are required to solve our
multilevel approximation problem.

4.2. Fixed-M DQ. As described in section 4.1, in the standard use of DQ
results, the size of the quadrature rule M is not determined a priori, and only the index
set is provided to the algorithm. However, in this paper we use the DQ framework in a
slightly different setting: our goal is to develop quadrature rules for a fixed M . Hence,
we instead start the DQ optimization with a fixed number of points M and an initial
index set of initial cardinality |Λ|. We then gradually decrease the cardinality of the
index set until the residual tolerance δ is met (or if the tolerance is already met, we
attempt to increase the size of Λ.). In other words, instead of increasing M to achieve
quadrature accuracy, we instead choose as large a Λ as possible based on the accuracy
afforded by M points. Note that we utilize the same termination criterion: the
optimization successfully terminates when Λ is small enough to guarantee ‖R‖ ≤ δ.

Empirically, we observe that the DQ algorithm always successfully terminates, al-
though we cannot prove this. In particular, there is a strong theoretical underpinning
for why the DQ should always successfully terminate once the size of Λ is decreased
to |Λ| = M : due to Tchakaloff’s theorem, given any multi-index set Λ, there exists a
nonnegative quadrature rule of size at most M = |Λ| that is exact on PΛ [12]. Thus,
during the DQ procedure, if the size of Λ is decreased to the point where |Λ| = M ,
then Tchakaloff’s theorem guarantees that there is some nodal set that satisfies the
residual termination criterion in DQ. However, this does not guarantee that the algo-
rithm is able to find such nodes (since the optimization is nonconvex). However, in
all of our experiments, DQ successfully terminates with |Λ| > M .

The next sections describe precisely how we determine an initial index set, how
we increase/decrease the index set Λ to achieve termination of the algorithm, and
what accuracy guarantees are possible from this procedure.

We emphasize that the version of DQ described below can generate quadrature
rules for any prescribed nodal count M in any dimension. It does so by allowing an
unstructured nodal distribution. In alternative sampling approaches, such as sparse
grids that have structured nodal distributions, the number of nodes M is not di-
rectly controllable; we will see that the flexibility afforded by DQ allows us to achieve
substantial savings in computational cost.

4.2.1. Generating an initial Λ. The DQ algorithm is an iterative optimization
algorithm wherein Λ is shrunk or enlarged as iterations progress. We must prescribe
how initialization of the index set Λ is accomplished. We make two assumptions that
facilitate our initial guess: First we assume some a priori knowledge of a sequence of
nested downward-closed multi-index sets {ΛTp }p≥0, ΛTp ⊂ Λp+1. We do not perform
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A1420 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

an approximation with these index sets; they are used in a training procedure to
identify index sets for approximation. Two examples of such index sets are the total
degree and hyperbolic cross index sets,

ΛTp = ΛTD
p :=

{
λ∈NN0

∣∣ |λ| ≤ p
}
, ΛTp = ΛHC

p :=
{
λ∈NN0

∣∣ | log(λ+1)|≤ log(1+p)
}
,

(12)

where both λ+1 and log λ are elementwise operations. The specification of what kinds
of index sets ΛTp should be, is problem-dependent; for example, one could choose di-
mensionally anisotropic versions of the sets above if one has knowledge that some
parameters are unimportant. In all our examples, we will choose ΛTp as either (iso-
tropic) total degree or hyperbolic cross sets.

The second assumption we make is that the Euclidean parameters y = (y1, . . . , yN )
are sorted based on importance with respect to influence on the output u, i.e., that
yj has a stronger impact on u than yj+1.

With these two assumptions, our initial guess proceeds as follows: In an “offline”
stage, we use the standard DQ algorithm outlined in section 4.1 with input training
index set ΛTp to output a set of MT

p nodes. We repeat this for p = 0, 1, . . . , P , where P

is some chosen maximum level. The result is a set of data points (MT
p , |ΛTp |)Pp=0 that

relate the DQ nodal count to the cardinality of the associated index sets. Then, in the
“online” stage with M the fixed number of nodes required from the DQ procedure of
this section, we can use an interpolation scheme to approximate an associated index
set size |Λ| = |Λ|(M). See Figure 1 for a visual depiction of this procedure.

We can now generate an index set cardinality; to generate the actual index set, we
compute the smallest index set Λp∗ whose size is at least |Λ|, and identify our output
index set Λ the first |Λ| indices from Λp∗ sorted by total-degree-graded lexicographic
ordering. In other words, we identify the number p∗ = p∗(M) defined as

p∗(M) = min
{
p
∣∣MT

p ≥M
}
.(13)

We next take the indices in the index set ΛTp∗ , order them via lexicographic order-
ing graded by total degree, and define Λ as the first |Λ| indices in this ordered set.
Note that our choice of sorting by lexicographic ordering is motivated by our second
assumption above that orders parameters in the vector y by importance.

M

|Λ|

M∗

|Λ|∗

Fig. 1. Determining the index set cardinality |Λ|∗ corresponding to a given M∗. Black circles
indicate the previously generated data. Unlike sparse grids, DQ can be generated for any |Λ|∗ due
to its flexibility.
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MULTILEVEL DESIGNED QUADRATURE A1421

4.2.2. Adding or removing indices from Λ during optimization. At any
iteration in the DQ procedure, if the desired moment-matching residual achieves the
specified tolerance, we add a multi-index to Λ. If the residual violates the tolerance
criterion, we remove a multi-index from the set. The setup described in section 4.2.1
provides the methodology for how to add or remove multi-indices.

The removal of multi-indices proceeds by ordering the indices in Λ via graded
lexicographic ordering and removing the last index from this ordered set. To add a
multi-index, we recall that ΛTp∗ , with p∗ as determined in (13), identifies a multi-index

set (sorted with graded lexicographic ordering) where Λ is the first |Λ| entries in ΛTp∗ .
To add a multi-index to Λ, we simply append the next multi-index from the sorted
list ΛTp∗ .

4.2.3. DQ accuracy. Upon successful termination of the DQ algorithm, the
tolerance δ provides an error estimate for the quadrature rule.

Lemma 4.1 (Proposition 2.5 of [27]). Let Λ be the multi-index set resulting from
successful termination of the DQ procedure with M quadrature points. If the stopping
criterion uses the tolerance δ, then for any f ∈ L2

ρ(Γ) ∩ C(Γ),

∣∣∣∣∣

∫
f(y)ρ(y)dy −

M∑

m=1

wmf(ym)

∣∣∣∣∣ ≤ δ‖f‖L2
ρ(Γ) + (1 + δ) max

m=1,...,M
|f(ym)− f∗(ym)| ,

where f∗ is the best L2
ρ(Γ) approximation to f from PΛ:

f∗ = argmin
p∈PΛ

‖f − p‖L2
ρ(Γ) .

Since δ is frequently chosen as a small tolerance, the dominating term in the
estimate above is the pointwise discrepancy between f and f∗ on the quadrature
nodes.

To end this section, we extend Lemma 4.1 to apply to H1
0 (D)-valued functions.

Lemma 4.2. Let Λ be the multi-index set resulting from successful termination
of the DQ procedure with M quadrature points. If the stopping criterion uses the
tolerance δ, then for any f ∈ L2

ρ(Γ;H1
0 (D)) ∩ C(Γ;H1

0 (D)),

∥∥∥∥∥

∫
f(y)ρ(y)dy −

M∑

m=1

wmf(ym)

∥∥∥∥∥
H1

0 (D)

≤ δ‖f‖L2
ρ(Γ;H1

0 (D)+(1+δ)‖f−f∗‖C(Γ;H1
0 (D)),

(14)

where f∗ is the L2
ρ(Γ;H1

0 (D))-best approximation of f from H1
0 (D)⊗ PΛ:

f∗ = argmin
p∈H1

0 (D)⊗PΛ

‖f − p‖L2
ρ(Γ;H1

0 (D)).

Proof. The inequality

∥∥∥∥∥

∫
f(y)ρ(y)y −

M∑

m=1

wmf(ym)

∥∥∥∥∥
H1

0 (D)

(15)

≤ δ‖f‖L2
ρ(Γ;H1

0 (D)) + (1 + δ) max
m=1,...,M

‖f(ym)− f∗(ym)‖H1
0 (D)
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can be derived in precisely the same way that Proposition 2.5 of [27] is proven for
scalar-valued functions, so we present the above inequality without proof. Replacing
the maximum over the M quadrature points with the supremum over all Γ results in
(14).

Note that if Γ is unbounded, then the bound on the right-hand side of (14) can
be infinity. This can be rectified by instead using the result (15), which yields a finite
bound, although it can still be large if the quadrature nodes from DQ are very far
away from the origin.

The error estimate above provides evidence that one can expect DQ quadrature
to achieve an error on the order of

inf
p∈H1

0 (D)⊗PΛ

‖f − p‖C(Γ;H1
0 (D)) ,

which is the best approximation error over the polynomial space PΛ. This provides
a link to the theory of best polynomial approximation discussed in section 2.2. For
the root-exponential error estimate in (5), if the Λ in DQ is chosen as the size-n set
Λn in (5), then application of this estimate in (14) and utilizing the fact that ρ is a
probability density yield the DQ accuracy estimate,

∥∥∥∥∥

∫
f(y)ρ(y)dy −

M∑

m=1

wmf(ym)

∥∥∥∥∥
H1

0 (D)

≤ Cn−q +O(δ),(16)

with C and q as in (6). Thus, for small DQ tolerances, we should observe an algebraic
rate of convergence. This in particular can be used for estimating the multilevel
stochastic error discussed in section 3.2. Recall from section 4.2 that we observe
empirically that DQ always terminates with M < |Λ|. Taking Λ = Λn, (16) becomes

∥∥∥∥∥

∫
f(y)ρ(y)dy −

M∑

m=1

wmf(ym)

∥∥∥∥∥
H1

0 (D)

= CM−q +O(δ),(17)

which is a concrete estimate that can be used to certify the assumption (9). Therefore,
for small DQ tolerances we expect the convergence rate r to be equal to q.

4.3. Multilevel DQ. We use DQ to define the stochastic approximation oper-
ators Si defined in section 3.2. With this definition, the multilevel DQ estimator for
Eu is given by (10).

The values {Mi}Li=0 are assumed known for now, and we will specify them pre-
cisely in the next section via a budget-oriented approach. Then given some value Mi,
we used the (modified) DQ procedure in section 4.2 to compute a multi-index set Λi
and DQ nodes and weights (yi,m, wi,m)Mi

m=1, which define our parametric approxima-
tion operators,

Si(f) :=

M∑

m=1

wi,mf (yi,m) .(18)

Under successful termination of the DQ algorithm with tolerance parameter δ, for
each i ∈ {0, . . . L}, these rules satisfy

∣∣∣∣Si(p)−
∫

Γ

p(y)ρ(y)dy

∣∣∣∣ ≤ δ‖p‖L2
ρ(Γ), p ∈ PΛi .

Note that the index sets {Λi}i≥0 are implicitly defined by the quadrature rule. There-
fore, we do not know these index sets until the DQ computation is completed.

D
ow

nl
oa

de
d 

02
/1

1/
22

 to
 1

28
.1

10
.1

84
.5

5 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTILEVEL DESIGNED QUADRATURE A1423

5. Multilevel budget optimization. The main purpose of this section is to
describe how the number of samples at each level {Mi}Li=0, is chosen. Using estimates
for the computational cost associated with each level along with the accuracy of the
quadrature rules allows us to formulate a convex optimization problem where the Mi

appear as the design variables. Furthermore, we provide an analytic solution for this
optimization problem.

5.1. Cost and accuracy estimate. We first provide an estimate for the total
multilevel error ε = ‖Eu − ũL‖H1

0 (D). We mimic the strategy from [31], which uses
the triangle inequality along with estimates for the spatial and stochastic errors,

ε := ‖Eu− ũL‖H1
0 (D) ≤ ‖Eu− EuL‖H1

0 (D) + ‖EuL − ũL‖H1
0 (D),(19)

where in what follows we will denote ‖Eu−EuL‖H1
0 (D) = εH and ‖EuL− ũL‖H1

0 (D) =
εS as the spatial and stochastic error.

The assumption (7) along with Jensen’s inequality can be used to bound the
spatial error:

εH = ‖Eu− EuL‖H1
0 (D) ≤ E‖u− uL‖H1

0 (D) ≤ CHhαL.(20)

The stochastic error can also be bounded using the definition of multilevel approxi-
mation and another application of the triangle inequality,

εS = ‖EuL − ũL‖H1
0 (D) =

∥∥∥∥∥
L∑

i=0

E(ui − ui−1)− SML−i(ui − ui−1)

∥∥∥∥∥
H1

0 (D)

≤
L∑

i=0

‖E(ui − ui−1)− SML−i(ui − ui−1)‖H1
0 (D)

≤
L∑

i=0

CSHM
−r
L−ih

β
i ,

(21)

where we define CSH = CSCH. We will primarily be interested in this latter bound
εS for the stochastic error, and it will serve as either an objective or constraint in our
optimization.

In multilevel approaches at each level, two deterministic PDE solves per each
sample are needed. We assume a bound for computing ui − ui−1, i.e., the difference
between deterministic solutions associated with hi and hi−1, on the cost denoted by
Ci in the form of

Ci ≤ CCh−γi
for some constant CC that depends on the refinement ratio η; cf. section 3.1. In this
work we assume uniform refinement across levels, and we set CC = 1 in our analysis.
The rate γ reflects how the computational cost of the spatial solver depends on the
mesh parameter hi. For finite element computations, this generally depends on the
spatial dimension and the order of the finite element shape functions. For efficient
linear solvers with near-linear complexity, the rate γ is close to the spatial dimension
d, and we therefore use γ = 2 for our two-dimensional examples. The total multilevel
cost estimate C̃ is then given by

C̃ =

L∑

i=0

CCML−ih
−γ
i .(22)
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A1424 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

The total cost C̃ and the stochastic error εS will enter into our optimization
problem. The number of required levels L cannot be determined from the optimization
problem alone unless a ratio between the spatial and stochastic error is assumed [31].
In this paper we first fix the number of levels L and compute the spatial error from
the estimate (7) to find the portion of spatial error that contributes to the total error.
That is, we define the convex weight w so that εH = wε and εS = (1 − w)ε. The
bound (20) can be used to compute a formula for the convex weight w:

w =
CHh0η

−Lα

ε
.(23)

This formula for w will be useful for the next section where we formulate the op-
timization problem that determines the nodal counts {Mi}Li=0 and show that, for a
fixed maximum number of levels L, it is convex; furthermore, we provide an analytical
formula for the solution.

5.2. Budget optimization. From the discussion and the formulas in the pre-
vious section, we can define a total cost gc that is a function of M = [M0, . . . ML]T ,

gc(M) =

L∑

i=0

aiMi, ai = CCh0η
(L−i)γ .(24a)

In a similar way, the estimated error ge of the stochastic component of the multilevel
procedure is

ge(M) =

L∑

i=0

biM
−r
i , bi = CSHh0η

(L−i)β .(24b)

Then, given some desired total error tolerance level ε, one optimization problem min-
imizes the cost gc subject to achieving the desired error:

min
M

gc(M) subject to ge(M) = (1− w)ε.(25)

Alternatively, given a desired computational cost C̄, we could minimize the error:

min
M

ge(M) subject to gc(M) = C̄.(26)

The feasible set for the design variables M in these optimization problems is
RL+1

+ , where R+ = [0,∞). Thus, the feasible set is convex. The function gc is convex
since it is linear, and since x 7→ xp is convex for p < 0, then ge is also a convex
function since r > 0.

We conclude that both optimization problems (25) and (26) are convex problems
and hence both have unique solutions. We next present an analytical formula for
the solution to this problem, which specifies the number of quadrature points at each
level.

Proposition 5.1. Let the coefficients ai, bi be given by (24). With λ∗ the dual
variable (Lagrange multiplier), the optimal number of points M∗i given by the solution
to the accuracy-constrained optimization problem (25) is
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MULTILEVEL DESIGNED QUADRATURE A1425

M∗i =

[
ai

rλ∗bi

]( −1
r+1 )

, λ∗ =




(1− w)ε
L∑

i=0

bi

(
ai
rbi

)( r
r+1 )




( r+1
−r )

.(27)

Similarly, the optimal number of points and the dual variable for the cost-constrained
optimization problem (26) are

M∗i =

[
λ∗ai
rbi

]( −1
r+1 )

, λ∗ =




C̄
L∑

i=0

ai

(
ai
rbi

)( −1
r+1 )




(−r−1)

.(28)

Proof. We show the proof for (25). A solution M∗ is optimal for (25) if and only
if there is a λ∗ ∈ R such that

ge(M
∗) = (1− w)ε (primal feasibility),

∇gc(M∗) + λ∗∇ge(M∗) = 0 (dual feasibility).

Solving the equality constrain problem is equivalent to finding a solution to these
Karush–Kuhn–Tucker equations in L + 2 variables M∗, λ∗. From dual feasibility
equations, we find

ai + λ∗
(
−rbiM−r−1

i

)
= 0,

M−r−1
i =

ai
λ∗rbi

, i = 0, . . . , L,

which yields the formula for M∗i in (27). Using the above equations in the primal
feasibility equations, we find the scalar λ∗ from

λ∗(
−r
r+1 )

L∑

i=0

bi

(
ai
rbi

)( r
r+1 )

= (1− w)ε

which readily yields the formula for λ∗ in (27). The solution for error minimization
subject to cost constraints is obtained in a similar manner.

We remark that either of these optimization problems can be solved for a fixed
L and w. For application to our multilevel problem, in an outer loop we solve one
of these problems, say (25), for many choices of number of levels L, which results in
several optimal costs. We then choose the value of L that results in the smallest cost.1

Algorithm 1 summarizes our numerical method for multilevel DQ, including the
steps in sections 5.1–5.2.

The formulas described above allow us, in the case of the accuracy-constrained
optimization (25), to determine the total cost required to achieve a given accuracy
ε. Analogously, we can compute the achievable accuracy for the cost-constrained
optimization (26) given a fixed cost budget C̄.

1For the problem of optimization over L and w, the interested readers are referred to [22], in
which the authors perform a general optimization of the parameters in the multilevel Monte Carlo
setting.
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Algorithm 1. Multilevel Designed Quadrature (MLDQ)

1: Specify parameters α, β, r and CH, CSH from an offline analysis
2: Compute w for different choices of level L
3: Compute the optimization parameters ai and bi; cf. (24a) and (24b)
4: Solve the optimization problem for different choices of L
5: Select the optimal number of levels based on the smallest cost (or error) and use

the corresponding rounded half-up d b2Mic
2 e where d.e and b.c are ceiling and floor

functions for number of nodes at each level
6: Design quadrature for {Mi}Li=0 points in N dimensions using the discussion for

fixed-M DQ; cf. section 4.2
7: Estimate the actual cost and error (with respect to the most accurate parametric

solution, i.e., finest mesh and largest size quadrature rule)

Corollary 5.1. Consider the setup of Proposition 5.1. Then given a com-
putational budget (cost), C̄, the MLDQ procedure, Algorithm 1, utilizing the cost-
constrained optimization (26) and its associated solution (28), commits an error
bounded as

‖Eu− ũL‖H1
0 (D) ≤ C̄−r (h0CSHC)

r+1

[
νL+1 − 1

ν − 1

]r+1

,(29)

where

CSHC := C
1
r+1

SH C
r
r+1

C , ν := η[ γr+βr+1 ] > 1.

In addition, given a desired accuracy ε in the MLDQ procedure, then Algorithm 1,
utilizing the accuracy-constrained optimization (25) and its associated solution (27),
incurs the total cost,

gc(M
∗) = ε

−1/r
S (h0CSHC)

(r+1)/r

[
νL+1 − 1

ν − 1

](r+1)/r

.(30)

Proof. The result (29) is deducible from a direct manipulation of ge(M
∗) with

M∗ as in (28). To prove (30), a similar manipulation of gc(M
∗) with M∗ as in (27)

results in the equality

gc(M
∗) = [(1− w)ε]−1/r (h0CSHC)

(r+1)/r

[
νL+1 − 1

ν − 1

](r+1)/r

.

Replacing (1 − w)ε with εS results in (30). Numerical verification of these estimates
is provided in section 6.

According to (30), the cost scales like ε−1/r and hence large r, increases the
efficiency of the method. The error bound (29) scales like C̄−r, so that increased
computational investment (increased C̄) results in rate-r algebraic error decay, show-
ing that this method is efficient if r is large. In both cases, large r is beneficial, which
corresponds to designing accurate quadrature rules.

Remark 5.1. We emphasize that there is a training (or offline) cost to the DQ
approach in this paper. This cost is pertinent to estimating the initial size of the index
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set, which involves designing quadrature for some known index sets as described in sec-
tion 4.2.1. We also note that using the MLDQ approach involves another offline cost.
In particular, the key optimization parameters in this approach, i.e., α, β, r, CH, CSH,
are obtained from an offline analysis, which considers multiple spatial meshes as well
as quadrature rules to evaluate the convergence rate for spatial and stochastic approx-
imations. Details of computation for these parameters are provided in section 6.1.1.

6. Numerical examples.

6.1. Linear elasticity. We consider a linear elastic structure shown in Figure 2
to compute the statistics of the displacement within the domain. To find the displace-
ment, we solve the equations governing linear elasticity ∇ ·σ+ f = 0, where σ is the
stress tensor and ∇· is the divergence operator. This results in a linear elliptic PDE
for the displacement u that has the form (2) and, with the notation in this section,
reads −∇ · (E(y,x)∇u) = f , where E(y,x) is the elastic modulus that is considered
as a random field whose centered logarithm is parameterized by a Karhunen–Loéve
expansion,

E(y,x) = E0(x) + exp

[
N∑

i=1

√
λiEi(x)yi(ω)

]
.(31)

Note that this example does not fall into the framework where the theory of section
2.1 applies. Nevertheless, the multilevel DQ algorithm can be applied to this kind of
parameterized problem.

In this example the random variables are uniform yi ∼ U [−1, 1], and the eigen-
values λi and basis functions Ei are taken as those for an exponential kernel C(x,x′)
on D = [0, 1]2. For the 1D case with D = [0, 1] we have [31]

C(x,x′) = exp(−‖x− x′‖1), λ1D
i =

2

κ2
i + 1

, b1Di = Ai(sin(κix) + wi cos(κix)),

︸︷︷︸
h

Fig. 2. Linear elastic structure with varying size mesh. The quantity of interest is the displace-
ment of the point indicated with the black dot.

D
ow

nl
oa

de
d 

02
/1

1/
22

 to
 1

28
.1

10
.1

84
.5

5 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1428 V. KESHAVARZZADEH, R. M. KIRBY, AND A. NARAYAN

where κi are the positive ordered solutions to

tan(κ) =
2κ

κ2 − 1
.

We make the approximation κi ≈ iπ, which is the asymptotic behavior of these
solutions. Using this approximation for κi, we then consider a two-dimensional domain
D = [0, 1]2 with eigenpairs

λi = λ1D
ij λ

1D
ik
, Ei = b1Dij ⊗ b1Dik for some ij , ik ∈ N,(32)

where
⊗

is the tensor product. We assume a constant centered elastic modulus

E0 = 3 and consider the norm of two-dimensional (2D) displacement (u =
√
u2
x + u2

y)

at a point in the middle of the domain, q = u(x0), with x0 indicated by the position
of the black dot in the figure, as the quantity of interest. We also consider total
order polynomial index sets ΛTj = ΛTD

j for performing our DQ training as described

in section 4.2, resulting in MT
j nodes for each quadrature rule.

In this example we will consider N = 2 and N = 10 dimensional problems. The
selection of bases is based on the magnitude of the eigenvalues in two dimensions;
cf. (32). We compute a large number of 2D eigenvalues and sort them based on
their magnitude; we then choose first N = 2 and N = 10 eigenvalues and their
corresponding eigenvectors to include in the Karhunen–Loéve expansion; cf. (31).

The finite element analysis of the linear elastic structure shown in Figure 2 is
performed using part of the standard code for topology optimization [2]. Assuming a
unit length for the dimensions of the square structure and providing the mesh size h,
the analysis is performed with 1/h× 1/h bilinear square isotropic finite elements.

6.1.1. N=2 dimensions. In an offline step, we approximate the constants α, β,
and r. To that end we consider a hierarchy of meshes h0 = 1

4 and hi = h02−i for
i = 1, . . . , 7. In order to estimate the desired constants, we utilize a very accurate
parametric DQ rule SM↑ , which integrates on the polynomial space Λ = ΛTD

17 , resulting
in M↑ = 93 nodes. We will also need a relatively inaccurate quadrature DQ rule SM↓ ,
which uses M↓ = 3 quadrature points associated with the index set ΛTD

2 .
We estimate α by varying mesh size (the index i) and using a fixed high-order

quadrature rule, denoted by SM↑ . The parameter β is obtained by varying the mesh
size in the difference of uhi − uhi+1

using the fixed accurate rule SM↑ and relatively
inaccurate rule SM↓ order quadrature, and parameter r is obtained by varying the
quadrature order. The following steps summarize the estimation of the parameters
(α, β, r, CH, CSH):

• α,CH: These constants are defined by (7), so we inspect the slope of the

graph of
√
SM↑ (u7(x0)− ui(x0))

2
versus hi for i = 0, . . . , 6 on a log scale for

both axes to obtain r. The constant CH is also obtained as the multiplicative
coefficient associated with the fitted line. See Figure 3, left.

• β: Combining (9) and (8) and knowing CSH = CSCH, we have

∣∣∣E(ui(x0)− ui−1(x0))− SMT
j

(ui(x0)− ui−1(x0))
∣∣∣ ≤ CSH

(
MT
j

)−r
hβi .(33)

We use our refined quadrature rule SM↑ to emulate the expectation E, and
for identification of β replace SMT

j
= SM↓ . Then, by varying the index i, we

expect behavior of the form
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Fig. 3. Identification of constants α = 1.7, CH = 7.42, β = 1.87, CSH = 146.21, and r = 9.17
for N = 2 stochastic variables.

∣∣SM↑(ui(x0)− ui−1(x0))− SM↓(ui(x0)− ui−1(x0))
∣∣ . hβi ,

from which we can compute an estimate of β by plotting the left-hand side
versus hi on a logarithmic plot. This is done in Figure 3, center (blue curve).

• r, CSH: Another experiment from the estimate (33) is to fix i, resulting in the
estimate

1

hβi

∣∣∣E(ui(x0)− ui−1(x0))− SMT
j

(ui(x0)− ui−1(x0))
∣∣∣ ≤ CSH(MT

j )−r.

Similarly, using the first assumption in (8) (associated with h0) yields

1

hβ0

∣∣∣Eui(x0)− SMT
j
ui(x0)

∣∣∣ ≤ CSH(MT
j )−r.

Since β is already computed, the above estimates result in a strategy to
approximate r and CSH by varying j. These experiments are run for two
values of i in Figure 3, right. In addition, we can verify the assumption in (8)
that H(ui) is bounded independent of i, which is verified in Figure 3, center
(black curve).

Figure 3 is an experimental summary of the above parameter estimation and also
lists the values of the computed constants for this example. To find the dashed lines
in the plots (regression lines), we perform a least square regression on the data points
in each plot. The following spatial approximations are used in the first two plots (left
and middle panes):

• Left pane: uh ∈ {u 1
4
, u 1

8
, . . . , u 1

256
}.

• Middle pane (black curve): uh ∈ {u 1
4
, u 1

8
, . . . , u 1

512
}.

• Middle pane (blue curve): uh − u2h ∈ {u 1
8
− u 1

4
, u 1

16
− u 1

8
, . . . , u 1

512
− u 1

256
}.

We now investigate the solution of the budget optimization problem introduced
in section 5.2. We solve the optimization problem numerically with built-in MATLAB
functions with 100 randomized initial guesses. We fix L = 4 and ε = 0.01, which yields
w = 0.63. The objective and constraint functions for one of the numerical solutions
(with random initial guess) are C̃ = 672.7702 and ge − (1 − w)ε = 1.82 × 10−09,
respectively, whereas the exact analytical values are C̃ = 672.7701 and ge−(1−w)ε =
4.33 × 10−19. It is apparent that the analytical values are in satisfactory agreement
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with the numerical optimization values. It is also worthwhile to scrutinize the estimate
values of the computational cost in this example. This particular value is obtained by
using (22) and knowing the number of nodes ML−i at each level as well as the mesh
sizes hi. Since L = 4 levels are used in this example, the computational cost involves
the mesh sizes {h0 = 1

4 , h1 = 1
8 , . . . , h4 = 1

64}. The mesh sizes are fixed throughout
the examples, but the number of points for different levels in each example is different
which gives rise to different estimates for computational cost.

With the solution to the optimization problem, we can investigate the multilevel
cost associated with different levels L for each fixed error tolerance ε, which is shown
in Figure 4, left. We choose 20 equispaced values of ε on the interval [10−3, 10−1],
which yields 20 curves that are plotted. It is evident that for each ε, the smallest L
yields the minimum cost, but for some values of ε, one cannot achieve the required
tolerance without L > 1. On the right pane of Figure 4, we show the the smallest total
cost that can be achieved for the prescribed tolerance. It is noted that in all cases
(of prescribed ε), the smallest cost is associated with the smallest level. This log-log
figure also shows that as the prescribed error increases, the theoretical cost decreases
almost linearly. In the case of actual cost versus error, however, the growth of cost as
a function of error is not always linear (in the log-log scale); e.g., see Figure 6.

2 3 4 5 6 7

L

0

0.5

1
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3

3.5
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10
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10
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11000

10
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0.22

0.24
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0.28

0.3

0.32

0.34

Fig. 4. Optimal cost with respect to the number of levels (top-left), optimal cost versus total
error for varying L (top-right), cost versus error for a fixed L = 6 (bottom-left), and verification
of Corollary 5.1 with the estimated rate of convergence 1/r = 0.109 matching the rate r = 9.17 in
Figure 3 (bottom-right).
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To verify Corollary 5.1 we perform another experiment: we fix L to a large enough
value (L = 6), which yields w ∈ [0, 1] for all choices of ε (cf. (23)) and compute the
theoretical estimates for cost from (24a) and (27). We then normalize this theoretical
cost by dividing by the second and third multiplicative terms in the right-hand side
of (30) to find the normalized cost C̃norm, i.e.,

C̃norm =
gc(M

∗)

(h0CSHC)
(r+1)/r

[
νL+1−1
ν−1

](r+1)/r
.(34)

The bottom left pane in Figure 4 shows the theoretical cost with fixed L against the
error, and the bottom right pane shows the normalized cost C̃norm versus error, which
is a straight line with the negative slope 1/r in the log-log scale verifying the result
in Corollary 5.1.

For the case L = 6 and ε = 0.001, which corresponds to C̃ = 1.038 × 104,
the optimal number of points is M = {1.36, 1.78, 2.32, 3.02, 3.94, 5.14, 6.85}. We
round these numbers to M = {1, 2, 2, 3, 4, 5, 7}, which requires the generation of
(1, 2, 3, 4, 5, 7)-point rules in N = 2 dimensions. To generate the DQ training data,
we generate quadrature rules associated with total degree sets, Λ = ΛTD

p , and fit a
|Λ| versus M curve, which is shown in Figure 5, left (black curve). From this, we can
generate initial guesses for the index set Λ and perform fixed-M DQ, which results
in actual M -point quadrature rules for any value of M . The cardinality of these
actual DQ quadrature rules is shown in Figure 5, left (blue curve). An example of an
M = 5-point rule is shown in the right pane of Figure 5, having a DQ index set size
of |Λ| = 14 and a DQ residual of δ = ‖R‖ = 4.72× 10−12.

The actual error can now be computed for different prescribed values of error
tolerances ε using the multilevel DQ strategy. Figure 6 shows the actual error using
the MLDQ strategy and compares it with a stochastic approximation on just the
finest mesh. The true solution is a refined estimator computed with SM↑ and h = h7.
It is apparent that the MLDQ achieves the same magnitude of error at a much lower
cost compared to the single level of fine mesh approximation.

We note that MLDQ always outperforms DQ and achieves higher accuracies with
less computational effort. However, in situations in which the maximum value of L is
restricted, the performance of MLDQ approaches that of DQ, as we observe in Figure 6

-1 -0.5 0 0.5 1

x
(1)

-1

-0.5
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0.5
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x
(2
)

0 2 4 6 8 10 12
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40
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|
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13.48
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Fig. 5. Finding the size of index set from the number of points (left); DQ for M = 5, N = 2.
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Fig. 6. Actual cost versus error for MLDQ and DQ with the finest mesh h = 1/512. The black
horizontal lines connects the actual error to the prescribed ε in the optimization problem.

when the error tolerance is decreased below 10−5 (in this experiment the maximum
L allowed is 6). The same behavior occurs when comparing standard Monte Carlo
with a multilevel Monte Carlo method with the same level restriction and is expected:
in this case the weight w changes so as to address all computational efforts towards
reducing the statistical error (since the discretization error is fixed for fixed L), and
many more samples/points are needed on all levels. The consequence is that in this
scenario multilevel methods effectively start acting as single-level methods.

Remark 6.1. As mentioned previously, the error achieved by the MLDQ proce-
dure with a prescribed accuracy (as described in section 5) is influenced by the spatial
approximation error. In theory the method can achieve any small errors, as shown
in Table 1. In practice, however, depending on the convergence rate of the spatial
approximation, i.e., α (cf. (7)) and the number of levels L, different estimates are
obtained for w which indicates the weight (or contribution) of spatial error in the
total error. The weight w must be within a range [0, 1] in our analysis. For smaller
ε’s and a fixed spatial convergence rate, one should increase L to achieve w ∈ [0, 1],
but this is not always possible in practice. To investigate what happens in this case,
we fixed L = 6 in Figure 6.
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Fig. 7. Identification of constants α = 1.7, CH = 2.01, β = 1.91, CSH = 0.074, and r = 2.08
for N = 10 stochastic variables.

6.1.2. N=10 dimensions. We use the same problem setting and setup but with
a higher number of parameters, N = 10. Similarly to Figure 3, we find the constants
(α, β, r, CH, CSH) that we use in the optimization problem; cf. Figure 7. As in the
previous example, we use the following spatial approximations in the first two panes
in this figure:

• Left pane: uh ∈ {u 1
4
, u 1

8
, . . . , u 1

256
}.

• Middle pane (black curve): uh ∈ {u 1
8
, . . . , u 1

512
}.

• Middle pane (blue curve): uh − u2h ∈ {u 1
16
− u 1

8
, . . . , u 1

512
− u 1

256
}.

We observe that the rate r of error decay with respect to the number of samples is
significantly smaller compared to the previous example. We investigate the difference
between the two optimization results in section 5.2: we can minimize the cost C̃
subject to an accuracy tolerance certification ε (as done in the previous example), or
we can minimize the accuracy ε subject to a given cost budget C̃. The result of these
optimizations is shown in Figure 8. Figure 8 also shows the results associated with the
verification of Corollary 5.1 for both optimization scenarios. The slopes of regression
lines are obtained as 1/r = 0.48 and r = 2.08, as expected from Corollary 5.1. Note
that the normalized error εnorm is obtained in a similar manner as C̃norm (cf. (34)) by
normalizing ge(M

∗) with the second and third terms in the right-hand side of (29),
i.e.,

enorm =
ge(M

∗)

(h0CSHC)
r+1

[
νL+1−1
ν−1

]r+1 .(35)

We compute the actual error after finding the optimal number of points for both
cases of optimization in Figure 8. We computed the error against the most accurate
solution, which is obtained with the finest mesh and sparse grid nodes for a high
order. In particular, we use an M = 5281 sparse grid rule to find the true solution
and use a smaller number of sparse grid nodes to obtain the curves associated with the
sparse grid; cf. Figure 9. The sparse grid nodes are taken from [24, 25]. In particular,
we use the 10-dimensional rule which considers the Kronrod–Patterson nested rule as
the underlying univariate quadrature. This particular type of sparse grid is already
computed and tabulated in [24] and is denoted by “KPU” (i.e., Kronrod–Patterson
rule in conjunction with uniform weight). Results associated with sparse grids in
Figure 9 (red curves) are obtained with (1, 2, 201, 1201)-point rules, which correspond
to total order polynomials (1, 3, 5, 7). The sparse grid nodes yield higher costs for
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Fig. 8. Cost versus error for two optimization problems: minimize C̃ subject to ε (top-left);
minimize ε subject to C̃ (top-right). In the left figure, 20 values for error constraint are considered in
the range ε ∈ [10−4, 10−2]. Similarly, in the right figure, 20 values for cost constraint are considered
in the range C̃ ∈ [102, 104]. Verification of Corollary 5.1 with the estimated rate of convergence
1/r = 0.48 and r = 2.08 for both scenarios of cost and error minimization subject to error and cost
constraints (bottom row). The estimated rate of convergence matches the rate r = 2.08 in Figure 7.

the same error or larger error for the same cost. It is also again observed that the
MLDQ strategy is more efficient than the single-level DQ (with the finest mesh)
and the sparse grid. Another observation in these results associated with the higher
dimension example is the sublinear growth of actual cost as a function of error in the
log-log scale. The same behavior is also observed in the 100-dimension example in
the next section; see Figure 13.

Finally in this example, to better demonstrate the effectiveness of the MLDQ
approach over other multilevel approaches that consider other quadrature rules, e.g.,
sparse grids, we compute the number of samples needed for MLDQ at each level
and compare them with the number of points that can be selected from sparse grids.
Results for different prescribed accuracies are listed in Table 1. As the number of levels
increases, more points are needed, and that adversely affects the multilevel stochastic
collocation (MLSC) approach, which uses sparse grids for stochastic computations.

To find the number of points associated with MLSC in Table 1, we perform
the cost minimization subject to error constraint to find the number of points for the
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Fig. 9. Actual cost versus error for two optimization problems: minimize C̃ subject to ε (left);
minimize ε subject to C̃ (right). Results are compared with the finest mesh and different levels of
quadrature accuracy for both DQ and sparse grids (SG).

Table 1
Number of samples needed at each level for various prescribed accuracies for MLDQ and MLSC.

MLDQ, i 0 1 2 3 4 5 6 7 8 9 10 11

ε = 10−2 3 1 1 1
ε = 10−4 85 33 14 6 2 1 1 1
ε = 10−6 1988 767 318 132 55 23 9 4 2 1 1 1

MLSC, i 0 1 2 3 4 5 6 7 8 9 10 11

ε = 10−2 21 1 1 1
ε = 10−4 201 201 21 21 21 1 1 1
ε = 10−6 5281 1201 1201 201 201 201 21 21 21 1 1 1

MLDQ approach; cf. (27). We then round up this number to the next available sparse
grids rule size from [24]. In this way the number of points is expectedly much larger
than the DQ rule; however, the larger number of points can potentially yield more
accuracy. To investigate cost versus accuracy for the MLSC approach, we compute
the actual cost and error in the same manner we have done for MLDQ. To this end,
we consider the number of points associated with the scenario with least error (and
highest cost) and gradually add to the number of points associated with the finest
mesh similarly to what we explained in the first numerical example and the results
in Figure 6. There is a major difference in the way we compute the cost for MLSC.
MLSC uses sparse grid points that are nested across levels. Therefore, the actual cost
of computing ui − ui−1 on an effectively nested set of points; e.g., the 21-point rule
does not consider the cost of computing ui−1 since those computations are already
performed for the coarser level with a larger set of nodes (parent nodes), e.g., 201-
point rule. The actual cost versus error data points for MLSC are also included in
Figure 9. We observe that the rate of growth in cost with respect to error decrease
is similar for both MLDQ and MLSC. However, the data points in these plots show
smaller error and higher cost for the MLSC approach, which uses a larger number of
points at the highest level.

6.2. Heat diffusion equation. In this example we consider the problem of heat
distribution that is described with a linear elliptic PDE in the form of (2); however, the
diffusion coefficient a does not have the form (3), and instead its logarithm is affine
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Fig. 10. The finite element discretization for the heat diffusion equation: coarsest mesh (left),
finest mesh (right). The quantity of interest is the temperature at the point indicated with the red
circle.

in the parameters y, which can be unbounded, e.g., modeled as Gaussian random
variables. Problems with such types of diffusion coefficients are outside the scope of
the theory we have presented in this manuscript (since, e.g., the upper inequality in
(4) is violated), but convergence for similar kinds of schemes on such classes of PDEs
has been studied, e.g., [7]. The spatial domain and its finite element discretization is
shown in Figure 10. We note in particular that due to refinement around the enclosed
circle, these meshes are not nested, and so the finite element spaces Ui introduced
in section 3.1 are not nested. In this case, we cannot directly use the telescoping
setup outlined in that section. Instead of defining interpolation operators between
spaces (as one remedy might be), we define the quantity of interest for this problem
as the solution computed at the location of the red dot in Figure 10, e.g., for some
fixed x∗ ∈ D, qi := ui(x

∗) for i = 0, . . . , L, is a scalar-valued quantity of interest. In
this case, all the formalism of section 3.1 can be applied by replacing ui ∈ Ui with
qi ∈ R. The spatial error still manifests in the error committed by qi relative to
the exact scalar value. Thus, we must still compute the spatial constants β and CH
in section 3.2. Finally, we note that assigning qi = ui(x

∗) requires that we assume
enough regularity for ui so that point evaluation is a bounded functional; in two
dimensions utilizing Sobolev embedding, we therefore require that u ∈ Hs(D) for
some s > 2

2 = 1. This in turn requires f be a bit smoother than H−1 in order to
ensure that u ∈ H1+ε(D).

We assume a constant forcing term f = 1 (which is smooth enough so that
ui(x

∗) is well defined) and constant Dirichlet boundary conditions on the edges of
rectangle, u = 400, and on the circle, u = 273. The finite element analysis in this
example is performed using the Partial Differential Equation Toolbox in MATLAB.
We analyze the domain with triangular meshes that are automatically generated by
the program once the mesh size parameter is specified [1]. We assume a Karhunen–
Loéve expansion for the logarithm of the heat diffusion coefficient, having the same
covariance kernel as the previous problem. In this example we use N = 100 standard
normal Gaussian variables. We note that since our Karhunen–Loéve expansion is on
the logarithm, strict positivity and boundedness of the elliptic coefficients are ensured
with probability 1, and hence the solution exists and is unique almost surely [6].

For this high-dimensional problem, the training DQ rules are associated with
hyperbolic cross index sets ΛTp = ΛHC

p defined in (12); we train on the index sets
associated with p = 2, 3, 5. For example, an M = 109-point DQ rule generated using
the strategy in section 4.2 accurately integrates an index set Λ with |Λ| = 5880.

Similarly to previous examples, we obtain the constants from an offline analysis
that we use in the optimization problem. The identification results are shown in
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Fig. 11. Identification of constants α = 1.19, CH = 0.008, β = 2.31, CSH = 2.7 × 10−5, and
r = 2.27 for the heat diffusion problem with N = 100 stochastic variables.

Figure 11. The formula of successive mesh sizes in this example is hi = {0.5/1.5i}7i=0.
Note that the mesh sizes are reduced by a factor of 1.5. We use the following spatial
approximations in the first two panes in Figure 11:

• Left pane: uh ∈ {uh0 , . . . , uh6}.
• Middle pane (black curve): uh ∈ {uh0 , uh1 , . . . , uh7}.
• Middle pane (blue curve): uh− u1.5h ∈ {uh1

− uh0
, uh2

− uh1
, . . . , uh7

− uh6
}.

The relationship between the optimal cost and prescribed error is shown in Fig-
ure 12. In contrast to the earlier example, in some cases a larger L yields a lower
cost; see top left pane. Given a fixed ε, strategies with lower costs are selected as the
optimal strategy. To verify Corollary 5.1, we fix L = 7 and compute the theoretical
cost estimate similarly to previous examples. The bottom row of Figure 12 shows the
theoretical cost with fixed L versus error (left pane) and the regression line for the
normalized cost C̃norm versus error (right pane) with 1/r = 0.44, which matches the
rate of convergence r = 2.27 in Figure 11.

After finding the optimal number of points for each level, we compute the actual
error, which is shown in Figure 13. In this example we compute the actual error
against quasi-Monte Carlo rules since sparse grid rules yield a much larger number of
points. In particular, we use an M = 8192-point quasi-Monte Carlo rule generated via
a Sobol’ sequence to compute the true solution. To this end we use the Sobol’ point
generator in MATLAB to generate a 100-dimensional Sobol’ point sequence. We use
M = {2i}10

i=0 points to obtain the quasi-Monte Carlo curve in Figure 13. Similarly to
previous results, the MLDQ is more efficient than the single-level DQ. The single-level
DQ also yields lower cost compared to quasi-Monte Carlo points.

Remark 6.2. We emphasize that there is a limit to the number of stochastic di-
mensions for which the quadrature approaches, including DQ, sparse grids, MLDQ,
and MLSC, are plausible. As the number of dimensions grows, it is expected that the
quadrature rules cease to be effective as their computation becomes intractable. Con-
trarily, for large stochastic dimensions or highly nonlinear problems in stochastic space
that involve dense index sets, using stochastic sampling such as quasi-Monte Carlo
sampling is proven to be more effective. The results in this section are pertinent only
to the settings of the considered problem, and we expect that the conclusion drawn
from the performance comparison (between quadrature rules and stochastic sampling
approaches) would change for problems with different settings, e.g., problems with
larger stochastic dimensions or those involving much larger M .
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Fig. 12. Optimal cost with respect to the number of levels (top-left), optimal cost versus total
error with (top-right), cost versus error for a fixed L = 7 (bottom-left), verification of Corollary 5.1
with the estimated rate of convergence 1/r = 0.44 matching the rate r = 2.27 in Figure 11 (bottom-
right).

7. Concluding remarks. A numerical method for systematic allocation of com-
putational budget to different levels in hierarchical approximation of random PDEs is
presented. Using the idea of multilevel Monte Carlo and recent MLSC methods, we
propose a method that capitalizes on the flexibility of DQ for stochastic approxima-
tion with different levels of accuracy. DQ can be generated for any number of points
to exactly integrate polynomials in a finite-dimensional polynomial space (equiva-
lently the size of the index set). This approach substantially mitigates the issue of
large growth in the number of points between grid levels, which was reported in pre-
vious MLSC methods. In all cases it is shown that the multilevel DQ approach is
more efficient than the single-level computation. The algorithm is demonstrated for
both cases of minimizing cost subject to error constraints and minimizing error sub-
ject to cost constraints. The proposed optimization problem is shown to be convex,
and the analytical solution is provided in both cases and verified with numerical ex-
amples. We have demonstrated that the proposed method outperforms sparse grid
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Fig. 13. Actual cost versus error for MLDQ. The solid lines show the cost versus error for the
finest mesh with two integration methods in high dimensions: DQ and quasi-Monte Carlo (QMC).

quadrature and quasi-Monte Carlo approaches in the numerical examples considered
on linear elasticity and heat diffusion problems with moderate stochastic dimensions.
Future directions could explore extensions of this approach to a multi-index Monte
Carlo-inspired method, which could help reduce the curse of dimensionality.
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