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a b s t r a c t 

Although the popular multi-fidelity surrogate models, stochastic collocation and nonlinear autoregression have 

been applied successfully to multiple benchmark problems in different areas of science and engineering, they 

have certain limitations. We propose a uniform Bayesian framework that connects these two methods allowing 

us to combine the strengths of both. To this end, we introduce Greedy-NAR, a nonlinear Bayesian autoregressive 

model that can handle complex between-fidelity correlations and involves a sequential construction that allows 

for significant improvements in performance given a limited computational budget. The proposed enhanced 

nonlinear autoregressive method is applied to three benchmark problems that are typical of energy applications, 

namely molecular dynamics and computational fluid dynamics. The results indicate an increase in both prediction 

stability and accuracy when compared to those of the standard multi-fidelity autoregression implementations. The 

results also reveal the advantages over the stochastic collocation approach in terms of accuracy and computational 

cost. Generally speaking, the proposed enhancement provides a straightforward and easily implemented approach 

for boosting the accuracy and efficiency of concatenated structure multi-fidelity simulation methods, e.g., the 

nonlinear autoregressive model, with a negligible additional computational cost. 
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(

. Introduction 

Computational models are well established tools for the design, de-

elopment and study of energy technologies, including their constituent

omponents and materials [29,32] . They range from systems-level mod-

ls for control and automation to ab-initio models for materials screen-

ng. Even for a given task at a particular spatio-temporal scale, there is

ypically a large set of approaches available, differing in, primarily, the

evel of detail included in the underlying model, the particular numeri-
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al techniques employed, and the selection of numerical parameters that

ontrol the truncation errors. This results in different levels of computa-

ional complexity and attendant time cost, which are strongly correlated

ith the accuracy of the solutions obtained. 

In a given modelling task, we may classify competing computer mod-

ls, depending on their accuracy and associated complexity, as either

ow-fidelity (lower accuracy, lower complexity) or high-fidelity . We may

ven introduce three or more fidelity levels and classify the various com-

uter models available accordingly. Selecting an approach based on its
article under the CC BY-NC-ND license. 
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delity will inevitably involve a trade-off. While high-fidelity models

re more accurate, they are (usually) computationally expensive, dif-

cult to implement and difficult to understand for practitioners. Low-

delity models, on the other hand, can provide rapid solutions and are

elatively straightforward to implement, the price for which is a possibly

nacceptable level of accuracy. 

Modelling tasks such as computer-based optimization of an energy

echnology or the screening of energy materials require extensive ex-

loration of a design space. In such cases, the computer models are fre-

uently replaced with computationally cheaper approximations, termed

urrogate models , constructed via machine learning methods, projection

chemes to lower dimensionality or by combining models of different

delity (multi-fidelity approaches). Multi-fidelity approaches can also

e combined with machine-learning and reduced-order modelling ap-

roaches. 

Classical machine-learning approaches include Gaussian Process

GP) models, artificial neural networks, support vector machines and

olynomial response surface models [15,26] , while reduced-order mod-

ls are typically based on proper orthogonal decomposition or Krylov

ubspaces [10,17,28] . GP models can be extended to multi-output prob-

ems of the type considered here in a number of ways, including treat-

ng the output index as an additional input parameter [16] , multi-

imensional GP priors with a linearly separable covariance [4] , and

imensionality reduction with separate regression on vector compo-

ents in the resulting low-dimensional linear subspace of physical or fea-

ure space [13,34] . Both machine-learning and reduced-order model ap-

roaches typically require large training data sets based on high-fidelity

odels. 

In most practical scenarios, however, computational resources are

imited, and often insufficient for the acquisition of a large volume of

igh-fidelity data with acceptable accuracy (often in practice there is

ven a limited availability of low-fidelity data). Hence, constructing sur-

ogate models that rely only on high-fidelity models may not be desir-

ble, while low-fidelity models lack sufficient accuracy. 

One effective way of resolving this dilemma is to use a combination

f both low- and high-fidelity data. Although low-fidelity samples are

oisy and biased, they normally show a strong correlation with the high-

delity samples. It can be possible to harness this correlation to avoid

ull reliance on high-fidelity data. A prominent example of this type of

urrogate model combines the stochastic collocation methodology with

 multi-fidelity approach [20,35] . Examples of its effectiveness include:

requency-modulated trigonometric functions [20] , heat driven cavity

ows [11] , acoustic horn problems [35] , molecular dynamics simula-

ion [24] , parametric studies of NACA airfoils [30] , discrete-space evo-

ution probability simulations [23] , and irradiated particle-laden turbu-

ence [14] . 

This surrogate modeling approach is also designed to work with a

imited number of samples and provide an optimal sampling strategy

or the high-fidelity simulations. The authors in [20] use a greedy pro-

edure to select amongst low-fidelity data in order to identify input sam-

les at which to conduct a low number of high-fidelity simulations. They

hen use the low-fidelity data to find coefficients for an interpolation at

ut-of-sample points using the high-fidelity results. The reasoning be-

ind the use of low-fidelity data in the diagnostic context of importance

ampling points stems from the existence of an expression for the up-

er bound of the multi-fidelity emulator error, which is a function of

he low-fidelity stochastic collocation model error [12] . The limitation

f this approach is that it is based on an assumption of the low- and

igh-fidelity data sharing a similar correlation structure, which limits

ts application to many complex problems. The other limitation is that

t requires an execution of the low-fidelity model when making predic-

ions of high-fidelity outputs. This severely restricts its application when

he low-fidelity simulations are also expensive to run. 

Autoregressive models in statistics have also been used to construct

ulti-fidelity emulators. Kennedy and O’Hagan in their seminal work of

15] proposed this approach in its original form with the assumption of
 ⎩
 linear relationship between different fidelity levels. The low-fidelity

orrelations are captured based on low-fidelity observations and trans-

erred over to enhance the high-fidelity model. This method was im-

roved upon in [8] using a deterministic parametric form of the mapping

from low to high fidelity) and an efficient numerical scheme to reduce

he computational cost. Despite its success in several experiments, this

arametric approach requires expert knowledge for model selection as

ell as a large dataset for model training. 

To overcome the limitations of the linear assumption, a nonlinear

utoregressive model (NAR) was introduced in [21] by replacing the lin-

ar transformation with a GP model. NAR has been successfully applied

o a number of problems. In these enhanced multi-fidelity autoregres-

ive approaches, in order to fully capture and propagate the uncertainty

hrough all fidelity levels, a chain of GP models is jointly trained in a

eep GP framework [6] . In recent work, the NAR model was generalised

or efficient emulation of high-dimensional output (order 1 million) sim-

lation problems [33] . 

Despite the success of NAR and its variants, they lack a principled

ay to sample parsimoniously from expensive high-fidelity simulations,

eading to a potential waste of computational resources on the genera-

ion of very similar high-fidelity results. Although experimental design

echniques, e.g., Latin hypercube [2] and Sobol sequences [31] , can be

sed to improved sampling efficiency, they do not incorporate any par-

icular knowledge of a specific problem and inevitably, therefore, lead

o inefficiency. 

In this paper, we first derive a general Bayesian framework for multi-

delity simulation based on the kernel extension of a general linear

odel. This framework bridges the connection between the NAR and

he stochastic collocation approaches. It provides a unified way of un-

erstanding multi-fidelity models and allows for the following modifi-

ations to be made in order to combine the advantages of stochastic

ollocation and NAR: 

• We introduce a noise-free assumption for the simulation data, which

naturally extends our model to high-dimensional problems. 
• By incorporating the NAR structure and an isotropic kernel function,

predictions of the high-fidelity models no longer require extra sim-

ulations from the low-fidelity model. 
• By incorporating a sequential learning approach to construct the

multi-fidelity model, we propose Greedy-NAR, a Bayesian NAR that

can construct itself automatically without the need of a special exper-

imental design or a priori assumptions about the underlying physics.

We apply the sampling approach to several practical examples of the

ype found in energy engineering and science applications, demonstrat-

ng that it reduces the resultant surrogate model estimation error when

ealing with limited computational resources for the high-fidelity data

cquisition. 

The paper is organized as follows. We firstly define the types of prob-

ems under consideration in Section 2 . We then derive the model frame-

ork based on a general linear form in Section 3 , followed by a dis-

ussion on the connections to stochastic collocation and NAR and our

odifications for obtaining improved results. The experimental results

re provided in Section 4 . 

. Statement of the problem 

We are interested in solutions to computational models that are pa-

ameter dependent, and where repeated evaluation of the model for

ifferent parameters is required. An archetypal example is a system of

onlinear steady-state or transient partial differential equations (PDEs)

f arbitrary order for dependent scalar variables u i ( x , t ; 𝝃), 𝑖 = 1 , … , 𝐼,

hich can be collected in a vector function u 
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(1) 
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ere  𝝃 is a spatial operator;  𝝃 is a source term; Ω and (0, T ] are the

patial and temporal domain of interest;  𝝃 is the boundary operator;

nd u 0 ( x, 𝝃) is the initial condition. The variable 𝐱 ∈ Ω ⊂ ℝ 

𝑝 is the spa-

ial coordinate of a p -dimensional space and t ∈ [0, T ] is time. 𝝃 ∈  ⊂ ℝ 

𝑙 

s a vector of parameters that may appear in any number of  𝝃 ,  𝝃 ,  𝝃

nd the initial condition u 0 ( x ; 𝝃). The PDEs can be nonlinear of any

ype. It is, however, assumed that the problem above is well posed (i.e.,

olutions always exist and are unique). 

Eliminating the operators  𝝃 and  𝝃 leads to a system of ordinary dif-

erential equations (ODEs), which could include a molecular dynamics

odel, with u as the vector of the positions and velocities of all particles

n the system. This is one of the examples we consider. We do not, how-

ver, exclude systems of algebraic equations. The method we develop is

ery general and can be applied to any parameter-dependent system. 

A high-fidelity model is a numerical solver that solves for the u i ( x , t ; 𝝃)

uch that the solutions u i,H ( x , t ; 𝝃) are accurate approximations to u i ( x , t ;

). The quantity of interest (QoI) can be concatenated vectorised solutions

 

i,H ( x , t ; 𝝃) recorded at selected spatial-temporal locations, 𝐱 1 , … , 𝐱 𝑛 𝑥 ,
 1 , … , 𝑡 𝑛 𝑡 , or some scalar or vector quantity derived from u i,H ( x , t ; 𝝃).

he particular choice of the QoI does not affect our model, so we simply

reat it as a function 𝐲 𝐻 ( 𝝃) ∈ ℝ 

𝑑 of the inputs, for some integer d , where

or example 𝑑 = 𝑛 𝑥 × 𝑛 𝑡 × 𝐼
A low-fidelity model always exists, such that the solutions u i,L ( x , t ;

) are less accurate than those of a high-fidelity solver but are cheaper

o compute. For instance, we can use coarser spatial-temporal meshes;

ower order time-stepping schemes, finite-difference stencils or basis ex-

ansions; or simplified physical models with fewer equations or with

ewer terms. Let us denote the QoI derived from a low-fidelity model by

 

𝐿 ( 𝝃) ∈ ℝ 

𝑑 . 

The issues we seek to address are: 

• How can we deal with a QoI in a high-dimensional space (large d )? 
• How can we accurately approximate the high-fidelity QoI y H ( 𝝃) by

efficiently combining low- and high-fidelity solutions? 
• Given limited computational resources, how can we design our ex-

periments to achieve an optimal surrogate of the QoI? In particular,

at which locations should we conduct our high-fidelity experiments

to provide the maximum information gain ? 

. Non-parametric Bayesian autoregression for multi-fidelity 

odels 

Let us consider a general linear form of autoregression for the multi-

delity problem 

 

𝐻 ( 𝝃) = 𝐖 𝝓( 𝐲 𝐿 ( 𝝃)) + 𝜖𝜖𝜖𝐻 , (2)

here 𝐖 ∈ ℝ 

𝑑×𝑙 is a weight matrix, 𝝓( · ) is an arbitrary feature mapping

nd 𝜖𝜖𝜖 ∼  ( 𝟎 , 𝜎2 𝐈 ) is Gaussian noise. The feature mapping 𝝓( · ) can be

o an infinite dimensional space ( l → ∞) in order to capture all of the

ssential features. To take account of the spatial correlations between

ntries of the weight matrix, we place a general matrix Gaussian prior

ver W 

 ∼  ( 𝐖 |𝟎 , 𝐐 , 𝐊 ) = 

exp 
(
− 

1 
2 tr [ K 

−1 𝐖 

𝑇 𝐐 

−1 𝐖 ] 
)

(2 𝜋) 𝑑𝑙∕2 |𝐐 |𝑙∕2 |K |𝑑∕2 , (3)

here K ∈ ℝ 

𝑙×𝑙 and 𝐐 ∈ ℝ 

𝑑×𝑑 are the row and column covariance matri-

es. Working with an explicitly defined high-dimensional feature space

s clearly impractical. Instead, we can integrate out W and introduce a

ernel function to avoid specifying 𝝓 and K explicitly, which leads to

 probabilistic model for y H ( 𝝃) (derived in Appendix A ). The marginal

ver W takes the form 

 

𝐻 ( 𝝃) =  ( 𝟎 , k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃′)) 𝐐 + 𝜎2 𝐈 ) . (4)

n which  ( ⋅, ⋅) denotes a multivariate GP, with mean function and

ovariance matrix given by the first and second arguments respectively.
 

𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃′)) is a general kernel. One common choice of kernel is

he automatic relevance determination (ARD) kernel 

 

𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃′)) = exp 

( 

− 

𝑑 ∑
𝑚 =1 

|𝑦 𝐿 𝑚 ( 𝝃) − 𝑦 𝐿 𝑚 ( 𝝃
′) |2 

𝜃2 𝑚 

) 

, (5)

here 𝑦 𝐿 𝑚 ( 𝝃) denotes the 𝑚 − th element of y L ( 𝝃) and 𝜃m 

denotes the cor-

esponding scaling factor, which determines the contribution of y 𝐿 𝑚 ( 𝝃) to
he approximation of y H ( 𝝃). 

Assume that we have already collected simulation data 𝐘 

𝐻 =
 𝐲 𝐻 

1 , … , 𝐲 𝐻 

𝑁 𝐻 
] 𝑇 ∈ ℝ 

𝑁 𝐻 ×𝑑 and 𝐘 

𝐿 = [ 𝐲 𝐿 1 , … , 𝐲 𝐿 
𝑁 𝐻 

] 𝑇 ∈ ℝ 

𝑁 𝐻 ×𝑑 , where we

ave introduced the notation 𝐲 𝐻 

𝑖 
= 𝐲 𝐻 ( 𝝃𝑖 ) and 𝐲 𝐿 

𝑖 
= 𝐲 𝐿 ( 𝝃𝑖 ) , 𝑖 =

 , … , 𝑁 𝐻 

, to aid the presentation. We can derive the log marginal like-

ihood  using model (4) 

 = 

1 
2 
ln |𝚺| − 

1 
2 
( vec ( 𝐘 

𝐻 )) 𝑇 𝚺−1 vec ( 𝐘 

𝐻 ) − 

𝑑𝑁 𝐻 

2 
ln (2 𝜋) . (6)

here 𝚺 = 𝐐 ⊗𝐊 𝐻 

+ 𝜎2 𝐈 ∈ ℝ 

𝑑 𝑁 𝐻 ×𝑑 𝑁 𝐻 is the kernel matrix and the el-

ments of 𝐊 𝐻 

∈ ℝ 

𝑁 𝐻 ×𝑁 𝐻 are given by 𝐾 𝑖𝑗 = k 𝐻 ( 𝐲 𝐿 ( 𝝃𝑖 ) , 𝐲 𝐿 ( 𝝃𝑗 )) . In this

xpression, ⊗ represents the Kronecker product. We can now use an op-

imization algorithm, e.g., L-BFGS-B, to obtain a maximum likelihood

stimate (MLE) of the hyperparameters in the kernel function k 𝐻 ( ⋅, ⋅) .
he main computational cost is the inversion of 𝚺, which is  ( 𝑁 

3 ) and

 ( 𝑁 

2 ) time and space complexity, respectively. 

With the hyperparameters known, we can derive the posterior dis-

ribution for y H ( 𝝃), which is also a Gaussian with mean and covariance

iven by [22] 

𝔼 [ 𝐲 𝐻 ( 𝝃)] = 

(
𝐐 ⊗ 𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 𝚺−1 vec ( Y 

𝐻 ) 

ar [ 𝐲 𝐻 ( 𝝃)] = 𝐐 k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃)) 

− 

(
𝐐 ⊗ 𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 𝚺−1 (𝐐 ⊗ 𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)
, (7) 

here 𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) = [ k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 1 ) , ⋯ , k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 

𝑁 𝐻 
)] 𝑇 is the correla-

ion between the solution at any input 𝝃 and the other observations in

he training set. 

.1. Efficient computation of noise-free multivariate outputs 

In the context of stochastic collocation [20] it is usually assumed that

he noise term can be ignored (i.e., 𝜎 → 0) because the low- and high-

delity simulations are deterministic. In this case ( 𝜎 → 0), as shown in

ppendix B , the predictive mean in Eq. (7) can be simplified (autokrige-

bility [1] ), and our model can naturally handle high-dimensional out-

uts by setting 𝐐 = 𝐈 to obtain 

 

𝐻 ( 𝝃) =  

(
𝟎 , k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃′)) 𝐈 

)
. (8)

his compact GP model allows us to conduct efficient inference by the

aximization of a compact likelihood 

 

𝐻 = 

𝑑 

2 
ln |𝐊 𝐻 

| − 

1 
2 
tr 
(
( 𝐘 

𝐻 )) 𝑇 𝐊 

−1 
𝐻 

𝐘 

𝐻 

)
− 

𝑁 𝐻 

𝑑 

2 
ln (2 𝜋) . (9)

he computational complexity for this new likelihood is  ( 𝑁 

3 
𝐻 

𝑑) rather

han  ( 𝑁 

3 
𝐻 

𝑑 3 ) , which allows us to apply the model to problems with a

arge d . If we substitute 𝐐 = 𝐈 into Eq. (7) , we obtain the prediction 

 [ 𝐲 𝐻 ( 𝝃)] = 

(
𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)
𝑇 𝚺−1 Y 

𝐻 , (10)

hich has the same form as the predictions in the stochastic collocation

ramework [20] . 

emark 1. We have introduced a Bayesian framework for the multi-

delity problem in Eq. (5) , which is a generalization of the stochastic

ollocation formulation. If we choose a noise free model (as in Eq. (8) )

nd a linear kernel, i.e., k 𝐻 ( 𝐲 𝐿 ( 𝝃)) , 𝐲 𝐿 ( 𝝃′))) = 

(
𝐲 𝐿 ( 𝝃) 

)𝑇 𝐲 𝐿 ( 𝝃′) , we recover

he classic stochastic collocation method in [20] . 
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1 The code is available as open-source on Github: ⟨12:monospace ⟩https:// 

github. 

com/wayXing/GreedyNAR ⟨/12:monospace ⟩. 
.2. GP surrogate for low-fidelity models 

In the original stochastic collocation framework [20] , the prediction

f a high-fidelity solution y H ( 𝝃) for an unseen simulation parameter 𝝃

equires an execution of the low-fidelity model to obtain y L ( 𝝃). The un-

erlying assumption is that the low- and high-fidelity correlation matri-

es are similar. This implies that the low-fidelity simulation cannot be

ignificantly different from the high-fidelity simulation, which in turn

mplies that the low-fidelity model cannot be significantly cheaper. 

Following the NAR model [21] , we also recursively place a GP prior

ver the low-fidelity computer model to harness the function approxi-

ation utility of a GP. Specifically, we define 

 

𝐿 ( 𝝃) =  

(
𝟎 , k 𝐿 ( 𝝃, 𝝃′) 𝐈 

)
, (11)

here k 𝐿 ( ⋅, ⋅) denotes the kernel function for the low-fidelity resolution.

his model is not to be confused with (8) and here k 𝐿 ( ⋅, ⋅) is now a direct

unction of the inputs. Given some low-fidelity simulation data 𝐘 

𝐿 ∈
 

𝑁 𝐻 ×𝑑 , we can obtain a marginal likelihood and posterior predictive

rocess as before, yielding 

 

𝐿 = 

𝑑 

2 
ln |𝐊 𝐿 | − 

1 
2 
tr 
(
( 𝐘 

𝐿 )) 𝑇 𝐊 

−1 
𝐿 
𝐘 

𝐿 
)
− 

𝑁𝑑 

2 
ln (2 𝜋) , (12)

nd [22] 

𝐲 𝐿 ( 𝝃) ∼  ( 𝜇𝜇𝜇𝐿 ( 𝝃) , ΠΠΠ𝐿 ( 𝝃)) 

𝜇𝜇𝜇𝐿 ( 𝝃) = ( 𝐤 𝐿 ∗ ( 𝝃)) 
𝑇 𝐊 

−1 
𝐿 

Y 

𝐿 (13) 

𝐿 ( 𝝃) = 𝐈 ⊗
(
𝑘 𝐿 ( 𝝃, 𝝃) − ( 𝐤 𝐿 ∗ ( 𝝃)) 

𝑇 𝐊 

−1 
𝐿 
𝐤 𝐿 ∗ ( 𝝃) 

)
, 

n which the entries of 𝐊 𝐿 ∈ ℝ 

𝑁 𝐻 ×𝑁 𝐻 are given by k L ( 𝝃i , 𝝃j ), and 𝐤 𝐿 ∗ ( 𝝃) =
 k 𝐿 ( 𝝃, 𝝃1 ) , ⋯ , k 𝐿 ( 𝝃, 𝝃𝑁 𝐻 )] 

𝑇 . Essentially, this recursive process produces a

eep GP, which is infamous for its intractability; it requires expensive

pproximate inference, e.g., Monte-Carlo or variational Bayes. Fortu-

ately, for the multi-fidelity problem the latent variable y ( L ) ( 𝝃) is ob-

ervable by conducting low-fidelity simulations. This allows us to de-

ompose the model training process through separable and independent

ikelihood functions (9) and (12) . 

emark 2. By bridging the connection between stochastic collocation

nd NAR, we improve the stochastic collocation framework with NAR

o provide an approximation to the low-fidelity model. Furthermore,

e can take advantage of the additive structure [21] to strengthen the

odel by using a kernel function k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃′)) for Eq. (8) . 

.3. High-fidelity model prediction 

For model prediction corresponding to a unseen input 𝝃, if the low-

delity solution is provided via low-fidelity simulation (as is done in

he stochastic collocation literature [20] ), we can easily compute the

osterior mean using Eq. (19) . The computational cost can be further

educed using our model, which is essentially a deep GP [5,6] with a

rade-off in that we must sample from the distribution over y L ( 𝝃) to

btain a distribution over y H ( 𝝃). In detail, we first compute the posterior

f y L ( 𝝃) via the Gaussian posterior (13) . As is suggested in [7,21] , we

an generate I independent samples { 𝐲 𝐿 ( 𝝃𝑖 )} 𝐼 
𝑖 =1 from  ( 𝝁𝐿 ( 𝝃) , ΠΠΠ𝐿 ( 𝝃))

nd approximate the posterior by 

 ( 𝐲 𝐻 ( 𝐱)) = ∫ ( 𝐤 𝐿 ( 𝝃)) 𝑇 𝐊 𝐿 𝐘 

𝐿 𝑝 ( 𝐲 𝐿 ( 𝝃)) 𝑑𝐲 𝐿 ( 𝝃) 

≈
𝐼 ∑
𝑖 =1 

 

(
𝝁𝐻 ( 𝝃𝑖 ) , ΠΠΠ𝐻 ( 𝝃𝑖 ) 

)
. (14) 

.4. Greedy selection of high-fidelity experiments 

So far we have introduced our model based on the pre-existence of

ow- and high-fidelity data. In practice, such data (especially that of

igh-fidelity) is expensive to obtain. It is desirable to allocate computa-

ional resources, especially for the high-fidelity simulations, such that
he surrogate model can achieve its best performance with the least

omputational cost. Inspired by the work of [20] , we intend to build

he multi-fidelity surrogate model in a sequential manner. 

Let us first consider the high-fidelity GP of (8) . Assume that we al-

eady have a collection of model parameters { 𝝃𝑖 } 
𝑁 𝐻 
𝑖 =1 ⊂  and the corre-

ponding low- and high-fidelity simulation results Y 

L and Y 

H . We define

he information gain of a new model parameter 𝝃∗ as the uncertainty or

ariance given the current data collection. Maximization of the infor-

ation gain can then be defined mathematically by 

∗ = argmax 𝝃∈ 
(
𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 𝐊 

−1 
𝐻 

𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) , (15)

here 𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) = [ k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃1 )) ⋯ , k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃𝑁 𝐻 ))] 

𝑇 . In prac-

ice, however, Eq. (15) cannot be solved directly because K H and 𝐤 𝐻 

∗ are

nknown unless we already have a large number of high-fidelity simula-

ions. The nonlinear kernel k h ( · , · ), e.g., ARD kernel, contains unknown

yperparameters whose estimation relies on the optimization of Eq. (9) .

n [20] this problem is addressed by implicitly assuming a linear ker-

el and a finite-cardinality subset of the input space  ⊂  as the input

andidates. The solution for Eq. (15) can then be found analytically by

R decomposition, LU decomposition, or Cholesky decomposition on

 

𝐻 = ( 𝐘 

𝐿 ) 𝑇 𝐘 

𝐿 . 

For the nonlinear kernel containing unknown hyperparameters, for

hich this method is not applicable, we develop an alternative ap-

roach. Essentially, in each step, we first update our high-fidelity GP

odel of Eq. (8) by maximizing the likelihood of Eq. (9) . We then cal-

ulate the variance for all candidate locations except for those already

hosen in previous steps. Next we conduct a high-fidelity experiment for

he one that has the largest variance and add it to the data collection.

his process is repeated until a maximum iteration number is reached. 

Unlike the classic stochastic collocation model that requires low-

delity simulations to provide correlation estimation, Greedy-NAR has

he capacity to directly produce the low-fidelity simulations via the non-

inear kernel. This also allow us to apply the same process to construct

he low-fidelity GP model in Eq. (11) 

∗ = argmax 𝝃∈ 
(
𝐤 𝐿 ∗ ( 𝝃) 

)𝑇 (𝐊 

𝐿 
)−1 𝐤 𝐿 ∗ ( 𝝃) , (16)

here 𝐤 𝐿 ∗ ( 𝝃) = [ k 𝐻 ( 𝝃, 𝝃1 ) … , k 𝐿 ( 𝝃, 𝝃𝑁 𝐻 )] 
𝑇 . We present the full details of

ow to construct the model without requiring the prior execution of low-

delity simulations for all candidates (which is required by the classic

tochastic collocation model) in Algorithm 1 1 . 

The simplest way to allocate computational resources is by designing

he number of executions for low- and high-fidelity simulations based

pon the available computational budget. In case we want the system

o be fully automatic, we may specify a large candidate set  and the

ncertainty bound (rather than specific number) for determining the

umber of iterations. We can also perform an eigenvalue analysis of the

ow-fidelity correlation matrix to find the optimal number of samples

hat fully capture the high-fidelity model behaviour within the parame-

er space. 

emark 3. Based on our unified framework for multi-fidelity models,

e propose to equip our method with a sequential learning approach

n order to improve efficiency. If we use a linear kernel for k 𝐻 ( ⋅, ⋅) for

lgorithm 1 , we recover the stochastic collocation sequential learning

pproach, which has a much simpler correlation structure (without hy-

erparameters). 

.5. Extension beyond bi-fidelity problems 

So far we have only considered the bi-fidelity case. However, our

ethod is readily extended to multi-fidelity problems. In particular, we

https://github.com/wayXing/GreedyNAR
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Fig. 1. Total RMSE of two-fidelity MD simulation QoIs, with comparisons to NAR. 

Algorithm 1 Greedy-NAR construction 

Input: A finite-cardinality set  of input parameters,number of low- 

and high-fidelity experiments allowed 𝑁 𝐿 and 𝑁 𝐻 

, initial data col- 

lection size 𝑁 0 ( 𝑁 0 < 𝑁 𝐻 

< 𝑁 𝐿 ) 

Output: A NAR model containing low- and high-fidelity GPs of Eq. 8 

and 11 

1: Randomly select 𝑁 0 point from  and form the initial low-fidelity 

candidate set Γ𝐿 
2: Conduct low-fidelity experiments for Γ𝐿 and collect the solutions 𝐘 

𝐿 

3: for |Γ𝐿 | < 𝑁 𝐿 do 

4: Update low-fidelity GP model by maximizing likelihood 12 based 

on Γ𝐿 , 𝐘 

𝐿 

5: Find 𝝃∗ based on Eq. 16 for  ⧵ Γ𝐿 
6: Update low-fidelity candidate set Γ𝐿 ← Γ𝐿 ∪ 𝝃∗ 
7: Conduct a low-fidelity simulation to get solution 𝐲 𝐿 ( 𝝃∗ ) ; update 

low-fidelity solution set 𝐘 𝐿 ← [ 𝐘 

𝑇 
𝐿 
, ( 𝐲 𝐿 ( 𝝃∗ )) 𝑇 ] 𝑇 

8: end for 

9: Randomly select 𝑁 0 point from Γ𝐿 and form initial high-fidelity can- 

didate set Γ𝐻 

10: Conduct low-fidelity experiments for Γ𝐻 

and collect the solutions 

𝐘 

𝐻 

11: for |Γ𝐻 

| < 𝑁 𝐻 

do 

12: Update high-fidelity GP model by maximizing likelihood 9 based 

on Γ𝐻 

, 𝐘 

𝐻 

13: Find 𝝃∗ beasd on Eq. 15 for Γ𝐿 ⧵ Γ𝐻 

14: Update high-fidelity candidate set Γ𝐻 

← Γ𝐻 

∪ 𝝃∗ 
15: Conduct a high-fidelity simulation to get solution 𝐲 𝐻 ( 𝝃∗ ) ; Update 

low-fidelity solution set 𝐘 𝐻 

← [ 𝐘 

𝑇 
𝐻 

, ( 𝐲 𝐻 ( 𝝃∗ )) 𝑇 ] 𝑇 
16: end for 
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se Eq. (11) to predict the second fidelity and recursively use Eq. (8) to

ass down the predictions in the deep GP structure to derive the final

igh-fidelity predictions. For the greedy construction of Greedy-NAR in

he multi-fidelity problem, we can simply add Eq. (8) after each new

delity step and optimize Eq. (15) , in which ‘low-fidelity’ now refers

o the fidelity level of the preceding step and ‘high-fidelity’ is the next

delity level in the chain. 

. Results and discussion 

.1. Test problem 1: Molecular dynamics simulation model 

We first consider a molecular dynamics (MD) simulation using a

ennard-Jones (LJ) potential, with between 36 and 696 particles of 12 C

n a cubic simulation box with periodic boundary conditions. Details of

he implementation are provided in Appendix C . 
We chose the low-fidelity simulation model as one with a large-time

tep, and ran it on randomly selected points in the parameter space, con-

isting of temperature and density. The low-fidelity simulations used a

ime step of 10 or 20 fs and the high-fidelity simulations used a time

tep of 1 fs. For all model parameter values, the QoIs were computed

sing the low-fidelity model. These QoIs were in the form of either

calars or vectors, namely the radial distribution function (RDF), mean

quared displacement (MSD), averaged total energy and self-diffusion

oefficient. 

All training and test data were normalized using 𝑦 𝑛𝑑 ↦ ( 𝑦 𝑛𝑑 − 𝑦̄ 𝑑 )∕ 𝜎2 𝑑 ,
here y nd denotes the n -th sample of the d th coefficient of an output;

̄ 𝑑 = (1∕ 𝑀) 
∑𝑀 

𝑛 =1 𝑦 𝑛𝑑 is the mean value of the d th coefficient over M

amples, and 𝜎2 
𝑑 
= 

∑𝑀 

𝑖 =1 ( 𝑦 𝑛𝑑 − 𝑦̄ 𝑑 )∕( 𝑀 − 1) is the empirical variance. This

ormalizing process was applied as a pre-processing step for all experi-

ental data in all examples unless stated otherwise. 

We ran 40 and 80 low-fidelity simulations (we call the low-fidelity

1 from here on) at randomly selected simulation parameters, based on

hich we slowly increased the number of training data points at the

econd fidelity level (F2). The performance was evaluated based on the

oot mean square error (RMSE) on 34 test points. The experiments were

epeated five times with random shuffling of training and test data, and

he errors were averaged to obtain the final error. 

The averaged root mean square error (RMSE) statistics (mean and

tandard deviation) with 40 and 80 F1 training data points and an

ncreasing number of F2 training points are shown in Fig. 1 , along

ith the equivalent results for NAR. These RMSE errors are the sums

f the RMSE errors of all QoIs. The trends for each individual QoI

MSE were the same, so only the total RMSE is shown unless stated

therwise. Greedy-NAR results in a significantly lower RMSE and a

maller variance when the F2 data is limited (i.e., #F2 = 10). Both

ethods converge to the same RMSE mean and standard deviation

s the number of F2 points is increased (indicating that Greedy-NAR

ndeed converges to the standard NAR). 

We then evaluated Greedy-NAR in a more complicated case in which

e aim to find an accurate approximation of the QoI function from the

ighest fidelity output (F3) in a 3-fidelity simulation. We show the RMSE

s a function of F3 training data points given different numbers of F1 and

2 training data points in Fig. 2 . The experiments were again conducted

ve times with random shuffling of training and test data. 

It is clear that with a higher fidelity example, the performance gain

ver NAR increases substantially. For example, with only 15 F3, 20 F2,

nd 40 F1 training data points, Greedy-NAR achieves a similar perfor-

ance to the standard NAR with 80 F1, F2, and F3 training data points.

ote that for #F1 = 80 and #F2 = 40, Greedy-NAR converges to the lowest

MSE out of all combinations of training data points, which indicates

hat increasing the number of training data points at different fideli-

ies does not guarantee a performance improvement, due to overfitting.
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Fig. 2. Total RMSE of the three-fidelity MD simulation QoIs with comparisons to NAR. 

Fig. 3. Averaged total energy predictions of a two-fidelity MD with comparisons to SC. 
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evertheless, Greedy-NAR exhibits dramatic improvements over stan-

ard NAR in terms of the rate of convergence of the error, especially

ith an increasing number of F3 training data points, suggesting a huge

omputational saving in practical scenarios. 

Finally, we compared Greedy-NAR with stochastic collocation (SC)

n the bi-fidelity (F1 and F2) case. Since a standard stochastic colloca-

ion requires F1 observations as test points to give correct F2 predictions,

e also supply F2 predictions to both models as comparisons. The test

oints are sorted such that their corresponding inputs are arranged in

ncreasing order for the purposes of visualization. The averaged total en-
rgy and self-diffusion coefficient predictions are shown in Figs. 3 and

 , respectively. As is evident from these figures, the F1 and F2 simula-

ion results (ground truths) for the RDF exhibit quite different trends,

ndicating different correlation structures for the F1 and F2 target func-

ions. Since SC relies on the assumption that the correlations of different

delities are similar, it is not surprising to see that it fails to give accu-

ate predictions even given the F1 test point values. In contrast, Greedy-

AR performs very well even without the F1 values; with the F1 test

oint values provided, the predictive accuracy of Greedy-NAR further

mproves. 
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Fig. 4. Self-diffusion coefficient predictions of a two-fidelity MD with comparisons to SC. 

Fig. 5. Total RMSE of the bi-fidelity plasmonic nano-particle simulation with comparisons to NAR. 
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.2. Test Problem 2: Plasmonic nano-particle arrays 

In this test problem, we calculate the extinction and scattering ef-

ciencies Q ext and Q sc using the Coupled Dipole Approximation (CDA)

ethod for plasmonic systems with different numbers of scatterers. CDA

s an approach for simulating the optical response of an array of identi-

al non-magnetic metallic nano-particles with sizes much smaller than

he wavelength of light (here 25 nm). 

Q ext and Q sc are defined here as the QoIs. We used our proposed

pproach to construct surrogate models for the efficiencies with up to

hree fidelities. We considered particle arrays given by Vogel spirals.

he number of nano-particles in a plasmonic array significantly impacts

he local extinction field induced by plasmonic arrays since the number
f interactions of incident waves from particles influences the magnetic

eld. Fig. 13 shows configurations of Vogel spirals with particle num-

ers in the set {2, 25, 50}, which define fidelities F1 to F3. The param-

ter space was taken to be 𝜆 ∈ [200, 800] nm, 𝛼vs ∈ [0, 2 𝜋] rad, and

 vs ∈ (1, 1500). These are the incident wavelength, the divergence an-

le and scaling factor, respectively. Inputs were selected using a Sobol

equence. The computational time needed for running CDA grows ex-

onentially with the number of nano-particles. Therefore, the computa-

ional savings associated with the proposed sampling strategy are signifi-

ant. Details of the model and numerical implementation are provided in

ppendix C . 

Similar to the previous example, we evaluated the sum of the RM-

Es of the QoIs as a function of F2 training point number on 684 test
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Fig. 6. Total RMSE of the three-fidelity plasmonic nano-particle simulation with comparisons to NAR. 

Fig. 7. Extinction coefficient predictions from the plasmonic nano-particle simulations with comparisons to SC. 
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oints when given 40 and 80 F1 training samples. The experiment was

epeated five times with random shuffling of training and test data. The

MSE statistics (mean and standard deviation) with 40 and 80 F1 train-

ng data points are shown in Fig. 5 . Although in this experiment Greedy-

AR does not provide any significant advantage over NAR, it still shows

onsistent superiority and convergence towards the standard NAR re-

ult. Greedy-NAR demonstrates its value in terms of simulation time

ecause the extra computational cost required by Greedy-NAR is negli-

ible compared with the expense of running high-fidelity simulations. 

We then evaluated Greedy-NAR and NAR in a 3-fidelity case. The

erformances of both methods given different combinations of F1, F2,

nd F3 training data points are given in Fig. 6 , again with 684 test points.
e obtain results that are similar to those of the previous example, in

hat Greedy-NAR substantially outperforms standard NAR, particularly

hen the number of training samples is low. In this experiment, we

an also see that with 80 F2 training data points, the performances of

oth methods is worse than that with 40 and 60 F2 training data points,

hich is a clear symptom of overfitting. 

Finally, we compared our method with stochastic collocation, and

he results are provided in Figs. 7 and 8 . It is clear that for both the

xtinction and scattering coefficients, stochastic collocation without F1

est points as model inputs is inaccurate, deviating significantly from the

round-truth values. However, it provides accurate predictions when

he F1 test points are revealed to the model. Given the F1 test points,
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Fig. 8. Scattering coefficient predictions from the plasmonic nano-particle simulations with comparisons to SC. 

Fig. 9. Total RMSE of the two-fidelity mixing flow simulation, with comparisons to NAR. 
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tochastic collocation achieves the best performance for some special

ases, e.g., test ID 12 in Fig. 7 . For the extinction coefficient, SC with

1 test points shows a similar performance to Greedy-NAR with F1 test

oints and Greedy-NAR. Overall, we conclude that with enough F1 test

oints revealed to the model, stochastic collocation is a good method

hen the F1 and F2 ground-truth functions have a similar correlation

tructure. Otherwise, SC with or without the F1 test points generally pro-

ides inaccurate predictions. We also note that in most practical cases,

roviding F1 test data means running expensive simulations, which is

ften prohibitive. 
.3. Test Problem 3: mixing flow in an elbow-shape pipe 

When it comes to modeling turbulent flows in different geomet-

ical configurations, there is a large set of available models ranging

rom simple one-equation models such as Sparllat–Almaras to sophis-

icated models such as the Large Eddy Simulation (LES). The computa-

ional models available can be classified as low- or high-fidelity models,

r classified using more fidelity levels. A major benefit of using low-

delity models arises when they are employed in the context of de-

ign and optimization of thermal-fluid systems. In these scenarios, the
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Fig. 10. The F2 4th coefficient predictions for the mixing flow problem, with comparisons to NAR. 

Fig. 11. The F2 tth coefficient predictions for the mixing flow problem, with comparisons to NAR. 
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Fig. 12. Two actual F2 profile predictions of mixing flow. 
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omputational speed of these models benefits exploration of the design

pace. However, their inherent inaccuracy may lead to sub-optimal de-

igns. Fusion of low- and high-fidelity models is believed to be an ef-

ective way of balancing computational costs against the accuracy of

redictions. 

We applied our Greedy-NAR to a benchmark problem of mixing flow

n a pipe. The input parameter space in this case was the freestream ve-

ocity at the large inlet and the freestream velocity at the smaller inlet.

he QoIs were two (vectorised) velocity and pressure profiles in the sym-

etry plane of the elbow pipe, one at the elbow junction and the other

ear the pipe exit, both at 𝑡 = 50 seconds. The vector of these quantities

ad 96 elements. The F1 model was the Sparlat–Allmaras turbulence

odel, while the F2 model was the LES model. Details of the numerical

mplementation are provided in Appendix C . 

We first ran 40 and 80 low-fidelity simulations at randomly selected

arameter values, based on which we gradually increased the number

f F2 training samples. As before we used the total RMSE of the QoIs

for 18 test points) averaged from the results of a 5-fold cross validation

o assess the results ( Fig. 9 ). The RSME for Greedy-NAR is significantly

ower, with a smaller variance when the F2 data is limited (e.g., to 10).

oth methods converge to the same performance level in terms of error

ean and standard deviation. 

Both methods provide very accurate predictions for the 1st, 2nd, and

rd coefficients in the expansion (24) (basis coefficients in a reduced-

imensional space for the outputs y , as described in Appendix C ) since

ll these values, which represents low-frequency components of the

ata, are very stable. The predictions of the 4th and 5th coefficients

re shown in Figs. 10 and 11 . We can draw the same conclusion as

efore, that Greedy-NAR achieves the most accurate results, especially

ith the F1 test points observations revealed. In contrast, SC without F1

bservations invariably leads to poor performance. 

1

To demonstrate the accuracy on high-dimensional predictions, we

how two test cases, based on 80 F1 and 30 F2 training samples, in

ig. 12 . The actual values are normalized for visualization. Greedy-NAR

eads to very accurate predictions, clearly close to the F2 ground truths,

hereas SC makes good predictions overall except for areas where the

1 and F2 ground truths exhibit different trends. 

. Summary and Conclusions 

In this paper we propose a uniform Bayesian framework that con-

ects the classical methods of multi-fidelity modelling. Greedy-NAR

s a nonlinear Bayesian autoregressive model that captures complex

etween-fidelity correlations but is constructed in a way that it outper-

orms the standard methods when the computational budget is limited.

We demonstrated through a variety of problems that Greedy-NAR

eads to improvements in both the stability and accuracy of predictions

ompared to NAR. Comparisons to SC demonstrated advantages in terms

f both accuracy and computational cost. It is, moreover, easy to imple-

ent and highly scalable, taking full advantage of low-fidelity results

nd very effectively limiting the number of high-fidelity simulations that

eed to be performed for a given accuracy. 
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ppendix A. Kernel formulation of generalised autoregression 

odel 

We first integrate out W in Eq. (2) 

 

(
𝐲 𝐻 ( 𝝃) 

)
= ∫ 𝑝 ( 𝐲 𝐻 ( 𝝃) ∣ 𝐖 , 𝐲 𝐿 ( 𝝃)) 𝑝 ( vec ( 𝐖 )) 𝑑 vec ( 𝐖 ) 

= ∫  

(
𝐲 𝐻 ( 𝝃) |𝐖 𝝓( 𝐲 𝐿 ( 𝝃)) , 𝜎2 𝐈 

) ( vec ( 𝐖 ) |0 , 𝐊 ⊗𝐐 ) 𝑑 vec ( 𝐖 ) 

= ∫  

(
𝐲 𝐻 ( 𝝃) |( 𝝓( 𝐲 𝐿 ( 𝝃)) ⊗ 𝐈 ) 𝑇 vec ( 𝐖 ) , 𝜎2 𝐈 

) ( vec ( 𝐖 ) |0 , 𝐊 ⊗𝐐 ) 𝑑 vec ( 𝐖 ) 

=  

(
𝜉𝜉𝜉𝑛 |0 , ( 𝝓( 𝐲 𝐿 ( 𝝃)) ⊗ 𝐈 ) 𝑇 ( 𝐊 ⊗𝐐 ) ( 𝝓( 𝐲 𝐿 ( 𝝃)) ⊗ 𝐈 ) + 𝜎2 𝐈 

)
=  

(
𝜉𝜉𝜉𝑛 |0 , 𝜙𝜙𝜙𝑇 ( 𝐲 𝐿 ( 𝝃)) 𝐊 𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃)) 𝐐 + 𝜎2 𝐈 

)
. (17) 

oting that vec ( 𝐖 ) ∼  ( vec ( 𝐖 ) |0 , 𝐊 ⊗𝐐 ) , where vec ( 𝐖 ) =
 𝐰 

𝑇 
1 , … , 𝐰 

𝑇 
𝑙 
) 𝑇 ∈ ℝ 

𝑙𝑓 is the vectorization of W . In this equation ⊗

s the Kronecker product. Since K is symmetric and positive semidefi-

ite (PSD) by definition, it possesses a unique PSD symmetric square

oot 
√

K . Hence the term 𝜙𝜙𝜙𝑇 ( 𝐲 𝐿 ( 𝝃)) 𝐊 𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃)) defines an inner product

· , · ⟩K in the feature space 

𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃)) , 𝜙𝜙𝜙𝑇 ( 𝐲 𝐿 ( 𝝃′)) ⟩𝐊 = 𝜙𝜙𝜙𝑇 ( 𝐲 𝐿 ( 𝝃)) 𝐊 𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃′)) = ⟨𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃)) , ̃𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃′)) ⟩
(18) 

or 𝝃, 𝝃′ ∈  , where ⟨ · , · ⟩ denotes the standard inner product and
̃( 𝐲 𝐿 ( 𝝃)) = 

√
K 𝜙𝜙𝜙( 𝐲 𝐿 ( 𝝃)) . Eq. (17) defines a multivariate GP with a kernel

iven by the inner product ⟨ · , · ⟩K . We can now employ kernel substitu-

ion [27] , which consists of replacing the kernel in (18) with a general

ernel k 𝐻 ( 𝐲 𝐿 ( 𝝃) , 𝐲 𝐿 ( 𝝃′)) . 

ppendix B. Autokrigeability 

For 𝜎 → 0, the predictive mean in Eq. (7) can be simplified as fol-

ows: 

 [ 𝐲 𝐻 ( 𝝃)] = 

(
𝐐 ⊗ 𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 (𝐐 ⊗𝐊 𝐻 

)−1 
vec ( Y 

𝐻 ) 

= 𝐐 ⊗
(
𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 (𝐐 

−1 ⊗𝐊 

−1 
𝐻 

)
vec ( Y 

𝐻 ) 

= ( 𝐐𝐐 

−1 ) ⊗
(
𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 𝐊 

−1 
𝐻 

vec ( Y 

𝐻 ) 

= I ⊗
(
𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 𝐊 

−1 
𝐻 

vec ( Y 

𝐻 ) . 

= vec 
((

𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) 

)𝑇 𝐊 

−1 
𝐻 

Y 

𝐻 I 𝑇 
)

= ( Y 

𝐻 ) 𝑇 𝐊 

−1 
𝐻 

𝐤 𝐻 

∗ ( 𝐲 
𝐿 ( 𝝃)) (19) 

his is also known as autokrigeability [1] , and it reveals that the actual

tructure and value of Q do not matter as far as the mean predictions are

oncerned because Q will always cancel. By assuming noise-free obser-

ations, our model can thus naturally handle high-dimensional outputs

ithout the complex computations associated with Q . For simplicity,

herefore, we can set 𝐐 = 𝐈 to obtain the model (8) . 

ppendix C. Details of the numerical experiments 

olecular dynamics model 

The interatomic interactions in molecular dynamics (MD) are de-

ned using a potential function. In this example we used the Lennard-

ones (LJ) potential [19] 

 

(
𝑟 𝑖𝑗 

)
= 4 𝜀 

[ ( 

𝜎

𝑟 𝑖𝑗 

) 12 
− 

( 

𝜎

𝑟 𝑖𝑗 

) 6 
] 

, (20)

here, r ij denotes the pairwise distance between particles i and j , 𝜖 is

he potential well depth and 𝜎 defines the length scale for this pairwise

nteratomic interaction model. When the size of the integration time-

tep is too large, the numerical scheme can become highly unstable. In

rder to prevent such numerical instability, we capped the magnitude of

he repulsive interactions for closely approaching atoms when the ratio
f 𝜎/ r ij exceeded 1.2. This force capping is essential in many problems

nd is described in detail in [18] . 

We assumed 𝜎 and 𝜀 to be 3 r A and 1 kcal mol −1 , respectively.

eriodic boundary conditions were used on all sides of the cubic

imulation box, with width 𝐿 = 27 . 05 r A. We considered a uniform

rid of temperature T and density 𝜌 defined as 𝑇 × 𝜌 ∶ [500 , 1000] K ×
36 . 27 , 701 . 29] kg m 

−3 with 114 inputs selected from this grid. The den-

ity range was equivalent to 𝜌∗ ∈ [0.05, 0.95], where 𝜌∗ is the dimen-

ionless density equal to N 𝜎3 / V ( 𝜌 = 𝑁𝑚 ∕ 𝑉 ), in which m is the particle

ass, set to 𝑚 = 12 . 01 g mol −1 , and 𝑉 = 𝐿 

3 is the simulation box vol-

me. Based on the dimensionless density range, the number of molecules

anged from 36 to 696. All simulations were performed using the Large-

cale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code.

he Verlet algorithm was employed for integration of the equations of

otion and a microcanonical (NVE) ensemble was assumed. 

lasmonic array model 

The response of a plasmonic array to electromagnetic radiation can

e computed by the solution of the local electric fields, E loc ( r j ), for each

f the nano-spheres. Considering N metallic particles described by the

ame volumetric polarizability 𝛼( 𝜔 ) and located at vector positions r i ,

he local field E loc ( r j ) can be computed by solving [9] 

 𝑙𝑜𝑐 ( 𝐫 𝑖 ) = 𝐄 0 ( 𝐫 𝑖 ) − 

𝛼𝑘 2 

𝜖0 

𝑁 ∑
𝑗 =1 ,𝑗 ≠𝑖 

𝐆̃ 𝑖𝑗 𝐄 𝑙𝑜𝑐 ( 𝐫 𝑗 ) (21)

here E 0 ( r i ) is the incident field, k is the wavenumber in the background

edium, 𝜖0 is the dielectric permittivity of vacuum ( 𝜖0 = 1 in the CGS

nit system), and 𝐆̃ 𝑖𝑗 is constructed from 3 × 3 blocks of the overall

 N × 3 N Green’s matrices for the i th and j th particles. 𝐆̃ 𝑖𝑗 is a zero

atrix when 𝑗 = 𝑖, and is otherwise computed as 

̃
 𝑖𝑗 = 

exp ( 𝑖𝑘𝑟 𝑖𝑗 ) 
𝑟 𝑖𝑗 

{ 

𝐈 − ̂𝐫 𝑖𝑗 ̂𝐫 𝑇 𝑖𝑗 − 

[ 

1 
𝑖𝑘𝑟 𝑖𝑗 

+ 

1 
( 𝑘𝑟 𝑖𝑗 ) 2 

( 𝐈 − 3 ̂𝐫 𝑖𝑗 ̂𝐫 𝑇 𝑖𝑗 ) 
] } 

(22) 

here ̂𝐫 𝑖𝑗 is the unit position vector from particles j to i and 𝑟 𝑖𝑗 = |𝐫 𝑖𝑗 |. By

olving Eqs. (21) and (22) , the total local fields E loc ( r i ), and as a result

he scattering and extinction cross-sections, are computed. Details of the

umerical solution can be found in [25] . 

Q ext and Q sc are obtained by normalization of the scattering and ex-

inction cross-sections with respect to the total projected area of the

rray. We considered a class of particle arrays known as Vogel spirals,

hich are defined by [3] 

𝑛 = 

√
𝑛 𝑎 𝑣𝑠 and 𝜃𝑛 = 𝑛𝛼𝑣𝑠 , (23)

here 𝜌n and 𝜃n denote, respectively, the radial distance and the polar

ngle of the n th particle in a Vogel spiral array. Hence, the incident

avelength 𝜆, the divergence angle 𝛼vs , the scaling factor a vs , and the

umber of particles n can uniquely define the Vogel spiral configuration.

urbulent mixing model 

As illustrated in Fig. 14 , water flows from two inlets, the bottom

eft end of the pipe and a smaller inlet located on the elbow. The

ater exits the pipe from the top right in a horizontal upward direc-

ion. The freestream velocity at the large inlet (with a diameter of 1

) varies between 0.2 to 2 m s −1 , and the freestream velocity at the

maller inlet (with a diameter 0.5 m), varies between 1.2 to 3 m s −1 .

he fluid density was taken to be 1000 kg m 

−3 and the viscosity to

e 8 × 10 −4 Pa s. We ran Sparlart–Allmaras in unsteady mode just as a

enchmark. The algorithms LES (F2) and Sparlart–Allmaras (F1) were

mplemented in ANSYS Fluent, employing the dynamic kinetic Energy

ubgrid-scale model within the LES model. The default was used, namely

 second-order implicit formulation and central differencing (finite vol-

me). For Sparlart–Allmaras, the default vorticity-based production and

ow-Reynold’s number damping were selected. For both F1 and F2 sim-

lations, a total of 36,134 nodes and 29,399 hexahedral cells were used,

long with a time step of 0.01 s. 
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Fig. 13. Sample configurations of Vogel spirals with {2, 25, 50, 500} particles. 

Fig. 14. Computational domain and geometri- 

cal configuration of an elbow pipe and its plane 

of symmetry; Test Problem 3. 
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For this problem, the high-dimensional output (dimension equal to

umber of grid points D ) prohibits the direct implementation of Greedy-

AR and standard NAR [13,33] due to the use of an ARD kernel. As

s shown in the decomposition approach in [33] , the high dimensional

utputs can be approximated using a linear combination of basis vectors

n a reduced dimensional subspace of ℝ 

𝐷 , of dimension R ≪ D , i.e., 

 

( 𝑓 ) ( 𝝃) = 

𝑅 ∑
𝑟 =1 

𝑧 ( 𝑓 ) 𝑟 ( 𝝃) v ( 𝑓 ) 𝑟 = V 

( 𝑓 ) z ( 𝑓 ) ( 𝝃) , (24)

here { v 𝑟 } 𝐷 𝑖 =1 form a basis for ℝ 

𝐷 and 𝑧 
( 𝑓 ) 
𝑟 are the corresponding coef-

cients in this basis. R is chosen such that it captures a prescribed total

ariation in the data. 
In [33] , the bases are found using a proposed residual principal com-

onent analysis (resPCA) that enforces a uncorrelated structure, which

ontradicts our assumption that the F1 and F2 correlations are similar.

nstead, we construct a universal basis by combining information from

ifferent fidelities. We define the basis as the eigenvector solutions of

he following problem 

v 𝑟 = v 𝑟 ̄C (25) 

here C̄ is the covariance matrix of the average target function ȳ ( 𝝃) =
 [ 𝐲( 𝝃)] ≈ (1∕ 𝑁 𝑓 ) 

∑𝑁 𝑓 

𝑛 =1 y 
( 𝑓 ) ( 𝝃𝑛 ) . Since the basis vectors are orthogonal,

he representations are easily computed via 

 

( 𝑓 ) 
𝑛 = 𝐲 ( 𝑓 ) 𝑛 

(
V 

( 𝑓 ) )𝑇 . (26)
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or our problem, 𝑅 = 5 basis vectors were sufficient to capture 99.5%

f the total variance in the data. With the approximation (24) , we can

ow treat z ( 𝑓 ) ( 𝝃) as our multi-fidelity target functions and apply NAR,

reedy-NAR, and SC. 
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