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ABSTRACT

Although the popular multi-fidelity surrogate models, stochastic collocation and nonlinear autoregression have
been applied successfully to multiple benchmark problems in different areas of science and engineering, they
have certain limitations. We propose a uniform Bayesian framework that connects these two methods allowing
us to combine the strengths of both. To this end, we introduce Greedy-NAR, a nonlinear Bayesian autoregressive
model that can handle complex between-fidelity correlations and involves a sequential construction that allows
for significant improvements in performance given a limited computational budget. The proposed enhanced
nonlinear autoregressive method is applied to three benchmark problems that are typical of energy applications,
namely molecular dynamics and computational fluid dynamics. The results indicate an increase in both prediction
stability and accuracy when compared to those of the standard multi-fidelity autoregression implementations. The
results also reveal the advantages over the stochastic collocation approach in terms of accuracy and computational
cost. Generally speaking, the proposed enhancement provides a straightforward and easily implemented approach
for boosting the accuracy and efficiency of concatenated structure multi-fidelity simulation methods, e.g., the
nonlinear autoregressive model, with a negligible additional computational cost.

1. Introduction

cal techniques employed, and the selection of numerical parameters that
control the truncation errors. This results in different levels of computa-

Computational models are well established tools for the design, de-
velopment and study of energy technologies, including their constituent
components and materials [29,32]. They range from systems-level mod-
els for control and automation to ab-initio models for materials screen-
ing. Even for a given task at a particular spatio-temporal scale, there is
typically a large set of approaches available, differing in, primarily, the
level of detail included in the underlying model, the particular numeri-
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tional complexity and attendant time cost, which are strongly correlated
with the accuracy of the solutions obtained.

In a given modelling task, we may classify competing computer mod-
els, depending on their accuracy and associated complexity, as either
low-fidelity (lower accuracy, lower complexity) or high-fidelity. We may
even introduce three or more fidelity levels and classify the various com-
puter models available accordingly. Selecting an approach based on its
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fidelity will inevitably involve a trade-off. While high-fidelity models
are more accurate, they are (usually) computationally expensive, dif-
ficult to implement and difficult to understand for practitioners. Low-
fidelity models, on the other hand, can provide rapid solutions and are
relatively straightforward to implement, the price for which is a possibly
unacceptable level of accuracy.

Modelling tasks such as computer-based optimization of an energy
technology or the screening of energy materials require extensive ex-
ploration of a design space. In such cases, the computer models are fre-
quently replaced with computationally cheaper approximations, termed
surrogate models, constructed via machine learning methods, projection
schemes to lower dimensionality or by combining models of different
fidelity (multi-fidelity approaches). Multi-fidelity approaches can also
be combined with machine-learning and reduced-order modelling ap-
proaches.

Classical machine-learning approaches include Gaussian Process
(GP) models, artificial neural networks, support vector machines and
polynomial response surface models [15,26], while reduced-order mod-
els are typically based on proper orthogonal decomposition or Krylov
subspaces [10,17,28]. GP models can be extended to multi-output prob-
lems of the type considered here in a number of ways, including treat-
ing the output index as an additional input parameter [16], multi-
dimensional GP priors with a linearly separable covariance [4], and
dimensionality reduction with separate regression on vector compo-
nents in the resulting low-dimensional linear subspace of physical or fea-
ture space [13,34]. Both machine-learning and reduced-order model ap-
proaches typically require large training data sets based on high-fidelity
models.

In most practical scenarios, however, computational resources are
limited, and often insufficient for the acquisition of a large volume of
high-fidelity data with acceptable accuracy (often in practice there is
even a limited availability of low-fidelity data). Hence, constructing sur-
rogate models that rely only on high-fidelity models may not be desir-
able, while low-fidelity models lack sufficient accuracy.

One effective way of resolving this dilemma is to use a combination
of both low- and high-fidelity data. Although low-fidelity samples are
noisy and biased, they normally show a strong correlation with the high-
fidelity samples. It can be possible to harness this correlation to avoid
full reliance on high-fidelity data. A prominent example of this type of
surrogate model combines the stochastic collocation methodology with
a multi-fidelity approach [20,35]. Examples of its effectiveness include:
frequency-modulated trigonometric functions [20], heat driven cavity
flows [11], acoustic horn problems [35], molecular dynamics simula-
tion [24], parametric studies of NACA airfoils [30], discrete-space evo-
lution probability simulations [23], and irradiated particle-laden turbu-
lence [14].

This surrogate modeling approach is also designed to work with a
limited number of samples and provide an optimal sampling strategy
for the high-fidelity simulations. The authors in [20] use a greedy pro-
cedure to select amongst low-fidelity data in order to identify input sam-
ples at which to conduct a low number of high-fidelity simulations. They
then use the low-fidelity data to find coefficients for an interpolation at
out-of-sample points using the high-fidelity results. The reasoning be-
hind the use of low-fidelity data in the diagnostic context of importance
sampling points stems from the existence of an expression for the up-
per bound of the multi-fidelity emulator error, which is a function of
the low-fidelity stochastic collocation model error [12]. The limitation
of this approach is that it is based on an assumption of the low- and
high-fidelity data sharing a similar correlation structure, which limits
its application to many complex problems. The other limitation is that
it requires an execution of the low-fidelity model when making predic-
tions of high-fidelity outputs. This severely restricts its application when
the low-fidelity simulations are also expensive to run.

Autoregressive models in statistics have also been used to construct
multi-fidelity emulators. Kennedy and O’Hagan in their seminal work of
[15] proposed this approach in its original form with the assumption of
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a linear relationship between different fidelity levels. The low-fidelity
correlations are captured based on low-fidelity observations and trans-
ferred over to enhance the high-fidelity model. This method was im-
proved upon in [8] using a deterministic parametric form of the mapping
(from low to high fidelity) and an efficient numerical scheme to reduce
the computational cost. Despite its success in several experiments, this
parametric approach requires expert knowledge for model selection as
well as a large dataset for model training.

To overcome the limitations of the linear assumption, a nonlinear
autoregressive model (NAR) was introduced in [21] by replacing the lin-
ear transformation with a GP model. NAR has been successfully applied
to a number of problems. In these enhanced multi-fidelity autoregres-
sive approaches, in order to fully capture and propagate the uncertainty
through all fidelity levels, a chain of GP models is jointly trained in a
deep GP framework [6]. In recent work, the NAR model was generalised
for efficient emulation of high-dimensional output (order 1 million) sim-
ulation problems [33].

Despite the success of NAR and its variants, they lack a principled
way to sample parsimoniously from expensive high-fidelity simulations,
leading to a potential waste of computational resources on the genera-
tion of very similar high-fidelity results. Although experimental design
techniques, e.g., Latin hypercube [2] and Sobol sequences [31], can be
used to improved sampling efficiency, they do not incorporate any par-
ticular knowledge of a specific problem and inevitably, therefore, lead
to inefficiency.

In this paper, we first derive a general Bayesian framework for multi-
fidelity simulation based on the kernel extension of a general linear
model. This framework bridges the connection between the NAR and
the stochastic collocation approaches. It provides a unified way of un-
derstanding multi-fidelity models and allows for the following modifi-
cations to be made in order to combine the advantages of stochastic
collocation and NAR:

e We introduce a noise-free assumption for the simulation data, which
naturally extends our model to high-dimensional problems.

By incorporating the NAR structure and an isotropic kernel function,
predictions of the high-fidelity models no longer require extra sim-
ulations from the low-fidelity model.

By incorporating a sequential learning approach to construct the
multi-fidelity model, we propose Greedy-NAR, a Bayesian NAR that
can construct itself automatically without the need of a special exper-
imental design or a priori assumptions about the underlying physics.

We apply the sampling approach to several practical examples of the
type found in energy engineering and science applications, demonstrat-
ing that it reduces the resultant surrogate model estimation error when
dealing with limited computational resources for the high-fidelity data
acquisition.

The paper is organized as follows. We firstly define the types of prob-
lems under consideration in Section 2. We then derive the model frame-
work based on a general linear form in Section3, followed by a dis-
cussion on the connections to stochastic collocation and NAR and our
modifications for obtaining improved results. The experimental results
are provided in Section 4.

2. Statement of the problem

We are interested in solutions to computational models that are pa-
rameter dependent, and where repeated evaluation of the model for
different parameters is required. An archetypal example is a system of
nonlinear steady-state or transient partial differential equations (PDEs)
of arbitrary order for dependent scalar variables ui(x, t; &), i =1,...,1,
which can be collected in a vector function u

My P = Sy x 0, (%1,8) €Qx0,TIX X,

ot
(x,1,E) € 0Q % (0,T] X X, ()

B,g(u)=0,
u(x, 0; &) = uy(x; £), (x,1,5) € Qx {r=0} x4,
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Here F; is a spatial operator; S; is a source term; Q and (0, T] are the
spatial and temporal domain of interest; B, is the boundary operator;
and uy(x, &) is the initial condition. The variable x € Q c R is the spa-
tial coordinate of a p-dimensional space and t € [0, T] is time. & € X ¢ R/
is a vector of parameters that may appear in any number of F, S;, B,
and the initial condition uy(x; &). The PDEs can be nonlinear of any
type. It is, however, assumed that the problem above is well posed (i.e.,
solutions always exist and are unique).

Eliminating the operators 7, and B, leads to a system of ordinary dif-
ferential equations (ODEs), which could include a molecular dynamics
model, with u as the vector of the positions and velocities of all particles
in the system. This is one of the examples we consider. We do not, how-
ever, exclude systems of algebraic equations. The method we develop is
very general and can be applied to any parameter-dependent system.

A high-fidelity model is a numerical solver that solves for the ui(x, t; £)
such that the solutions u>#(x, t; £) are accurate approximations to ui(x, t;
&). The quantity of interest (Qol) can be concatenated vectorised solutions
uH(x, t; £) recorded at selected spatial-temporal locations, xi, ... Xy
1], s, , OF SOmMe scalar or vector quantity derived from utf(x, t; &).
The particular choice of the Qol does not affect our model, so we simply
treat it as a function y* (£) € R? of the inputs, for some integer d, where
for example d = n, xn, X I

A low-fidelity model always exists, such that the solutions u>L(x, t;
&) are less accurate than those of a high-fidelity solver but are cheaper
to compute. For instance, we can use coarser spatial-temporal meshes;
lower order time-stepping schemes, finite-difference stencils or basis ex-
pansions; or simplified physical models with fewer equations or with
fewer terms. Let us denote the Qol derived from a low-fidelity model by
yH (@) e R

The issues we seek to address are:

e How can we deal with a Qol in a high-dimensional space (large d)?

e How can we accurately approximate the high-fidelity Qol yH(£) by
efficiently combining low- and high-fidelity solutions?

e Given limited computational resources, how can we design our ex-
periments to achieve an optimal surrogate of the QoI? In particular,
at which locations should we conduct our high-fidelity experiments
to provide the maximum information gain?

3. Non-parametric Bayesian autoregression for multi-fidelity
models

Let us consider a general linear form of autoregression for the multi-
fidelity problem

y7 (&) = WeyL @) +e”, )

where W € R* is a weight matrix, ¢( - ) is an arbitrary feature mapping
and € ~ N'(0, 621) is Gaussian noise. The feature mapping ¢( - ) can be
to an infinite dimensional space (I — oo) in order to capture all of the
essential features. To take account of the spatial correlations between
entries of the weight matrix, we place a general matrix Gaussian prior
over W

exp (—%tr[K’IWTQ_]W])
(27r)‘”/2|Q|’/2|K|d/2

W~ MNW|0,Q,K) = , 3)
where K € R/ and Q € R¥*? are the row and column covariance matri-
ces. Working with an explicitly defined high-dimensional feature space
is clearly impractical. Instead, we can integrate out W and introduce a
kernel function to avoid specifying ¢ and K explicitly, which leads to
a probabilistic model for y"(¢) (derived in Appendix A). The marginal
over W takes the form

yH (&) = MSPO, k7 (yE (&), yH(E))Q + o°D. (e))

in which MGP(-,-) denotes a multivariate GP, with mean function and
covariance matrix given by the first and second arguments respectively.
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k™ (yL(&),yL (&) is a general kernel. One common choice of kernel is
the automatic relevance determination (ARD) kernel
d | L Logh |2
[y5,(8) = y,,(ED]
H L Loghy _ m m
KM (v (&), yH(€) = exp <— 2T >

m=1

(&)

where yrﬁ(é) denotes the m—th element of y-(¢) and 6,, denotes the cor-
responding scaling factor, which determines the contribution of y%(£) to
the approximation of y"(&).

Assume that we have already collected simulation data Y =
[ylH,..A,yﬁHJT € RNuxd and YL = [yIL,.“,kaJT e RNuxd where we
have introduced the notation y” =yf(¢) and yl=yl(), i=
1,..., Ny, to aid the presentation. We can derive the log marginal like-
lihood £ using model (4)

dN
L= %m 1=zl - %(veC(YH NEvec(YH) - TH In(27). (6)

where £ = Q ® Kj; + 6’1 € R¢NuXdNu i the kernel matrix and the el-
ements of K € RN#*Nu are given by K;; = k"(yL(g,-),yL(.fj)). In this
expression, ® represents the Kronecker product. We can now use an op-
timization algorithm, e.g., L-BFGS-B, to obtain a maximum likelihood
estimate (MLE) of the hyperparameters in the kernel function % [ODX
The main computational cost is the inversion of X, which is O(N?3) and
O(N?) time and space complexity, respectively.

With the hyperparameters known, we can derive the posterior dis-
tribution for yH (&), which is also a Gaussian with mean and covariance
given by [22]

Ely” ®)] = (Q® K (y(&) &' vec(Y")
Var[y? (&)1 = Qk" (yL (&), y1 (&)
- (Qek (¥ @) = (Q@ K (y-(©)), ©)

where k7 (yL(&) = (k" (yL(&).yF). ,kH(yL(é),yva )T is the correla-
tion between the solution at any input & and the other observations in
the training set.

3.1. Efficient computation of noise-free multivariate outputs

In the context of stochastic collocation [20] it is usually assumed that
the noise term can be ignored (i.e., 6 — 0) because the low- and high-
fidelity simulations are deterministic. In this case (¢ — 0), as shown in
Appendix B, the predictive mean in Eq. (7) can be simplified (autokrige-
ability [1]), and our model can naturally handle high-dimensional out-
puts by setting Q = I to obtain

¥1(&) = MGP (0. (v (). 1 ). ®)

This compact GP model allows us to conduct efficient inference by the
maximization of a compact likelihood

d 1 _ Nyd
£l = 5Ky |~ Etr((YH))TKH‘YH) - TH InQ27). )

The computational complexity for this new likelihood is O(N ;Id ) rather
than O(N3, d*), which allows us to apply the model to problems with a
large d. If we substitute Q = I into Eq. (7), we obtain the prediction

Ely?(®)1 = (k7 y"(&)) =7 'YH, (10)

which has the same form as the predictions in the stochastic collocation
framework [20].

Remark 1. We have introduced a Bayesian framework for the multi-
fidelity problem in Eq. (5), which is a generalization of the stochastic
collocation formulation. If we choose a noise free model (as in Eq. (8))
and a linear kernel, i.e., k™ (y£(&)), yL(&'))) = (yL(g))TyL(éj’), we recover
the classic stochastic collocation method in [20].
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3.2. GP surrogate for low-fidelity models

In the original stochastic collocation framework [20], the prediction
of a high-fidelity solution y*(&) for an unseen simulation parameter &
requires an execution of the low-fidelity model to obtain y(£). The un-
derlying assumption is that the low- and high-fidelity correlation matri-
ces are similar. This implies that the low-fidelity simulation cannot be
significantly different from the high-fidelity simulation, which in turn
implies that the low-fidelity model cannot be significantly cheaper.

Following the NAR model [21], we also recursively place a GP prior
over the low-fidelity computer model to harness the function approxi-
mation utility of a GP. Specifically, we define

¥ = MEP(0.k 8NN, an

where k'(-, -) denotes the kernel function for the low-fidelity resolution.
This model is not to be confused with (8) and here kL(~, -) is now a direct
function of the inputs. Given some low-fidelity simulation data Y* €
RNuxd we can obtain a marginal likelihood and posterior predictive
process as before, yielding

d 1 _ Nd
£t = 7 K| - Etr((YL))TKLlYL) - = In@n), (12)
and [22]

yH & ~ Nt ©).mh &)

uh @ = K@K 'Y (13)

M) = 1® (k& & - k(@) K] 'kE©)).

in which the entries of K; € RN#*Nu are given by k%(&;, &), and kL(&) =
kb, &), kL & Ny )]”. Essentially, this recursive process produces a
deep GP, which is infamous for its intractability; it requires expensive
approximate inference, e.g., Monte-Carlo or variational Bayes. Fortu-
nately, for the multi-fidelity problem the latent variable y®)(&) is ob-
servable by conducting low-fidelity simulations. This allows us to de-
compose the model training process through separable and independent
likelihood functions (9) and (12).

Remark 2. By bridging the connection between stochastic collocation
and NAR, we improve the stochastic collocation framework with NAR
to provide an approximation to the low-fidelity model. Furthermore,
we can take advantage of the additive structure [21] to strengthen the
model by using a kernel function k™ (yL(&), yL(&")) for Eq. (8).

3.3. High-fidelity model prediction

For model prediction corresponding to a unseen input ¢, if the low-
fidelity solution is provided via low-fidelity simulation (as is done in
the stochastic collocation literature [20]), we can easily compute the
posterior mean using Eq. (19). The computational cost can be further
reduced using our model, which is essentially a deep GP [5,6] with a
trade-off in that we must sample from the distribution over y(&) to
obtain a distribution over y(&). In detail, we first compute the posterior
of yL(&) via the Gaussian posterior (13). As is suggested in [7,21], we
can generate I independent samples {y* (&)} l_’=1 from N (uk (&), ML (&)
and approximate the posterior by

Py (x) = /(kL(5))TKLYLP(YL(§))KIYL(§)
1
~ YN (pEh ). (14)
i=1
3.4. Greedy selection of high-fidelity experiments
So far we have introduced our model based on the pre-existence of
low- and high-fidelity data. In practice, such data (especially that of

high-fidelity) is expensive to obtain. It is desirable to allocate computa-
tional resources, especially for the high-fidelity simulations, such that
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the surrogate model can achieve its best performance with the least
computational cost. Inspired by the work of [20], we intend to build
the multi-fidelity surrogate model in a sequential manner.

Let us first consider the high-fidelity GP of (8). Assume that we al-
ready have a collection of model parameters {¢; },117 C X and the corre-
sponding low- and high-fidelity simulation results Y and Y. We define
the information gain of a new model parameter &: as the uncertainty or
variance given the current data collection. Maximization of the infor-
mation gain can then be defined mathematically by

g, = argmaxsey (K (v () K K (v2 (&), (15)

where k! (y-(§)) = (k" v*(§).y"(¢)) . k" (¢ (£).¥" &y, )" In prac-
tice, however, Eq. (15) cannot be solved directly because Ky and k¥’ are
unknown unless we already have a large number of high-fidelity simula-
tions. The nonlinear kernel k(- , -), e. g., ARD kernel, contains unknown
hyperparameters whose estimation relies on the optimization of Eq. (9).
In [20] this problem is addressed by implicitly assuming a linear ker-
nel and a finite-cardinality subset of the input space Z C X as the input
candidates. The solution for Eq. (15) can then be found analytically by
QR decomposition, LU decomposition, or Cholesky decomposition on
K# =(YHTyL.

For the nonlinear kernel containing unknown hyperparameters, for
which this method is not applicable, we develop an alternative ap-
proach. Essentially, in each step, we first update our high-fidelity GP
model of Eq. (8) by maximizing the likelihood of Eq. (9). We then cal-
culate the variance for all candidate locations except for those already
chosen in previous steps. Next we conduct a high-fidelity experiment for
the one that has the largest variance and add it to the data collection.
This process is repeated until a maximum iteration number is reached.

Unlike the classic stochastic collocation model that requires low-
fidelity simulations to provide correlation estimation, Greedy-NAR has
the capacity to directly produce the low-fidelity simulations via the non-
linear kernel. This also allow us to apply the same process to construct
the low-fidelity GP model in Eq. (11)

g, = argmaxéez(kf(f))T(KL)_lkf(@, (16)

where kL (&) = (k7 (&,€)) ... .k (&, Eny )]”. We present the full details of
how to construct the model without requiring the prior execution of low-
fidelity simulations for all candidates (which is required by the classic
stochastic collocation model) in Algorithm 11.

The simplest way to allocate computational resources is by designing
the number of executions for low- and high-fidelity simulations based
upon the available computational budget. In case we want the system
to be fully automatic, we may specify a large candidate set Z and the
uncertainty bound (rather than specific number) for determining the
number of iterations. We can also perform an eigenvalue analysis of the
low-fidelity correlation matrix to find the optimal number of samples
that fully capture the high-fidelity model behaviour within the parame-
ter space.

Remark 3. Based on our unified framework for multi-fidelity models,
we propose to equip our method with a sequential learning approach
in order to improve efficiency. If we use a linear kernel for kH (-,-) for
Algorithm 1, we recover the stochastic collocation sequential learning
approach, which has a much simpler correlation structure (without hy-
perparameters).

3.5. Extension beyond bi-fidelity problems

So far we have only considered the bi-fidelity case. However, our
method is readily extended to multi-fidelity problems. In particular, we

1 The code is available as open-source on Github: (12:monospace )https://
github.
com/wayXing/GreedyNAR(/12:monospace).
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Fig. 1. Total RMSE of two-fidelity MD simulation Qols, with comparisons to NAR.

Algorithm 1 Greedy-NAR construction

Input: A finite-cardinality set Z of input parameters,number of low-
and high-fidelity experiments allowed N; and N, initial data col-
lection size Ny (N, < Ny < N;)

Output: A NAR model containing low- and high-fidelity GPs of Eq. 8
and 11

1: Randomly select N point from Z and form the initial low-fidelity
candidate set T'X
2: Conduct low-fidelity experiments for I'; and collect the solutions Y
3: for || < N, do
4: Update low-fidelity GP model by maximizing likelihood 12 based
onT,, YL
5: Find &, based on Eq. 16 for Z \ T,
Update low-fidelity candidate setI'; <« I'; U,
Conduct a low-fidelity simulation to get solution y*(¢,); update
low-fidelity solution set Y; « [Y7, (yL(&)T17
8: end for
9: Randomly select N point from I'; and form initial high-fidelity can-
didate set 'y,

10: Conduct low-fidelity experiments for I';; and collect the solutions
YH

11: for [T'y| < Ny do

12: Update high-fidelity GP model by maximizing likelihood 9 based
onTy, Y#

13: Find &, beasd on Eq. 15 for I'; \ 'y

14: Update high-fidelity candidate set I'y; < 'y U,

15: Conduct a high-fidelity simulation to get solution y¥ (¢,); Update
low-fidelity solution set Y, « [YT . (y"(£,)"1"

16: end for

use Eq. (11) to predict the second fidelity and recursively use Eq. (8) to
pass down the predictions in the deep GP structure to derive the final
high-fidelity predictions. For the greedy construction of Greedy-NAR in
the multi-fidelity problem, we can simply add Eq. (8) after each new
fidelity step and optimize Eq. (15), in which ‘low-fidelity’ now refers
to the fidelity level of the preceding step and ‘high-fidelity’ is the next
fidelity level in the chain.

4. Results and discussion
4.1. Test problem 1: Molecular dynamics simulation model

We first consider a molecular dynamics (MD) simulation using a
Lennard-Jones (LJ) potential, with between 36 and 696 particles of 12C

in a cubic simulation box with periodic boundary conditions. Details of
the implementation are provided in Appendix C.

We chose the low-fidelity simulation model as one with a large-time
step, and ran it on randomly selected points in the parameter space, con-
sisting of temperature and density. The low-fidelity simulations used a
time step of 10 or 20 fs and the high-fidelity simulations used a time
step of 1 fs. For all model parameter values, the Qols were computed
using the low-fidelity model. These Qols were in the form of either
scalars or vectors, namely the radial distribution function (RDF), mean
squared displacement (MSD), averaged total energy and self-diffusion
coefficient.

All training and test data were normalized using y,; = (Vg — 74)/ 63,
where y,; denotes the n-th sample of the dth coefficient of an output;
g =1/M) Z,I,\i | Yua is the mean value of the dth coefficient over M
samples, and 65 = Zf\i \Wng = $4)/(M — 1) is the empirical variance. This
normalizing process was applied as a pre-processing step for all experi-
mental data in all examples unless stated otherwise.

We ran 40 and 80 low-fidelity simulations (we call the low-fidelity
F1 from here on) at randomly selected simulation parameters, based on
which we slowly increased the number of training data points at the
second fidelity level (F2). The performance was evaluated based on the
root mean square error (RMSE) on 34 test points. The experiments were
repeated five times with random shuffling of training and test data, and
the errors were averaged to obtain the final error.

The averaged root mean square error (RMSE) statistics (mean and
standard deviation) with 40 and 80 F1 training data points and an
increasing number of F2 training points are shown in Fig. 1, along
with the equivalent results for NAR. These RMSE errors are the sums
of the RMSE errors of all Qols. The trends for each individual Qol
RMSE were the same, so only the total RMSE is shown unless stated
otherwise. Greedy-NAR results in a significantly lower RMSE and a
smaller variance when the F2 data is limited (i.e., #F2 = 10). Both
methods converge to the same RMSE mean and standard deviation
as the number of F2 points is increased (indicating that Greedy-NAR
indeed converges to the standard NAR).

We then evaluated Greedy-NAR in a more complicated case in which
we aim to find an accurate approximation of the Qol function from the
highest fidelity output (F3) in a 3-fidelity simulation. We show the RMSE
as a function of F3 training data points given different numbers of F1 and
F2 training data points in Fig. 2. The experiments were again conducted
five times with random shuffling of training and test data.

It is clear that with a higher fidelity example, the performance gain
over NAR increases substantially. For example, with only 15 F3, 20 F2,
and 40 F1 training data points, Greedy-NAR achieves a similar perfor-
mance to the standard NAR with 80 F1, F2, and F3 training data points.
Note that for #F1=80 and #F2=40, Greedy-NAR converges to the lowest
RMSE out of all combinations of training data points, which indicates
that increasing the number of training data points at different fideli-
ties does not guarantee a performance improvement, due to overfitting.
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Fig. 3. Averaged total energy predictions of a two-fidelity MD with comparisons to SC.

Nevertheless, Greedy-NAR exhibits dramatic improvements over stan-
dard NAR in terms of the rate of convergence of the error, especially
with an increasing number of F3 training data points, suggesting a huge
computational saving in practical scenarios.

Finally, we compared Greedy-NAR with stochastic collocation (SC)
in the bi-fidelity (F1 and F2) case. Since a standard stochastic colloca-
tion requires F1 observations as test points to give correct F2 predictions,
we also supply F2 predictions to both models as comparisons. The test
points are sorted such that their corresponding inputs are arranged in
increasing order for the purposes of visualization. The averaged total en-

ergy and self-diffusion coefficient predictions are shown in Figs. 3 and
4, respectively. As is evident from these figures, the F1 and F2 simula-
tion results (ground truths) for the RDF exhibit quite different trends,
indicating different correlation structures for the F1 and F2 target func-
tions. Since SC relies on the assumption that the correlations of different
fidelities are similar, it is not surprising to see that it fails to give accu-
rate predictions even given the F1 test point values. In contrast, Greedy-
NAR performs very well even without the F1 values; with the F1 test
point values provided, the predictive accuracy of Greedy-NAR further
improves.
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4.2. Test Problem 2: Plasmonic nano-particle arrays of interactions of incident waves from particles influences the magnetic

field. Fig. 13 shows configurations of Vogel spirals with particle num-
In this test problem, we calculate the extinction and scattering ef- bers in the set {2, 25, 50}, which define fidelities F1 to F3. The param-
ficiencies Q,,,; and Q,. using the Coupled Dipole Approximation (CDA) eter space was taken to be 4 € [200, 800] nm, «,, € [0, 27] rad, and

method for plasmonic systems with different numbers of scatterers. CDA a,s € (1, 1500). These are the incident wavelength, the divergence an-
is an approach for simulating the optical response of an array of identi- gle and scaling factor, respectively. Inputs were selected using a Sobol
cal non-magnetic metallic nano-particles with sizes much smaller than sequence. The computational time needed for running CDA grows ex-
the wavelength of light (here 25 nm). ponentially with the number of nano-particles. Therefore, the computa-
Q. and Q. are defined here as the Qols. We used our proposed tional savings associated with the proposed sampling strategy are signifi-
approach to construct surrogate models for the efficiencies with up to cant. Details of the model and numerical implementation are provided in
three fidelities. We considered particle arrays given by Vogel spirals. Appendix C.
The number of nano-particles in a plasmonic array significantly impacts Similar to the previous example, we evaluated the sum of the RM-

the local extinction field induced by plasmonic arrays since the number SEs of the Qols as a function of F2 training point number on 684 test
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Fig. 7. Extinction coefficient predictions from the plasmonic nano-particle simulations with comparisons to SC.

points when given 40 and 80 F1 training samples. The experiment was
repeated five times with random shuffling of training and test data. The
RMSE statistics (mean and standard deviation) with 40 and 80 F1 train-
ing data points are shown in Fig. 5. Although in this experiment Greedy-
NAR does not provide any significant advantage over NAR, it still shows
consistent superiority and convergence towards the standard NAR re-
sult. Greedy-NAR demonstrates its value in terms of simulation time
because the extra computational cost required by Greedy-NAR is negli-
gible compared with the expense of running high-fidelity simulations.
We then evaluated Greedy-NAR and NAR in a 3-fidelity case. The
performances of both methods given different combinations of F1, F2,
and F3 training data points are given in Fig. 6, again with 684 test points.

We obtain results that are similar to those of the previous example, in
that Greedy-NAR substantially outperforms standard NAR, particularly
when the number of training samples is low. In this experiment, we
can also see that with 80 F2 training data points, the performances of
both methods is worse than that with 40 and 60 F2 training data points,
which is a clear symptom of overfitting.

Finally, we compared our method with stochastic collocation, and
the results are provided in Figs. 7 and 8. It is clear that for both the
extinction and scattering coefficients, stochastic collocation without F1
test points as model inputs is inaccurate, deviating significantly from the
ground-truth values. However, it provides accurate predictions when
the F1 test points are revealed to the model. Given the F1 test points,
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stochastic collocation achieves the best performance for some special
cases, e.g., test ID 12 in Fig. 7. For the extinction coefficient, SC with
F1 test points shows a similar performance to Greedy-NAR with F1 test
points and Greedy-NAR. Overall, we conclude that with enough F1 test
points revealed to the model, stochastic collocation is a good method
when the F1 and F2 ground-truth functions have a similar correlation
structure. Otherwise, SC with or without the F1 test points generally pro-
vides inaccurate predictions. We also note that in most practical cases,
providing F1 test data means running expensive simulations, which is
often prohibitive.

4.3. Test Problem 3: mixing flow in an elbow-shape pipe

When it comes to modeling turbulent flows in different geomet-
rical configurations, there is a large set of available models ranging
from simple one-equation models such as Sparllat-Almaras to sophis-
ticated models such as the Large Eddy Simulation (LES). The computa-
tional models available can be classified as low- or high-fidelity models,
or classified using more fidelity levels. A major benefit of using low-
fidelity models arises when they are employed in the context of de-
sign and optimization of thermal-fluid systems. In these scenarios, the
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computational speed of these models benefits exploration of the design
space. However, their inherent inaccuracy may lead to sub-optimal de-
signs. Fusion of low- and high-fidelity models is believed to be an ef-
fective way of balancing computational costs against the accuracy of
predictions.

We applied our Greedy-NAR to a benchmark problem of mixing flow
in a pipe. The input parameter space in this case was the freestream ve-
locity at the large inlet and the freestream velocity at the smaller inlet.
The Qols were two (vectorised) velocity and pressure profiles in the sym-
metry plane of the elbow pipe, one at the elbow junction and the other
near the pipe exit, both at 1 = 50 seconds. The vector of these quantities
had 96 elements. The F1 model was the Sparlat-Allmaras turbulence
model, while the F2 model was the LES model. Details of the numerical
implementation are provided in Appendix C.

We first ran 40 and 80 low-fidelity simulations at randomly selected
parameter values, based on which we gradually increased the number
of F2 training samples. As before we used the total RMSE of the Qols
(for 18 test points) averaged from the results of a 5-fold cross validation
to assess the results (Fig. 9). The RSME for Greedy-NAR is significantly
lower, with a smaller variance when the F2 data is limited (e.g., to 10).
Both methods converge to the same performance level in terms of error
mean and standard deviation.

Both methods provide very accurate predictions for the 1st, 2nd, and
3rd coefficients in the expansion (24) (basis coefficients in a reduced-
dimensional space for the outputs y, as described in Appendix C) since
all these values, which represents low-frequency components of the
data, are very stable. The predictions of the 4th and 5th coefficients
are shown in Figs. 10 and 11. We can draw the same conclusion as
before, that Greedy-NAR achieves the most accurate results, especially
with the F1 test points observations revealed. In contrast, SC without F1
observations invariably leads to poor performance.

To demonstrate the accuracy on high-dimensional predictions, we
show two test cases, based on 80 F1 and 30 F2 training samples, in
Fig. 12. The actual values are normalized for visualization. Greedy-NAR
leads to very accurate predictions, clearly close to the F2 ground truths,
whereas SC makes good predictions overall except for areas where the
F1 and F2 ground truths exhibit different trends.

5. Summary and Conclusions

In this paper we propose a uniform Bayesian framework that con-
nects the classical methods of multi-fidelity modelling. Greedy-NAR
is a nonlinear Bayesian autoregressive model that captures complex
between-fidelity correlations but is constructed in a way that it outper-
forms the standard methods when the computational budget is limited.

We demonstrated through a variety of problems that Greedy-NAR
leads to improvements in both the stability and accuracy of predictions
compared to NAR. Comparisons to SC demonstrated advantages in terms
of both accuracy and computational cost. It is, moreover, easy to imple-
ment and highly scalable, taking full advantage of low-fidelity results
and very effectively limiting the number of high-fidelity simulations that
need to be performed for a given accuracy.
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Appendix A. Kernel formulation of generalised autoregression
model

We first integrate out W in Eq. (2)

p(y"(©®) = / p(y" (&) | W,y" (©)p(vec(W)) dvec(W)
= / N (¥ ©IWy"(©), 6’ T) N (vec(W)|0. K ® Q) dvec(W)

= / Ny ®OldG"(©) @ D vec(W), > T) N (vec(W)|0, K ® Q) dvec(W)
= N(£,10, (¢ @ D' (K ® Q)(¢p(y“(£) ® D) + o°1)
= N(£,10,¢" X (©)Ke(y-(£)Q + ¢°1). 17)

noting  that  vec(W) ~ N'(vec(W)|0,K® Q), where  vec(W) =

(wlT,...,w[T)T € R is the vectorization of W. In this equation ®

is the Kronecker product. Since K is symmetric and positive semidefi-

nite (PSD) by definition, it possesses a unique PSD symmetric square

root /K. Hence the term ¢7 (y’(&))Ke(y'(&)) defines an inner product

(+, *)x in the feature space

(@G ). 8" Y E Nk =" Y @K (E) = (¥ (©)). (¥ (€))
(18)

for £,& € X, where ( -, - ) denotes the standard inner product and
dL(©) = VP (&)). Eq. (17) defines a multivariate GP with a kernel
given by the inner product ( -, - )x. We can now employ kernel substitu-
tion [27], which consists of replacing the kernel in (18) with a general
kernel k" (y%(&). y*(&").

Appendix B. Autokrigeability

For ¢ — 0, the predictive mean in Eq. (7) can be simplified as fol-
lows:

Ely? @] = (Q@ k(")) (Q®Ky) 'vec(Y!)
= Q® (K" ®)" (Q! ®K; vec(Y?)
= QQ ™M ® (K (v-(&))  K;; vee(Y!)

1® (k7 (L))" Ky vee(¥™).

vec( (k7 (yE() Ky IT)

= (YK K (vh (&) (19)

This is also known as autokrigeability [1], and it reveals that the actual
structure and value of Q do not matter as far as the mean predictions are
concerned because Q will always cancel. By assuming noise-free obser-
vations, our model can thus naturally handle high-dimensional outputs
without the complex computations associated with Q. For simplicity,
therefore, we can set Q = I to obtain the model (8).

Appendix C. Details of the numerical experiments

Molecular dynamics model

The interatomic interactions in molecular dynamics (MD) are de-
fined using a potential function. In this example we used the Lennard-
Jones (LJ) potential [19]

u(r,) =4e[<%>12— (%)6] 20)

where, r; denotes the pairwise distance between particles i and j, € is
the potential well depth and ¢ defines the length scale for this pairwise
interatomic interaction model. When the size of the integration time-
step is too large, the numerical scheme can become highly unstable. In
order to prevent such numerical instability, we capped the magnitude of
the repulsive interactions for closely approaching atoms when the ratio
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of ¢/r;; exceeded 1.2. This force capping is essential in many problems
and is described in detail in [18].

We assumed ¢ and ¢ to be 3 rA and 1 kcal mol™!, respectively.
Periodic boundary conditions were used on all sides of the cubic
simulation box, with width L =27.05 rA. We considered a uniform
grid of temperature T and density p defined as T x p : [500, 1000]K x
[36.27,701.29]kg m~3 with 114 inputs selected from this grid. The den-
sity range was equivalent to p* € [0.05, 0.95], where p* is the dimen-
sionless density equal to No3/V (p = Nm/V), in which m is the particle
mass, set to m = 12.01 g mol~', and V = L? is the simulation box vol-
ume. Based on the dimensionless density range, the number of molecules
ranged from 36 to 696. All simulations were performed using the Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code.
The Verlet algorithm was employed for integration of the equations of
motion and a microcanonical (NVE) ensemble was assumed.

Plasmonic array model

The response of a plasmonic array to electromagnetic radiation can
be computed by the solution of the local electric fields, E;, (1)), for each
of the nano-spheres. Considering N metallic particles described by the
same volumetric polarizability a(w) and located at vector positions r;,
the local field Ej,(r;) can be computed by solving [9]

, N
E;p.(r;) = Eo(r)) — L 2 GijE/oc(rj) 2D
€0 j=rp

where Eq(r;) is the incident field, k is the wavenumber in the background
medium, ¢, is the dielectric permittivity of vacuum (¢, = 1 in the CGS
unit system), and f}i ; is constructed from 3 x 3 blocks of the overall
3N x 3N Green’s matrices for the ith and jth particles. G
matrix when j = i, and is otherwise computed as

- exp(ikr;;) ~ AT 1 1 ~ AT
Gy = — =V | * e D) @2

i

;j is a zero

where T;; is the unit position vector from particles j toi and r;; = |r;;|. By
solving Egs. (21) and (22), the total local fields E;,.(r;), and as a result
the scattering and extinction cross-sections, are computed. Details of the
numerical solution can be found in [25].

Q..+ and Q. are obtained by normalization of the scattering and ex-
tinction cross-sections with respect to the total projected area of the
array. We considered a class of particle arrays known as Vogel spirals,
which are defined by [3]

p, = \/na,, and 6, = na,,, (23)

where p, and 6,, denote, respectively, the radial distance and the polar
angle of the nth particle in a Vogel spiral array. Hence, the incident
wavelength 4, the divergence angle a,,, the scaling factor a,,, and the
number of particles n can uniquely define the Vogel spiral configuration.

Turbulent mixing model

As illustrated in Fig. 14, water flows from two inlets, the bottom
left end of the pipe and a smaller inlet located on the elbow. The
water exits the pipe from the top right in a horizontal upward direc-
tion. The freestream velocity at the large inlet (with a diameter of 1
m) varies between 0.2 to 2 m s~!, and the freestream velocity at the
smaller inlet (with a diameter 0.5 m), varies between 1.2 to 3 m s ..
The fluid density was taken to be 1000 kg m~ and the viscosity to
be 8 x 10~* Pa s. We ran Sparlart-Allmaras in unsteady mode just as a
benchmark. The algorithms LES (F2) and Sparlart-Allmaras (F1) were
implemented in ANSYS Fluent, employing the dynamic kinetic Energy
subgrid-scale model within the LES model. The default was used, namely
a second-order implicit formulation and central differencing (finite vol-
ume). For Sparlart-Allmaras, the default vorticity-based production and
low-Reynold’s number damping were selected. For both F1 and F2 sim-
ulations, a total of 36,134 nodes and 29,399 hexahedral cells were used,
along with a time step of 0.01 s.
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Fig. 13. Sample configurations of Vogel spirals with {2, 25, 50, 500} particles.

b
N

For this problem, the high-dimensional output (dimension equal to
number of grid points D) prohibits the direct implementation of Greedy-
NAR and standard NAR [13,33] due to the use of an ARD kernel. As
is shown in the decomposition approach in [33], the high dimensional
outputs can be approximated using a linear combination of basis vectors
in a reduced dimensional subspace of R?, of dimension R < D, i.e.,

R
y(f)(é) - Z Zif)(g)vif) - sz(f)(f), 24)
r=1

where {v,} iD= | form a basis for RP and zﬁf ) are the corresponding coef-

ficients in this basis. R is chosen such that it captures a prescribed total
variation in the data.

Fig. 14. Computational domain and geometri-
cal configuration of an elbow pipe and its plane
of symmetry; Test Problem 3.

In [33], the bases are found using a proposed residual principal com-
ponent analysis (resPCA) that enforces a uncorrelated structure, which
contradicts our assumption that the F1 and F2 correlations are similar.
Instead, we construct a universal basis by combining information from
different fidelities. We define the basis as the eigenvector solutions of
the following problem

v, =v,C (25)
where C is the covariance matrix of the average target function y(&) =

Ely@&]~ (1/N)) Z:]:fl y)(&,). Since the basis vectors are orthogonal,
the representations are easily computed via

T
zilf) — ny) (V(f)) . (26)
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For our problem, R =5 basis vectors were sufficient to capture 99.5%
of the total variance in the data. With the approximation (24), we can
now treat z)(£) as our multi-fidelity target functions and apply NAR,
Greedy-NAR, and SC.
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