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Abstract

The automatic inverse design of three-dimensional plasmonic nanoparticles enables scientists and engineers to explore a wide
design space and to maximize a device’s performance. However, due to the large uncertainty in the nanofabrication process, we may
not be able to obtain a deterministic value of the objective, and the objective may vary dramatically with respect to a small variation
in uncertain parameters. Therefore, we take into account the uncertainty in simulations and adopt a classical robust design model
for a robust design. In addition, we propose an efficient numerical procedure for the robust design to reduce the computational cost
of the process caused by the consideration of the uncertainty. Specifically, we use a global sensitivity analysis method to identify
the important random variables and consider the non-important ones as deterministic, and consequently reduce the dimension of
the stochastic space. In addition, we apply the generalized polynomial chaos expansion method for constructing computationally
cheaper surrogate models to approximate and replace the full simulations. This efficient robust design procedure is performed by
varying the particles’ material among the most commonly used plasmonic materials such as gold, silver, and aluminum, to obtain
different robust optimal shapes for the best enhancement of electric fields.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The electromagnetic design of nanostructures has traditionally been carried out without relying on an automatic
optimization procedure, resulting in a significant limitation of the accessible design space and of the achievable
performance. The recent advances in computational electromagnetic methods and nanofabrication techniques that are
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capable of reproducing the nanoconstructs resulting from the numerical design process have triggered the introduction
of more rigorous design strategies [1–3]. For example, Liu et al. considered the optimal design of a particular
class of nanophotonic structures – an extremely compact photonic-crystal-based wavelength division multiplexer –
using finite-element tearing and interconnecting (FETI) method [2]; and Ruan and Fan designed a subwavelength
superscattering nanosphere with plasmonic–dielectric–plasmonic layer structure to achieve an enhanced scattering
cross section [3]. Additionally Yelk et al. developed optimal design of a 2D symmetric silver lens that focuses an
incidence plane wave onto pre-specified, spatially confined spot [1].

Specifically, deterministic inverse design methods have been proposed to design the geometry of metallic
nanoparticles which maximize the quantity of interest [4–7]. The authors in Refs. [4,5] obtained an optimal infinite
plasmonic cylinder using a full-retarded 2D boundary-element method solver to map the shape parameters to the
output and Gielis’ superformula to describe the cross section of the cylinder. Feichtner et al. [6] utilized 3D
finite-difference-time-domain (FDTD) method to design the optimal 3D plasmonic nanoantenna that consists of
a checkerboard of 20 × 20 discrete gold cubes with 10 nm edge. Forestiere et al. [7] proposed a deterministic
inverse design, which involves the parameterization of the morphology of arbitrary 3D particles using Gielis’
superformula [8,9], a full-retarded electromagnetic solver based on the surface integral equation method that maps
the design parameters to the quantity of interest [10], and an efficient optimization algorithm. The automation of the
rigorous inverse-design strategy for the plasmonic design makes it possible to search in a quite large space of 3D
shapes, and consequently for the user to obtain a specific nanostructure that meets specific needs.

However, the deterministic design strategies mentioned above are normally based on the simulation/modeling of
the physical process and the nanofabrication of the designed structure, which inevitably involve uncertainty. Without
considering the uncertainties in the simulations and/or the nanofabrication process, the deterministic strategy may
lead to non-robust designs. To resolve this issue, robust optimal design model has been utilized to take into account
the uncertainty in the system for a robust design, where the best compromise between high performance and low
uncertainty is obtained. The uncertainties in the engineering systems are usually characterized by random parameters
in the framework of probability theory, and a classical robust model aims to optimize the mean system response while
minimizing its variability (standard deviation) [11–13].

The optimization process under uncertainty requires the evaluation of mean and standard deviation of the cost
function for any specific design in the search space. Traditionally, the Monte Carlo (MC) sampling method (which
implements the simulations at the drawn samples based on the distribution of the random inputs and obtains the
corresponding samples for the model output) is applied for the estimation of the statistical moments of the cost
function. MC method is easy to understand and implement. However, due to its slow convergence, it may require a
large number of evaluations of the full simulation model to achieve the desired accuracy in the statistical quantities of
interest. Therefore, the MC method could be viewed as being robust at the expense of being numerically expensive.

To represent the uncertainty in the output and calculate the mean and standard deviation more efficiently, we
adopt the generalized polynomial chaos (gPC) expansion method to construct a computationally cheaper surrogate to
approximate the full simulation models. The gPC method can be used to expand any square integrable random function
in the stochastic space in terms of orthogonal polynomials of the random variable. Initially, Hermite polynomials
are used for functions with Gaussian distributed random inputs based on the homogeneous chaos theory [14], then
extends to different types of orthogonal polynomials in the Askey scheme corresponding to different types random
variables [15]. By matching the probability density function (PDF) of random variables to the weighting function
of orthogonal polynomials, the gPC expansion with this specific type of polynomial basis is capable of converging
rapidly to a smooth function. The convergence rate of the gPC expansion relies on the smoothness of the function,
measured by its differentiability. With other types of polynomials as the basis of gPC expansion, one can still obtain a
convergent series at the cost of inducing larger approximation errors and a more complex gPC representation [16]. In
the current work, we use Legendre polynomials for variables with uniform distribution and Hermite polynomials for
Gaussian distribution based on the Askey scheme. In addition, we adopt a discrete projection method [17] to calculate
the gPC coefficients, which is a non-intrusive method treating the simulation code as a black box.

The construction of a gPC expansion is efficient for low-dimensional problems; however, it may become expensive
when the stochastic space dimension is large. In this case, we implement sensitivity analysis (SA) to identify the
“important” uncertain variables. Exploiting the sensitivity analysis, the complexity of the problem can be reduced
by considering the non-important variable deterministic. The SA methods can be broadly categorized into two types:
local sensitivity analysis and global sensitivity analysis. There may be different interpretations on “local” and “global”
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for sensitivity analysis in the literature. However, in the current work, we follow the reference [18] where the local
sensitivity analysis investigates the impact on the model output based on the small perturbations of input variables
only very close to a fixed point (normally with the nominal values), and the local sensitivity is measured using partial
derivatives evaluated at the fixed point in the space of input. On the other hand, global sensitivity analysis explores
the impact on the model output based on the uncertainty of the input variables over the whole parametric space. When
the stochastic space of input parameters is large, the uncertainty cannot be considered as the small perturbations
very close to the nominal values, consequently local sensitivity analysis may not be proper for the use of identifying
the “important” parameters. Therefore, we focus on global sensitivity analysis in the current work. The procedure
involves the simulation runs to map the model output from the uncertain input, and the calculation of the sensitivity
measures. There are different indices to measure global sensitivity in the literature, and they perform differently
for different types of mathematical models. For example, Standardized Regression Coefficients (SRC) works well
for linear functions; the measures based on rank transforms such as Partial Rank Correlation Coefficient (PRCC)
work well for nonlinear but monotonic relationships between outputs and inputs [18]. For nonlinear non-monotonic
function, variance-based SA measures such as Sobol indices are the best choice [19]. Since the electromagnetic
model has clearly shown the non-monotonic trend with respect to the shape parameters in our previous work [7], we
adopt Sobol indices as global SA measure here. The Sobol indices can be calculated using Monte Carlo sampling
method [20]. Again, due to the slow convergence, one may need to run large number of electromagnetic simulations
to reach a reasonable result, which could be computational expensive or even infeasible. Therefore we implement the
calculation of Sobol indices based on gPC expansion [21]. By comparing the value of Sobol indices, we are able to
identify the “important” uncertain variables and possibly reduce the dimension of stochastic space.

This paper is organized as follows. In Section 2, we introduce the background on the deterministic inverse design
for nanoparticles, general polynomial chaos expansion method and global sensitivity analysis for Sobol indices
calculation. Following that, we propose an efficient numerical method for robust design of metal nanoparticles and
provide a simple one-dimensional example as an illustration in Section 3. In Section 4, the proposed numerical strategy
is applied to the robust design of nanoparticles with different materials. A summary is provided in Section 5.

2. Background

2.1. Deterministic inverse design

In our previous work [7], the deterministic inverse design has been formulated for the monochromatic linear
electromagnetic scattering by a single homogeneous and isotropic nanoparticle. The objective was to design the
optimal surface morphology Σ of a specific metal nanoparticle, which is excited by the external field at a specific
wavelength λ, so that the best desired performance of the design is achieved.

To implement the optimization mathematically, the surface morphology Σ of the nanoparticles has been
parameterized and represented in mathematical form based on Gielis’ superformula. Gielis’ superformula is a
generalization of superellipses formula. By relaxing the constraints of superellipses, Gielis’ superformula is capable
of describing a large set of shapes in nature. The 3D formula is provided in [7] and the following.

x = η r1 (φ) cos (φ) r2 (θ) cos (θ)

y = η r1 (φ) sin (φ) r2 (θ) cos (θ)

z = η r2 (θ) sin (θ)

(1)

where

r1 (φ) =

⎡⎢⎢⎣
⏐⏐⏐⏐⏐⏐
cos

(
m(φ)

4 φ
)

a(φ)

⏐⏐⏐⏐⏐⏐
n(φ)

2

+

⏐⏐⏐⏐⏐⏐
sin

(
m(φ)

4 φ
)

b(φ)

⏐⏐⏐⏐⏐⏐
n(φ)

3

⎤⎥⎥⎦
1

n(φ)
1

r2 (θ) =

⎡⎢⎢⎣
⏐⏐⏐⏐⏐⏐
cos

(
m(θ)

4 θ
)

a(θ)

⏐⏐⏐⏐⏐⏐
n(θ)

2

+

⏐⏐⏐⏐⏐⏐
sin

(
m(θ)

4 θ
)

b(θ)

⏐⏐⏐⏐⏐⏐
n(θ)

3

⎤⎥⎥⎦
1

n(θ)
1

(2)

and θ ∈ [0, π], φ ∈ [0, 2π ].
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As described in [8,7], the parameter η controls the scaling of the resulting shape; and the parameters m, n1, n2,
n3, a, and b with the superscript (φ) control the shape variation along the azimuthal angle φ, while those with the
superscript (θ ) describe the shape along the altitude angle θ (zenith). Specifically, m indicates the number of sections
to which the plane is divided, instead of the fixed four sections or quadrants as in the superellipses; a and b controls
how elongated the shape is, which is similar as in the case of superellipses; n2 and n3 determine whether the shape is
inscribed or circumscribed in the unit circle.

The surface morphology can be completely described by thirteen parameters based on the superformula. However,
we keep fixed the altitude parameters in [7] since we are interested in shapes compatible with planar nano-fabrication
technology:

m(θ )
= 2; nθ

i = 2 ∀i = 1, 2, 3; a(θ )
= b(θ)

= 1. (3)

We also bound the following azimuthal parameters to exclude the shapes with extremely sharp edges in the searching
space:

1 ≤ m(φ)
≤ 8; 0.75 ≤ n(φ)

i ≤ 6 ∀i = 1, 2, 3; 0.25 ≤ a(φ), b(φ)
≤ 2. (4)

Furthermore, the scaling factor η is also constrained in order to avoid excessively small or large particles:

25 · 10−9
≤ η ≤ 75 · 10−9. (5)

In the current work, we make the same assumptions on the parameters of the superformula. Therefore, the surface of
a nanoparticle Σ is fully parameterized by the shape parameters Γ = {m(φ), n(φ)

1 , n(φ)

2 , n(φ)

3 , a(φ), b(φ)
}, and the design

space is the seven-dimensional space of the azimuthal parameters and scaling factor of the shape.
Similarly as in the previous work [7], our desired performance of a metallic nanoparticle is considered in terms

of the averaged electric-field enhancement on the surface of particle, which is calculated using the electromagnetic
solver — Electromagnetic Surface Integral Equations (SIE). Let Σ denote the particle’s surface, which divide the
entire electromagnetic field domain R3 into the interior of the dielectric domain Ω (i) and the external medium Ω (e).
Correspondingly, let ϵi and ϵe denote the linear permittivity of the particle and of the embedding medium. Specifically,
we set ϵi equal to that of real world metals such as gold, silver, or aluminum, and ϵe to be the permittivity of air ϵ0. In
addition, the external electric and magnetic fields at wavelength λ are denoted as (E0, H0), and total fields are denoted
with

(
E(i), H(i)

)
and

(
E(e), H(e)

)
in Ω (i) and Ω (e), respectively. Then the scattered fields

(
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S

)
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)
can be defined as:
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in Ω (i)
;
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− E0

H(e)
S = H(e)
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in Ω (e), (6)

which satisfies the Maxwell’s equations

∇ × E(t)
S = − jωµ0H(t)

S , ∇ × H(t)
S = jωεt E(t)

S in Ω (t), with t = i, e; (7)

with boundary conditions

n ×

(
H(e)

S − H(i)
S

)
= −n × H0; n ×

(
E(e)

S − E(i)
S

)
= −n × E0 on Σ (8)

where a time-harmonic dependence e jωt has been assumed and j is the imaginary unit. The equations are solved with
the radiation condition at infinity.

With a fixed excitation wavelength of the external field, the average field enhancement on the surface Σ is
calculated as

g (Γ ) =
1

Σ (Γ )

∫∫
Σ (Γ )

E(e)

E0

 d S. (9)

As mentioned earlier, the objective of deterministic inverse design is to maximize the average field enhancement
g with respect to the set of shape parameters Γ = {m(φ), n(φ)

1 , n(φ)

2 , n(φ)

3 , a(φ), b(φ)
} of the nanoparticles. However,

the optimal deterministic design may fail due to the uncertainty in the simulation process. Therefore, we quantify the
uncertainty in the system using the generalized Polynomial Chaos expansion method and implement robust design
under uncertainty.
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2.2. Stochastic uncertainty propagation using polynomial chaos expansion

In the current work, we assume that the uncertainty in the system is represented using random variables, and
introduce the basics of the generalized Polynomial Chaos (gPC) expansion for stochastic uncertainty propagation in
this section.

First we represent a complete probability space using a triplet (Ω ,F ,P), where the sample space Ω is the set of all
possible outcomes, F ⊂ 2Ω is the σ -algebra collecting all measurable events that belongs to Ω , and P : F → [0, 1]
is the probability measure indicating each event’s likelihood of occurrence. Let ξ = {ξ1(ω), ξ2(ω), . . . , ξn(ω)} :

Ω → Ξ ⊆ Rn be a set of uncorrelated random variables, which represent the uncertainty in the system. Then any
second-order random variables u(ω) ∈ L2(Ω ,P) (i.e., ⟨u, u⟩ = ∥u∥

2
Ω < ∞) can be represented as follows [22,23,15]:

u(ξ (ω)) =

∞∑
i=0

ûiΦi (ξ (ω)), (10)

where the functions Φi were originally proposed as Wiener–Hermite polynomial chaos (with the assumption of ξ

having Gaussian distribution) by Wiener [14] and later extended to the generalized polynomial chaos (more classical
orthogonal polynomials) via the Askey scheme. The choice of the type of the polynomial chaos depends on the
distribution of the random inputs. In the current work, we adopt Hermite polynomials for Gaussian random variables
and Legendre polynomials for uniform random variables; and the parameters ûi s are called the gPC coefficients.

For the purpose of numerical calculation, the series is usually truncated up to polynomial order p with N terms
(N =

(n+p)!
n!p!

) to approximate the exact output u(ξ (ω))

u p(ξ (ω)) =

N−1∑
i=0

uiΦi (ξ (ω)). (11)

Based on the orthogonality of the polynomial basis, the gPC coefficients can be calculated by projecting u on each
basis using the inner product

ui =
⟨u,Φi ⟩

⟨Φi ,Φi ⟩
=

1
E[Φ2

i ]

∫
Ξ

u(ξ )Φi (ξ )ρ(ξ )dξ , (12)

where ρ(ξ ) is the probability distribution of the variable ξ , and the integration can be estimated using a quadrature
rule as

ui ≈ ûi =
1

E[Φ2
i ]

M∑
j=1

u(ξ j )Φi (ξ j )α j , i = 0, 1, . . . , N − 1, (13)

where {ξ j , α j
}

M
j=1 is a set of quadrature points and the corresponding weights. The use of tensor product quadrature

may have significant efficiency for low-dimensional problems, however, it suffers from the “curse of dimensionality”
for high-dimensional cases since the number of quadrature points increases exponentially as the dimension increases.
In the current work, we use sparse grid quadrature points [24,25].

Once an accurate gPC expansion u p(ξ ) is constructed to approximate the random function u(ξ ), one has in fact an
analytical representation of the function u in terms of ξ . Therefore, all the statistical information of u can be retrieved
from the gPC expansion in a straightforward manner using their definitions directly. The mth moment of u for m ∈ N
is

E[(u − E[u])m] ≈ E[(u p − E[u p])m] =

∫
∞

−∞

(u p(ξ ) − E[u p])mρ(ξ )dξ , (14)

which can be calculated either analytically or with small computational effort [16]. In particular, the first and second
moments of u can be obtained from the coefficients of gPC expansion directly as follows. The expectation of u only
depends on the first coefficient as

E[u] ≈ E[u p] ≈

N−1∑
i=0

ûi ⟨Φ0,Φi ⟩ = û0⟨Φ0,Φ0⟩. (15)
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The variance σ 2
u is obtained as a weighted sum of its squared gPC coefficients:

σ 2
u ≈ σ 2

u p
= E[(u p − E[u p])2] ≈

N−1∑
i=1

û2
i ⟨Φi ,Φi ⟩. (16)

With generalized Polynomial Chaos expansion method, we would be able to quantify the uncertainty in our
quantity of interest g (propagated from the uncertainty in the inputs) efficiently using its stochastic moments. The
approximation of stochastic moments based on gPC expansion has fast convergency to the truth for smooth functions.
However, to evaluate the gPC coefficients accurately, a large number of function evaluations are required and the
number increases dramatically with the increase of dimension of the problem. To reduce the computational cost, we
implement sensitivity analysis to identify the “important” uncertain variables. Based on which the complexity of the
problem can be reduced by considering the non-important variable deterministic.

2.3. Sensitivity analysis

As mentioned in the introduction, sensitivity analysis provides the information on that which specific variation or
the combination of the variations plays the most important roles in the quantify of interest of the simulation model.
Here we introduce the global sensitivity analysis tool and provide the calculation formula for Sobol indices [19–21].

The Sobol sensitivity indices are calculated based on the ANOVA (analysis of variance) decomposition of a
function u(ξ ) as given in [19,20]:

u(ξ ) = u0 +

∑
i

ui (ξi ) +

∑
i< j

ui j (ξi , ξ j ) + · · · + u1,...,n(ξ1, ξ2, . . . , ξn).

where ∫
u(ξ )dξ = u0,

∫
u(ξ )Πk ̸=i dξk = u0 + ui (ξi ),∫

u(ξ )Πk ̸=i, j dξk = u0 + ui (ξi ) + u j (ξ j ) + ui, j (ξi , ξ j ),

and so on.
Based on the decomposition, the so called variance of ui1,i2,...,ir is defined as

Di1,i2,...,ir =

∫
u2

i1,i2,...,ir dξi1,i2,...,ir ,

and the total variance is

D =

∫
u2(ξ )dξ − u2

0 =

n∑
r=1

n∑
i1<···<ir

Di1,i2,...,ir . (17)

Then the global sensitivity indices (called Sobol indices) are defined as

Si1,i2,...,ir = Di1,i2,...,ir /D, (18)

which can help to rank the “importance” of the variables and consequently fix the unessential variables as
deterministic.

The simplest sensitivity indices are the first order Sobol indices

Si = Di/D, i = 1, . . . , n, (19)

which measure the sensitivity of the model output (quantity of interest) to each single variable ξi alone. One may start
with the first order Sobol indices for ranking the “importance” of variables due to its simplicity. However, if the results
for the first order indices show that the majority of the output variance is due to interaction effects among factors, the
total Sobol indices represent a more meaningful measure to deal with models with such a high nonadditivity [26]. The
definition for total indices Stot

i is the sum indices over all the subsets I with i ∈ I .

Stot
i =

∑
I∩{i}̸=∅

SI , i = 1, . . . , n. (20)
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Numerically, the Sobol indices can be calculated using the Monte Carlo sampling method. However, due to its slow
convergence, one may need to run a large number of electromagnetic simulations to reach a reasonable result, which
could be computationally expensive or even infeasible. Here we introduce the calculation of Sobol indices based on a
gPC expansion.

Let the obtained gPC expansion be

u(ξ ) ≈

N−1∑
i=0

ûiΦi (ξ ). (21)

Each multivariate polynomial Φi can be represented by means of multiple index α = (α1, . . . , αn) as

Φi (ξ ) = Φα = Π n
i=1φαi (ξi ), (22)

where φαi (ξi ) is the one-dimensional αi th polynomial. Let I{i1,...,ir } be the set of α multi-indices where only αk ̸= 0
for k = i1, i2, . . . , ir . Then the gPC expansion can be rewritten as

u(ξ ) ≈

n∑
s=1

∑
α∈I{i1,...,ir }

ûαΦα(ξi1 , . . . , ξis ). (23)

Following that, the Sobol indices are approximated by,

Si1,i2,...,ir =
1
D

∑
α∈I{i1,...,ir }

û2
α

∫
Φ2

α(ξ )ρ(ξ )dξ , (24)

where,

D =

N−1∑
i=1

û2
i

∫
Φ2

i (ξ )ρ(ξ )dξ . (25)

With the calculated Sobol indices that indicate how sensitive the quantity of interest g is with respect to the
variation of the shape parameters, one can rank the importance of the uncertain variables. Based on the ranking, the
non-important uncertain variables are considered as deterministic, and consequently, the complexity of the problem is
reduced due to the dimension reduction of the stochastic space.

Next, we propose the numerical method for robust inverse design under uncertainty for the plasmonic device. The
goal is to obtain a designed geometry for 3D nanoparticle so that its desired property is optimal with respect to other
geometries and robust with respect to small structural fluctuations.

3. Numerical method for robust optimization

3.1. Problem setup for robust inverse design under uncertainty

Due to the uncertainty in the design process, such as the errors in the nanofabrication process, we may not be able
to obtain a deterministic value of the objective — average field enhancement, not to mention maximize the objective
with respect to the design parameters. Instead, our goal is to take into account the uncertainty in the simulation process
and maximize the expected value of the objective function.

In addition, the design may not be robust due to the uncertainty in the system, i.e., the objective may vary
dramatically with respect to a small variation in uncertain parameters. To resolve this issue, a robust design model is
proposed to minimize the standard deviation of the objective function as well as maximizing its expected value.

In the current work, we assume that the uncertainty in the electromagnetic system can be represented using random
shape parameters Γ with Gaussian distribution as follows.

m(φ)
= m̄(φ)

+ ξm,

n(φ)
i = n̄(φ)

i + ξni , i = 1, 2, 3
a(φ)

= ā(φ)
+ ξa,

b(φ)
= b̄(φ)

+ ξb,

η = η̄ + ξη,
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where the mean of design variables Γ̄ = {m̄(φ), n̄(φ)
i , ā(φ), b̄(φ), η̄} are deterministic, while ξ = {ξm, ξni , ξa, ξb, ξη} is a

set of random variables of Gaussian distribution with mean zero. Based on the setup, the design variable becomes Γ̄
that is deterministic, and the objective function g depends on both design variable and random variable ξ .

Due to the randomness of the simulation model input Γ = {Γ̄ , ξ}, the model output – average field enhancement
g(Γ ) becomes random as well. Consequently, optimizing the (random) objective function for the best deterministic
design becomes infeasible. Instead, we adopt the classical robust design model from the references [11–13] to deal
with the uncertainty in the model output for a robust design. The objective function of the robust design optimization
with respect to the nanoparticles’ morphology is formulated as follows.

Γ̄ ∗
= argmax

Γ̄

E(g(Γ )) − βσ (g(Γ )), (26)

where E(g), σ (g) are the mean and standard deviation of the objective function. The regularization coefficient β > 0
is introduced to control the trade-off between the desired objective and the robustness of the design; it reflects the risk
attitude of the designer. The larger the value of β is, the designer has more conservative attitude towards uncertainty
and the obtained design intends to be more robust. The value of β can be decided empirically based on the specific
requirement of the chemists for the designed device. The automatic adaptation of the regularization parameter is
beyond the scope of this work.

Sometimes, the robust design model can also be formulated as a constrained optimization problem as

max E(g(Γ )), subject to σ (g(Γ )) ≤ T O L , (27)

where T O L is the tolerance of the variation on the objective that the electronic device can afford based on the
chemists’ intuition and experience.

By implementing the robust design model, one can obtain a designed geometry Γ for 3D nanoparticle so that
one’s objective achieves optimality with respect to other geometries and it is robust with respect to small structural
fluctuations.

One needs to calculate the statistics (mean and standard deviation) of the random output many times (for each
specific value set of design variables) in order to solve the robust design problem. In addition, each calculation of
the statistics requires large number of electromagnetic solver implementations. Therefore, solving the robust design
could be computationally expensive. We next present an efficient numerical strategy based on gPC expansion method,
which considers the gPC expansion as a surrogate model to replace the full electromagnetic solver. Based on this
surrogate model, we approximate the mean value and the standard deviation of the objective function E(g) and σ (g),
respectively.

3.2. Approximation of statistics of objective function

In this section, we construct a computational cheaper surrogate model to approximate the true function, and
consequently calculate the numerical statistics of objective function based on the surrogate to approximate the true
ones.

In the current work, the surrogate model is constructed based on gPC expansion method. First, we generate
two sets Qu and Qg of quadrature points corresponding to variables with uniform distribution and variables with
Gaussian distribution, respectively. We then run the electromagnetic solver over the tensor product of two sets
(i.e., (Γ̄ , ξ ) ∈ Qu × Qg). Following which, we construct gPC expansion gp for any fixed value of Γ̄ ∈ Qu over
the stochastic space of ξ .

gp(Γ̄ , ξ ) =

N−1∑
i=0

ĝi (Γ̄ )Φi (ξ ), (28)

where Φi (ξ )s are Hermite polynomials, and p is the highest order of the polynomials.
As mentioned in the background, one can estimate the mean and standard deviation using the gPC expansion for

each fixed value of Γ̄ as

E[gp](Γ̄ ) = ĝ0(Γ̄ ), (29)

σgp (Γ̄ ) =

N−1∑
i=1

ĝ2
i (Γ̄ )⟨Φi ,Φi ⟩. (30)
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Next, we construct another gPC expansion over the design space to approximate the mean and standard deviation:

E p(Γ̄ ) =

N−1∑
i=0

Êi Li (Γ̄ ), (31)

σ 2
p(Γ̄ ) =

N−1∑
i=1

σ̂i Li (Γ̄ ), (32)

where Lis are Legendre polynomials, and the polynomial order p could be different in gPC expansions of the mean
and the standard deviation.

In this work, we use gPC expansion method to construct the surrogates for the function itself and its mean and
standard deviation. However, we need to emphasize that the choice of the numerical methods of surrogate construction
is in large part a subjective choice, and it does not effect the application of the proposed method so long as the error
of the numerical approximation converges to zero as the approximation order approaches to infinity.

Using the surrogate models, the optimization problem for robust design becomes

Γ̄ ∗
= argmax

Γ̄

E p(Γ̄ ) − βσp(Γ̄ ), (33)

or the constrained optimization problem

max E p(Γ̄ ), subject to σp(Γ̄ ) ≤ T O L . (34)

Note: With any standard optimization tools, the optimization problem can be solved very efficiently due to the
use of the surrogate model. In the current work, we employ one of the most standard algorithms, the quasi-Newton
method, to solve all the optimization problems.

Next, a simple one-dimensional example is provided to illustrate the proposed numerical method.

3.3. An example

For the purpose of testing the numerical method, we focus on gold nanoparticles with one uncertain shape
parameter and demonstrate the convergence of the numerical approximation of the statistics of the average field
enhancement.

3.3.1. Estimation of the mean and standard deviation
We consider gold nanoparticle excited by the plane wave with wavelength λ = 700 nm. In the deterministic

setup provided in previous study [7], the optimal shape for gold nano-particle is the one with the parameters
Γ = {25, 6.10, 3.4, 4.33, 4.25, 2.0, 0.5}. To simplify the problem in this illustrative example, we assume that the
shape parameters take values around this optimal set. Furthermore, due to the local sensitivity analysis in [7] (see
Fig. 1(a)), which shows that the variation of the objective function δgr is much larger when the shape parameter
n(φ)

1 varies, we consider n(φ)

1 as the only uncertain variable while keep the other shape parameters deterministic as
η = 25, m{φ}

= 6.10, n{φ}

2 = 4.33, n{φ}

3 = 4.25, a{φ}
= 2.0, b{φ}

= 0.5. In addition, we set the uncertain variable as
n(φ)

1 = n̄(φ)
1 + ξn1 , where n̄(φ)

1 = 3.4 and ξn1 is Gaussian distribution with mean zero and standard deviation 0.1.
Based on the assumptions, the average field enhancement g becomes random and dependent on one random input

n(φ)

1 (or ξn1 ). We construct a generalized Polynomial Chaos expansion gp(n(φ)

1 ) to approximate the objective function
g(n(φ)

1 ) and consequently estimate its mean and standard deviation. The constructed gPC expansions (gp versus n(φ)

1 )
with different highest polynomial order p = 3, 5, 7 are shown in Fig. 1(b). As expected, one can observe that the
gPC expansion is closer to the truth as the polynomial order is higher. We then calculate the mean E[gp] and standard
deviation σgp of the average field enhancement using the surrogate gp, and analyze their convergence with respect
to the polynomial order. The reference values E[g] = 18.0732 and σg = 2.3051 are obtained using 100 000 Monte
Carlo simulations. The convergence rate of the numerical approximation with respect to p is provided in Fig. 1(c, d)
for the mean and standard deviation, respectively. From the figure, one can conclude that the numerical approximations
converge to the truth exponentially.
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Fig. 1. (a) The variation of the objective function with respect to the variation in each shape parameter; (b) The average field enhancement gp with

respect to the shape parameter n(φ)
1 for different approximation orders; (c) The convergence rate of the mean of average field enhancement with

respect to approximation order (i.e., error in E[gp] versus p); (d) The convergence rate of the standard deviation of average field enhancement with
respect to approximation order (i.e., error in σgp versus p).

3.3.2. Robust optimization using numerical method
Now we implement robust design for gold nanoparticle. Similarly, we assume n(φ)

1 = n̄(φ)
1 +ξn1 is the only uncertain

parameter, ξn1 ∼ N (0, 0.12) is the random variable. Instead of having a fixed value for n̄(φ)
1 = 3.4 as in Section 3.3.1,

we consider it as a design variable in the range [0.75, 6] and obtain the robust design using the proposed approach with
β = 5.5. The robust design with n̄(φ)

1 = 3.561 is shown in Fig. 2(a) for which the mean is E = 15.69 and standard
deviation is σ = 1.71. Compared to design with n̄(φ)

1 = 3.4 with mean E = 15.72 and σ = 1.89, the obtained design
is more robust (i.e., the objective function variates less with respect to the variations of the shape parameter) with a
slight compromise in the mean of the objective function.

Fig. 2. Optimal design for one-dimensional example: (a) The robust optimal design for gold nanoparticle; (b) the deterministic optimal design.
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4. Numerical examples

In this section we implement the proposed efficient numerical method for the robust design of metallic
nanoparticles’ morphology, which maximizes mean and minimize the standard deviation of the field enhancement
when excited by a monochromatic plane-wave of unit intensity, linearly polarized along the x-axis and propagating
along the z-axis. In the following, we will present the optimal design for different metal materials, respectively.

4.1. Silver

We first consider the robust optimal design for silver nano particles with the wavelength λ = 400 nm since the field
enhancement reaches the maximum at this wavelength from our previous study [7]. To reduce the computational cost,
we implement the global sensitivity analysis to identify the “significant” shape parameters and consider only those
as uncertain design variables. The first order Sobol indices for all seven shape parameters are plotted in Fig. 3(left).
Since the sum of all first order indices

∑
i Si = 0.3849 is much less than one, indicating the majority of the output

variance is due to interaction effects among factors, we also calculate the total Sobol indices and provide the results in
Fig. 3(right). One can observe that the most significance shape parameters are n(φ)

1 and η. Therefore, we consider the
uncertainty in these two design parameters and define them as n(φ)

1 = n̄(φ)

1 +ξn1 , and η = η̄+ξη with ξn1 ∼ N (0, 0.12)
and ξη ∼ N (0, 1). The remaining five design parameters are kept as deterministic as m(φ)

= 4.38, n(φ)

2 = 0.89,
n(φ)

3 = 6, a(φ)
= 1.39, b(φ)

= 0.5.

Fig. 3. Sobol indices of shape parameters for silver: (left) the first order indices; and (right) the total indices.

We construct the surrogate model using the gPC method over the four-dimensional space (the tensor product of
two-dimensional design space and the two-dimensional stochastic space). The mean and standard deviation of the
field enhancement over the stochastic space are calculated and plotted in Fig. 4. The red stars in Fig. 4 (left) are
the collocation points with output obtained directly from the full simulation. Based on these collocation points, the
response surface for the mean of field enhancement over the two-dimensional design space is constructed using gPC
expansion with the collocation points. Fig. 4 (right) shows the response surface of mean ± standard deviation.

Fig. 4. The numerical approximation of mean (left) and mean ± the standard deviation (right) of the field enhancement.

The robust design with n̄(φ)
1 = 5.694 and η̄ = 25.0001 obtained by solving the optimization problem with β = 8

is provided in Fig. 5. The mean and the standard deviation of the average field enhancement are E = 19.65 and
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σ = 1.55. The deterministic optimal parameters obtained in Ref. [7] were n(φ)
1 = 5.71 and η = 25, assigning them to

be the values of the design parameter in robust design, we obtain the mean of 19.77 and standard deviation of 1.57.
Based on which, one can conclude that with some compromise of the mean of the field enhancement, the robust design
is more stable with respect to the uncertainty.

Fig. 5. Optimal design for silver nanoparticle: (a) The robust optimal design; (b) The deterministic optimal design.

4.2. Gold

We then design the robust optimal shape for gold nano particles at the fixed wavelength λ = 700 nm where the
electric field enhancement reaches its maximum [7]. Similarly, we implement the global sensitivity analysis to identify
the “important” shape parameters and consider only those as uncertain design variables. In Fig. 6 (left) of the first order
Sobol indices, one can observe that the interacting terms have high effects on the model output since the sum of first
order indices

∑
i Si = 0.2728 is also much less than one. Therefore, we provide the total Sobol indices in Fig. 6

(right), which shows that the most important shape parameters are n(φ)
2 , a(φ) and b(φ). Therefore, we only consider the

uncertainty in these three design parameters while keeping the other four design parameters fixed as m(φ)
= 6.10,

n(φ)

1 = 3.4, n(φ)

3 = 4.25, η = 25 [7]. The uncertain parameters are defined as n(φ)

2 = n̄(φ)

2 + ξn2 , a(φ)
= ā(φ)

+ ξa , and
b(φ)

= b̄(φ)
+ ξb, where ξn2 ∼ N (0, 0.12) and ξa, ξb ∼ N (0, 0.052).

Fig. 6. Sobol indices of shape parameters for gold: (left) the first order indices; and (right) the total indices.

Similarly, the surrogate model is constructed for the quantity of interest using the gPC method over the six-
dimensional space (the tensor product of three-dimensional design space and the three-dimensional stochastic space).
The mean and standard deviation of the field enhancement are then calculated over the stochastic space.

Using the constructed surrogate for the mean and standard deviation of the field enhancement, we solve the
optimization problem with β = 5.5 to obtain the robust design (see Fig. 7(a)) with n̄(φ)

2 = 5.8730, ā(φ)
= 2 and

b̄(φ)
= 1.2365. The mean and the standard deviation of the average field enhancement are E = 9.05 and σ = 1.01.

With the deterministic optimal shape parameters obtained in Ref. [7] as the values for the design parameters, we
obtain the mean E = 11.82 and standard deviation 2.06. Therefore, one can conclude that with some compromise of
the mean of the field enhancement, the robust design is more stable with respect to the uncertainty.
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Fig. 7. Optimal design for gold nanoparticle: (a) The robust optimal design; (b) The deterministic optimal design.

4.3. Aluminum

Finally, we consider the robust shape design for aluminum nano particles with the wavelength λ = 150 nm.
Similarly to the design process for the other two types of materials, we implement the global sensitivity analysis
to identify the shape parameters to which the quantity of interest is more sensitive. The first order Sobol indices
provided in Fig. 8 are used directly to rank the “importance” of parameters since the sum

∑
i Si = 0.8244 is close to

one indicating the individual parameter terms have majority of the impact on the model output. The shape parameters

n(φ)
1 , n(φ)

2 , n(φ)

3 and a(φ) feature the highest Sobol indices and thus are considered as the uncertain design parameters.
They are defined as n(φ)

1 = n̄(φ)
1 + ξn1 , n(φ)

2 = n̄(φ)

2 + ξn2 , n(φ)

3 = n̄(φ)

3 + ξn3 , and a(φ)
= ā(φ)

+ ξa . As discussed in
Section 3, the parameter ξ is assumed to be random variables with Gaussian distribution. Based on the magnitude of
the design parameters, we further assume ξni ∼ N (0, 0.12) (i = 1, 2, 3) and ξa ∼ N (0, 0.052). The remaining three
design parameters are considered as deterministic and their values are assigned as m(φ)

= 4.10, b(φ)
= 0.5, η = 25.

Fig. 8. The Sobol indices of shape parameters for aluminum.

Again, we construct the surrogate model using gPC method over the eight-dimensional space (the tensor product
of four-dimensional design space and the four-dimensional stochastic space). Using the gPC expansion, the mean and
standard deviation of the field enhancement over the stochastic space are calculated. We then solve the optimization
problem with β = 5.5 for the robust design. The resulting optimal shape is provided in Fig. 9(a). The optimal values
of the parameters obtained from the robust design are n̄(φ)

1 = 2.5, n̄(φ)
2 = 2.99, n̄(φ)

3 = 3.82, ā(φ)
= 0.53, and the

mean and the standard deviation of the average field enhancement on the surface of the robust design are E = 7.803
and σ = 1.44 . On the contrary the deterministic optimal design returned the parameters n̄(φ)

1 = 1.84, n̄(φ)
2 = 2.73,

n̄(φ)
3 = 3.57, ā(φ)

= 0.5 with mean E = 9.111 and standard deviation σ = 2.11. Based which, one can draw the same
conclusion of a better stability of the robust design.

4.4. Robust design for multiple wavelengths

We are also interested in the robust design for nanoparticles excited by a monochromatic plane-wave of unit
intensity with different wavelength λ. Due to the limitation of computational resources, we only focus on silver
with the wavelengths λ = 250, 287, 320, 379, 435 nm as examples. With the same assumption on the uncertainty
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Fig. 9. The robust optimal design for gold nanoparticles to achieve high field enhancement.

in shape parameters as the one in Section 4.1, only two shape parameters n(φ)
1 and η are considered as uncertain.

Similarly, we implement the robust optimal design with β = 5.5 for each wavelength based on the constructed gPC
expansion surrogate. The obtained robust designs and the corresponding means and variances of the field enhancement
are provided in Table 1.

Table 1
The design shape parameters and the corresponding mean and standard
deviation with respect to different wavelengths λ.

λ n̄(φ)
1 η̄ Eg σg

250 nm 2.5 25 1.51 0.16
287 nm 2.5 27.4 1.39 0.10
320 nm 2.5 25.1 1.59 0.14
379 nm 5.8 25 7.41 0.94
435 nm 2.7 25 23.76 1.39

The shapes of the robust design are provided in Fig. 10(a–e). Clearly, the robust designs are different for different
wavelengths. In the situation where one has control on the wavelength λ at which the metal nanoparticles are excited
by the external field, the “ideal” design would be the robust one shown in Fig. 10(e) with specified wavelength
λ = 435 nm since it produces a much higher mean value of field enhancement E = 23.76 with a slight compromise
on robustness. However, if one cannot specify a fixed wavelength but only its range, the intuitive way would be to
consider the average of the field enhancement ḡ over the whole range of wavelengths (instead of the field enhancement
g) as the quantity of interest, and implement the robust optimal design procedure. The obtained robust design with
non-specified wavelength in the range [200 nm, 450 nm] is provided in Fig. 10(f) with mean E = 6.34 and standard
deviation σ = 0.59.

5. Summary

In this paper, we implement robust design method under uncertainty for a robust design and adopt a classical robust
model with the goal of minimizing both the mean and standard deviation of the cost function. Due to the consideration
of the uncertainty in simulations, the robust optimization process may become computational expensive. Therefore, we
propose an efficient numerical procedure for the robust design to reduce the computational cost. First, we implement
global sensitivity analysis method to calculate the first order Sobol indices, based on which one can identity the
“important” random variable. Following that, the dimension of the stochastic space may be reduced by considering
the non-important ones as deterministic. To further reduce the computational cost, we then use generalized polynomial
chaos expansion method to construct computationally cheaper surrogate models to approximate the full simulations.
With the proper choice of the polynomials, the gPC expansion converges to the true function exponentially for smooth
functions. The efficient robust design procedure is first illustrated using a simple one-dimensional example and then
applied to metallic nanoparticles’ design for the best enhancement of electric fields.
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Fig. 10. The robust optimal design for silver nanoparticles to achieve high field enhancement with respect to different wavelength: (a) 250 nm,
(b) 287 nm, (c) 320 nm, (d) 379 nm, (e) 435 nm, and (f) wavelength range [200 nm, 450 nm].
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