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Autonomous Calibration of Single-Loop
Closed Kinematic Chains Formed by
Manipulators with Passive Endpoint

Constraints

David J. Bennett, Student Member, IEEE, and John M. Hollerbach, Member, IEEE

Abstract— A serial-link manipulator may form a mobile closed
kinematic chain when interacting with the environment, if it is
redundant with respect to the task degrees of freedom (DOF’s)
at the endpoint. If the mobile closed chain assumes a number of
configurations, then loop consistency equations permit the ma-
nipulator and task kinematics to be calibrated simultaneously
using only the joint angle readings; endpoint sensing is not
required. Example tasks include a fixed endpoint (0-DOF task),
the opening of a door (1-DOF task), and point contact (3-DOF
task). Identifiability conditions are derived for these various
tasks.

I. INTRODUCTION

INEMATIC calibration is important for model-based

robot control [1]. We [15] and many other authors (see
reviews in [14], [17]) have developed open-loop methods that
estimate the geometric and static nongeometric kinematic
parameters of open-chain manipulators by relying on special
purpose pre-calibrated endpoint locating systems, such as
precision points or camera-based measurement systems. Sec-
tion II summarizes our open-loop method, which is the
starting point for our new method; new results on the identi-
fiability of the open-loop method are also provided.

Our new method, which we call closed-loop kinematic
calibration, eliminates the need for endpoint locating sys-
tems: if a manipulator is formed into a mobile closed
kinematic chain, then its joint angle readings alone are
enough to identify the kinematic parameters. A manipula-
tor may form a mobile closed-loop kinematic chain if it is
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redundant with respect to its endpoint constraint (task). Sec-
tion IIT considers the simplest endpoint constraint: the posi-
tion and orientation of the endpoint are fixed relative to the
base link. For this 0-DOF task, the manipulator must be
redundant (=7 DOF’s) to form a mobile closed loop. For
each loop configuration there are three position and three
orientation loop consistency equations. If the closed loop is
placed into n configurations (with the same endpoint loca-
tion), there result 67 equations that may be solved for the
unknown parameters.

An equivalent scenario is two manipulators rigidly attached
together at their endpoints with a combined total of DOF’s
=7 (Fig. 1). The last link of the second manipulator may be
defined as the base, and the entire closed kinematic chain
may be viewed as a single equivalent manipulator.

Section IV then considers two endpoint constraints with
passive degrees of freedom: 1) rotation about a passive
revolute joint (e.g., opening a door), and 2) rotation about a
passive spherical joint (e.g., point contact). For constraint 1,
a nonredundant 6-DOF manipulator can form a mobile closed
loop, whereas for constraint 2 a 4-DOF manipulator could
suffice. In general, for each passive degree of freedom
introduced into the endpoint constraint one less degree of
freedom is required by the manipulator. As a corollary, the
geometry of the task can also be identified, for example, the
position and orientation of the revolute joint in constraint 1.

Several technicalities were overcome in developing this
closed-loop method. A theorem was developed to determine
which parameters are identifiable in the consistency equa-
tions. We also show how the passive DOF’s can be elimi-
nated from the endpoint constraint for the two cases studied
and mention how to do this in general. Third, we apply a
Newton-like search method for the kinematic parameters,
which starts from an initial guess at the parameters. Simula-
tions will demonstrate the convergence of the method. Fi-
nally, the manipulator must be able to make constrained
internal joint movements, without knowing the true kinematic
parameters or producing excessive internal or endpoint forces.

Closed-loop kinematic calibration is related to mechanism
synthesis [11], which characterizes closed-loop mechanisms
with one degree of mobility through relative displacements of
designated input and output angles. By eliminating (with
difficulty) the five unspecified DOF’s from the kinematic
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Fig. 1. A single closed-loop kinematic chain formed by a redundant

mainpulator or by dual manipulators.

equations, a displacement equation results that is a 16th-
order polynomial in the tangent half-angles of the input and
output angles [16]. A difference from mechanism synthesis is
that serial-chain manipulators typically have sensors on all
the joints and so eliminating the unsensed passive DOF’s at
the endpoint from the kinematic equations is considerably
easier. Portions of this work have been previously reported

[31-[5].

II. OpPEN-Loop KINEMATIC CALIBRATION

This section presents our method for open-loop kinematic
calibration [15], which serves to set the basic concepts and
mathematics from which the closed-loop method is derived.
New results in identifiability are presented for our open-loop
method; these results apply more generally to similar meth-
ods that have appeared in the literature [14].

A. The Kinematic Model

Both geometric and nongeometric parameters are required
for kinematic calibration. The Denavit-Hartenberg (D-H)
convention [9] is employed for the geometric parameters
(Fig. 2). For a manipulator with n DOF’s, the end effector is
located by the position vector p’. and the orientation matrix
R

. n
pl= Zl SiZ;_ 1+ aX;
j=

(M

Ric= II Rz(o,;)Rx(a}) (2)

where R (¢) and R (¢) are 3 X 3 rotation matrices about
the z and x axes by the angle ¢, and the subscript ¢ indicates
that the position and orientation are computed from the
model. The superscript i refers to the configuration of the
manipulator, since in kinematic calibration it is placed into a
number of configurations 8 = (64,...,0.), i=1,---, m.
The required geometric parameters are S;, a;, and a; for
links j=1,...,n.

The nongeometric parameters are focused at a joint and
reflect errors between the true and measured joint angle;
sources of error include backlash, gear eccentricity, joint
compliance, and joint angle offset. We model only the joint
angle offset error 67, which needs to be identified. It is
related to the actual § ' and measured 6; D-H joint angles by
0;=9;+ 0}’“. All of the unknown kinematic parameters are
placed into a single vector ¢ = (6°, «, s, a), where
$=(8,...,5,), etc. B

VA

Fig. 2. Denavit-Hartenberg coordinates and tip vector b",

Instead of the orientation matrix R, it is convenient to
represent the orientation by the vector pé = (o5 D> ?;),
representing the roll-pitch-yaw (ZY.X) Euler angles: R, =
R z(¢;)R y(d);)Rx(cb;). The computed endpoint location x
= (p;, P.) may then be written as

xt=1(8'¢) ()

where the function f is derived from (1) and (2). Its exact
form is not required here.

i
c

B. Iterative Identification

To estimate ¢, the manipulator must be moved into an
adequate number m of configurations, in consideration of the
large number of parameters in ¢ and of statistical averaging.
At each configuration i the actual endpoint location xi s
measured. The goal is to determine the ¢ that best predict
from the kinematic model (3) all of the endpoint measure-
ments 2'= (xL,..., x™):

7= 7(¢) (@

where 7(¢) = (/ @', @), ..., f8™, ¢)).
Solving for @ from (4) is a nonlinear estimation problem,
which can be done by linearization and iteration:

AT= %Ay (5)

where ¢ = 0% /d¢. We can consider AZ =

(Ax',...,Ax™), with Ax’ = x! — x!, as the location er-
rors. Similarly, Ap = ¢ — ¢, is the error in the total param-
eter set, where ¢, is the current estimate and ¢ is the
corrected estimate. In Ag, As = s — 5,, etc. An estimate of
the parameter errors is provided by minimizing LS = (AZ"

- FAp) (AT - @A), which yields
Ap=(¢7%) €A (6)

Finally, the guess at the parameters is updated as ¢ = ¢, +
A and the iteration continues until A Z— 0. -

“The basis for linearization is the assumption that x! is
close to x.. Then

. . . Ap'
Ax'=xi - x.= L‘,] (7)
P

where Ap’ = (3¢, ¢}, d¢}) is the incremental orientation
error in terms of the Euler angles and Ap’ = (dx’, dy’, dz’)
is the incremental position error. When ¢, is far from the
final values, problems with this approach may occur, as
discussed later.
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The differential of (3) is

. axC dxc dx;
Ax' = Af + Ag + As
ad da as
+—Aa=Ch¢ (8
aa ¢ e (8)
where
o dx; | dx:dx dxl dx;
3¢ |06 g s oa
and Z= (C,...,C™. The Jacobian C' is often formed

through the use of differential homogeneous transformations,
but to address identifiability we find the use of screw coordi-
nates more convenient and transparent [20], [24], [26]. To
proceed, we must express differential rotations Arf = (3x',
dy', 8z") about orthogonal axes rather than the differential
rotations Ap’ about nonorthogonal axes. The two may be
related by a matrix Q', whose form depends on the particular
Euler angles (ZYX here) chosen ([25]):

1 0 —sin ¢/,
Ari=|0 cosel singlcos ¢l [Ap' = QAp’. (9)
0 —sin¢) cos ¢}cos ¢,

Assuming the inverse of Q' exists, then

i -

A5i= Ale: [(Q') l 0

Ap’ 0 I
where a 6 X 6 matrix @' has been defined incorporating
3 x 3 zero matrices 0 and identity matrix L.

The matrix Q' is not invertible when ¢; = 7 /2, which is
the singularity for this set of Euler angles. This problem is
inescapably linked with the use of Euler angles, since no set
of Euler angles exists that is the integral of angular velocity.
At endpoint configurations with ¢; = 7 /2 an alternate Euler
angle formulation (say ZXZ) may be used to guarantee that
Q' is always invertable. Without loss of generality we as-
sume that appropriate Euler representations will be used for
these few singular endpoint configurations and do not discuss
them further.

The total incremental displacement (Ar’, Ap') is the sum
of the instantaneous screws corresponding to variations in all
of the parameters:

Ar’
Ap’

Ar’
Ap’

i

(10)

X;
|t Aa ;
j Xj X b

+ Asj{zio ] + Aaj[::,-_] (11)

j-1

where b’ , , is a vector from the jth coordinate system to the
endpoint (Fig. 2). From the parameter-based screws on the

right, Jacobian matrices can be formed whose columns j are
Z;-, 1 xi.

3);= !

i i
X; X by

w0~

(J5),

1
—_
Q ~

) s
1 4
zj_lxbj

-] | (12)

where J g represents a Jacobian with regard to a particular
parameter vector 3; thus J; is the ordinary Jacobian related
to joint angle displacement. More compactly,
Ar'
. 13
Ay (13)
From (13) and (10), the»ensemb‘le Jacobian A’ is then related
to the Jacobian C' by C' = Q'A’. Define &/ = (A', ..., A™).

Jj=1 J

= [J 3L 33 ap = Arg.

C. Identifiability

Next we derive several results pertaining to the identifia-
bility of ¢ in (4). First we establish that the solution cannot
be globally unique.

Theorem 1. There are at least 2"~ golutions ¢ to (4).

Proof: We presume that at least one solution ¢ exists
because the data come from a physical system. Additional
solutions may be derived from this . There are two possible
parameter sets per joint. For a fixed z}'., the xj- axis can be
made to point in opposite directions by adding 180° onto
Ofﬁ; to accommodate this change, the sign is changed on a;
and «; while s; is unchanged. At the endpoint, the directions
x‘ and z/, are specified by the position requirement. Hence,
we have generated 2"~ solutions from the original solution
@. |
~ Although there are multiple solutions, in practice kine-
matic calibration starts off with a rough estimate ¢, and
searches locally for a solution. Thus, the relevant question is
whether or not there is a unique solution within a small
region of the parameter space. We draw on some results
from differential topology [10], [22].

Definition 1 (Locally Unique): A solution ¢ to (4) is
locally unique if it is the only solution in an arbitrarily small
neighborhood (ball) around ¢’.

In addition to uniqueness, we also want to know if a
well-behaved inverse function # ' exists to generate the
solution ¢’.

Definition 2 (Locally Identifiable): A smooth function
= F(p) is locally identifiable at ¢’ if (1) ¢ is locally
unique, and (2) there exists a smooth inverse function % -t
such that # '(Z (o)) = o.

A smooth function has continuous partial derivatives of all
orders. Notice that the existence of a smooth inverse function
in part 2 of the definition does not guarantee uniqueness (part
D).

If the number of equations equals the number of unknown
parameters, then local identifiability is equivalent to requiring
that F is a local diffeomorphism. 1t is established in [10]
that & is a local diffeomorphism if and only if the square
Jacobian matrix % = [3F /d¢'] is nonsingular. This moti-
vates the following results for when ¢ is not necessarily
square. Lemma 1 is a general result that applies to all

scription prices!



equations of the form (4). Lemmas 2 and 3 are particular to
the kinematic calibration problem.

Lemma I: Let ¢’ be a solution to (4). The Jacobian %
has full rank if and only if the parameters ¢’ are locally
identifiable. B

Proof: Assume that ¢ has full rank. Let ¢ be another
solution to (4). A Taylor series expansion relates ¢ to ¢:

Fle)=F(¢)+ €le—¢)+ (14)

where Z(¢) = F(¢'). If ¢ is in a sufficiently small neigh-
borhood of ¢’, then the higher order terms after the first
differential may be neglected. Then #(¢ — ¢") = 0. Since ¥
does not have a null space, then ¢ = ¢, and ¢’ is locally
unique. Furthermore, there exists a smooth inverse function
F ', as (6) suffices.

Conversely, assume that the parameters ¢’ are locally
identifiable. Let # ' be a smooth inverse function. Differ-
entiating 7 "(F(¢)) = ¢ by o yields [0F '/0% ]
[07 /3¢] =1 If % does not have full rank, then there
exists a vector element 7 of its null space. Postmultiplying
by n yields 0 = n, a contradiction. Hence, ¢ has full
rank. |

If Jacobian % has dependent columns, the solution to 4)

_1s not necessarily locally unique because the higher order
terms of the Taylor series expansion of # may be nonzero
when evaluated at an element of the null space of #. The
next three lemmas require the definition of % by (8). The
first of these lemmas allows us to cast the identifiability
results in terms of the Jacobian .« .

Lemma 2: Assume that Q' is invertible. Then % has full
rank if and only if &/ does.

The proof follows straightforwardly from the definitions of
%/ and %, and the relation C’' = Q'A’ derived from (13). The
following two lemmas are for the open-loop case, and do not
hold for the closed-loop case in Section III.

Lemma 3: The Jacobian ./ does not have full rank if and
only if there exists a constant linear relation among the x;
and z; axes, that is,

(15)

for some constants ¢ ; and k j» not all zero, for all configura-
tions i=1,...,m.

Proof: Part 1: Assume that .« does not have full rank.
Then there is a constant linear relation among the screw
coordinates (12). Two cases must be considered. First, if this
linear relation only includes the last two screw coordinates in
(12), then the same linear relation must hold in the positional
component of the screws, the last three rows that contain just
the x ; and z} axes. Thus (15) holds for some constants ¢ i
and kj, not all zero, for all configurations /i = 1,..., m.
Second, if this linear relation includes the first two screws in
(12), then this linear relation must hold in the rotational
component of the screws, the first three rows that also
contain just the x/ and z} axes. Again, (15) holds.

Part 2: Conversely, assume that (15) holds. Then at least
the screw coordinates (J?) ; and (J h ; have a constant linear
dependence, and %/ does not have full rank. ]

n
— i i
0= Zl ez + kx|
iz
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Lemma 4: € has full rank if and only if ¢’ is locally
unique. B
Proof: Assume that % has full rank. By Lemma 1, ¢’
is locally identifiable and hence is locally unique. Next
assume ¢’ is locally unique. Suppose ¢ does not have full
rank; by Lemma 2 neither does .%/. From Lemma 3 we can
add (15) to (1) to change the length parameters without
affecting p’. The kinematic length parameters would not be
unique, contradicting the assumption. Hence % has full
rank. |
Theorem 2 (Identifiability): The parameters ¢ are lo-
cally unidentifiable or locally nonunique if and only if there
exist constants ¢ ' and k j» DOt all zero, such that

(16)

n
_ i i
0= '21 ez’ + kx;
iz

for all configurations i = 1, ..., m.
Proof: This theorem follows from Lemmas 1-4.

Various categories of singularities (occurrences of (16)),
which are generic to the closed-loop case as well (see Section
III), will now be enumerated. These categories are meant to
be illustrative rather than exhaustive. Although not expressly
discussed in each category, the real problem is associated
with near singular situations, which cause intractable numeri-
cal sensitivity problems while solving for the parameters.

Singularity 1: Coordinate Description: In the D-H con-
vention, when there are two consecutive parallel joint axes,
there is no unique common normal (Fig. 2). Parallel axes
imply

zi -z | =0. (17)

Thus, (16) is true and the corresponding s ; and s;, ) may not
be identified alone (although the sum s; +s;,, can be
identified). This situation can be avoided by changing the
coordinate description of the parallel axes to a convention
such as Hayati’s [12], which however may not be used
exclusively because it too suffers from a parameter ambiguity
when two consecutive joint axes are perpendicular.

A revolute joint axis is a /ine vector, which is located by
four parameters. Hence any coordinate description with
greater than four parameters per link is singular (unless extra
constraints are imposed). Similarly, a prismatic (linear) joint
axis is a free vector defined by only two orientation parame-
ters, and coordinate descriptions with more than two parame-
ters are singular.

Singularity 2: Insufficient Excitation: If the mechanism
is not moved into a sufficient number of configurations, then
the data are not sufficiently exciting [2}]. A small variation in
each parameter of ¢ should cause an observable displace-
ment in the end effector. The optimal data set would maxi-
mize the observable model error over variations in all of the
parameters [21]. An impoverished data set would not be able
to distinguish changes in particular parameters, which could
vary arbitrarily. A trivial example is an immobile joint whose
axes X}, 2}, xi_,, and z}_, are always linearly dependent.

Singularity 3: Transient Singularities: During the course
of the iterative search, an intermediate singular parameter set
may be found even though the real mechanism may not have
singularities. Simulations show that this situation is surpris-
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ingly common when the initial guess ¢, is not close to the
true solution. Since this singularity is associated with the
algorithm, it may be avoided by the modified minimization
criteria LS’ = LS + M ¢ A . In addition to minimizing the
end effector tracking error, LS’ minimizes the variation in
parameters so that at a potential singularity the arbitrary
parameters tend to remain fixed. Minimizing LS’ yields

Ao = (€T€+N)  €AZ. (18)
Iteratively applying (18) results in the Levenberg-Marquardt
algorithm [18], [19]. The free parameter A\ determines the
trade-off between a straight Newton iteration and a much
slower gradient descent.

1II. CLoseED-Loop CHAINS WITH FIXED ENDPOINTS

We consider next a redundant manipulator (=7 DOF’s)
rigidly attached to the ground at its endpoint. In general, the
resulting closed-loop kinematic chain is mobile, since the
fixed endpoint constrains only 6 of the DOF’s of the manipu-
lator. Our closed-loop method uses this mobility to calibrate
kinematically the manipulator without endpoint sensing. The
following observation is the key: the origin of coordinates
can be placed at the fixed endpoint location and can be
defined to have zero orientation and position. Hence, x} = 0,
and no measurements are required because the actual end-
point location is known and is zero (by definition).

Fig. 3 illustrates this origin placement for a 7-DOF manip-
ulator. The combined manipulator tool and ground may be
viewed as a single effective link that connects the last to first
joint of the manipulator. The end effector axes z} and x, are
made coincident with the base coordinate axes z§ and x).
Note that the kinematic parameters of the ground link must
now be identified.

The mathematical development in the previous section then
applies, with one modification. As before, the mobile closed
chain is moved into a number of configurations. At each
configuration i the endpoint error follows simply from (7):

Ax'= —xi= —(dxl,0yl, 0z}, dxl, dyl, dz) (19)

where Ar’ = (3x£, dyf, 8z!) is the computed orientation
and Ap' = (dx., dy!, dzl) is the computed position. Be-
cause the ‘‘measured’’ Euler angles are defined as zero, for
the closed-loop case Ar’ = Ap’ and C' = A’.

The iterative estimation procedure cannot be applied fur-
ther without modification because the Jacobian ¥ is singular.
The position equations for the closed loop are

n
pi=3 s;zj_y +ax;=0.
Jj=1

(20)

Hence, the length parameters are linearly dependent and (15)
is satisfied. Intuitively, the size of the manipulator can be
scaled arbitrarily and still satisfy the loop closure equations.
To proceed with our closed-loop method, it is necessary to
specify one length parameter to scale the size of the mecha-
nism. For example, suppose we set @, = — 1. We redefine
a=(a,,...,a,) and remove the first column from the

Fig. 3.

Ground link definition.

Jacobian J!, which redefines A’ in (13). We may then
proceed as before with the parameter identification. Simi-
larly, if another parameter such as s, had been specified
instead, analogous changes in the definition of § and A
would be required. In the remainder of this paper, we vary
which parameter sets the scale for convenience.

A. Identifiability

For the purposes of identifiability, we will proceed with
the scaling @, = — 1. The following identifiability results are
couched in terms of the choice of a;, but a different choice
would result in trivial changes to the results. Of course, it is
necessary in the actual mechanism that a, # 0. We do not
consider mechanisms that have all length parameters zero
(i.e., spherical mechanisms).

Theorem 1 and Lemma 1 apply intact to the closed-loop
case, but Lemmas 3-4 and Theorem 2 require a slight
modification. Redefine the endpoint position as

(21)

Also, we must make the following definition to treat a
possible exception arising from x| being in the expression for
@

Definition 3 (Type-E Special Mechanism): A single-loop
closed kinematic chain is type-e if its screw coordinates
satisfy the following exceptional relation:

" Zj Xj
0=23 5 i | T i
=1 |z Xbj x; X bjy
0 0
+4q;| . + ri| i 22
q/ z}—l jZ::2 J[X;] ( )
for all configurations i = 1, ..., m, where g; and r; are

arbitrary constants.

Perhaps (22) never occurs, but for completeness we in-
clude its possibility. The new identifiability theorem can now
be stated.

Theorem 3 (Fixed Endpoint Identifiability): For a re-
dundant manipulator with fixed endpoint forming a closed
kinematic chain that is not type-e, the parameters ¢ are
locally unidentifiable, or locally nonunique, if and only if
there exist constants ¢; and k;, not all zero, such that

n ' n
0= ¢z, + > kix; (23)
j=1 j=2

for all configurations i = 1,..., m. Furthermore, the pa-
rameters of a type-e mechanism are nonunique, if (23) holds
for the ¢; and k; restricted as above.

——— e = wo—y-
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Proof: A modified Lemma 3 with (15) changed to (23)
can be proven with the following alterations. Part 1 of the
proof proceeds as before, with a final step using (21) to
eliminate any x, occurrences. This is always possible be-
cause the mechanism is not type-e. Part 2 proceeds as before.
Lemma 4 holds if its proof is modified to use (15), with x!
eliminated, and (21) instead of (1). Alternatively, for all
mechanism types, local nonuniqueness follows directly from
(23) by adding (23) to (21) and remarking, as in the proof of
Lemma 4, that the length parameters are nonunique. This
theorem then follows. |

For type-e mechanisms, the angle-dependent screw coordi-
nates (J/); and (J;); in (12) are linearly related by the length
parameters as above. The orientation component of this
linear screw relation gives (21) and the eliminations of X,
from (15) in Part 1 of the proof to Lemma 3 cannot proceed.
We do not know if a type-e mechanism can actually occur
and do not consider it further.

We now discuss two additional singularities in the closed-
loop calibration procedure to the three singularitics in the
open-loop procedure that also apply here.

Singularity 4: Inherent Singularities in the Mechanism:
Certain mechanisms have particular symmetries that allow
the kinematics to be described in less than four parameters
per joint. It is difficult to provide a general rule for when this
will happen, but it is usually restricted to mechanisms of
mobility one. A simple example is a 3-DOF planar manipula-
tor that makes a point contact with the ground (Fig. 4). If the
resulting closed-loop, four-bar linkage happens to be a paral-
lelogram, then the opposite x axes are always parallel:

X, +x,=0. (24)

This satisfies the condition (23), and thus the lengths of the
opposite sides, @, and a,, are not identifiable (except as a
sum). Clearly, this problem may be eliminated by having the
manipulator change its endpoint location so that a parallelo-
gram is not formed.

Singularity 5: Structural Immobility: If a particular joint
J is immobile, then two consecutive joint coordinates are
fixed relative to one another. This implies that x B X
and z;_, have a constant linear relation (satisfying (23)), as
these four vectors span a three-dimensional space. Of course,
it is not surprising that the parameters of the links connected
by the immobile joint are unidentifiable. Conceivably a ficti-
tious link that combined the two links could be defined and
the rest of the mechanism identified.

To proceed, it is necessary to spot immobile joints. Fol-
lowing the approach in [24], we first determine whether the
mechanism is totally immobile. Since the classical mobility
definition [11] does not suffice for special mechanisms, the
following condition is derived.

Lemma 5: A single-loop closed kinematic chain is mobile
if and only if the columns of the Jacobian J; are linearly
dependent.

Proof: _Let the screw coordinate $} represent the jth
column of J;. Since J;8' = 0, then
0=018+ - +6i¢:

(25)

5

A 3-DOF planar manipulator with a fixed point contact to ground.

Fig. 4.

All ] /’ ’s will be identically zero if and only if the joint screws
$; are independent. [ |

Next we determine whether a single joint, say joint 1, is
immobile. From (25), link one’s instantaneous movement is
6i$] = —6/$; — --- — 6i$5. For link one to move, $!
must be a linear combination of the other screws. Stated
otherwise, the space span [$§] must intersect the space
span[$:, ... ,$§] spanned by the other screws. The follow-
ing result from linear algebra is useful [23].

Lemma 6: Let A and B be subspaces for a vector space
V such that V=4 + B where A + B=[v|v=a+b,
a€A, beB]. Then

K(ANB)=K(A)+K(B) - K(V) (26)
where K(W) denotes the dimension of a vector space W.

For the following lemma, identify 4 with span [${] and B
with span [$5,...,$:].

Lemma 7: Joint one will be mobile if and only if

1+ K(span [$},...,$5]) ~ K(span[$},...,$i]) > 0.
(27)

Any joint’s mobility may be ascertained by (27) with the
appropriate renumbering of the links.

As an example, consider the mechanism formed by rigidly
fixing the hand of an anthropomorphic arm [13] relative to its
shoulder (that is, imagine holding onto the desk in front of
you). Although this mechanism has a classical mobility of 1
(7 minus 6), the elbow joint can be shown to be immobile.
Consider the upper arm as the base link, so that $¢ is the
screw coordinate for the elbow (Fig. 5) Without loss of
generality, one of the three wrist joint axes may be defined to
intersect the shoulder joint. Thus the three shoulder joint axes
and this wrist joint axis are linearly dependent, and
K(span[$5,...,$5]) = 5 whereas K(span[$},...,$.]) =
6. Therefore, (27) shows that the elbow joint is immobile.
The solution to this problem is to relax the endpoint con-
straint so that the elbow is mobile; for example, only main-
tain a point contact with the ground, allowing arbitrary
orientation of the hand. This solution requires a reformula-
tion of the identification equations and is taken up in Section
Iv.

B. Simulations

This section presents two simulations, one for a 7-DOF
manipulator and the other for two 6-DOF manipulators rigidly
attached at their endpoints. In these and all subsequent exam-
ples the rank of the matrix % was monitored to avoid
singularities. Furthermore, % has full rank for the actual
parameters, and thus all mechanisms are identifiable.
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Fig. 5. Anthropomorphic arm screw coordinate assignment.

Example 1: A 7-DOF manipulator, with actual D-H pa-
rameters in Table II, was formed into a closed-loop mecha-
nism by the end effector grasping the ground at a fixed
arbitrary position. This mechanism was simulated in 40
distinct configurations (6, = 0 to 0.5 rad). Starting with the
initial guesses in Table I and with the definition s; = 1, the
simulated joint angles were fed into the iterative
Levenberg-Marquardt algorithm, and the parameters in Table
II were recovered to within four decimal places.

Example 2: Two 6-DOF manipulators whose end-effec-
tors are rigidly grasping together form the 12-DOF closed
mechanism in Table IV. These parameters were used to
simulate the movements of this mechanism into 40 different
configurations (9; = 0 to 0.5 rad, j =1 to 6). With the
initial parameters given in Table III and the simulated joint
angles the calibration was performed (also 53 = 1 fixed). The
parameters in Table IV were recovered to within four deci-
mal places.

IV. NONREDUNDANT ROBOT CALIBRATION AND TAsk
GEOMETRY ESTIMATION

Next we extend the closed-loop method to situations where
the end effector contact with the ground has some passive
DOF’s. Two examples, treated in detail shortly, are a manip-
ulator opening a door (a 1-DOF task) and a manipulator
under point contact (a 3-DOF task). If ¢ is the number of task
DOF’s, then the mobility of the resultant closed chain is
n + t — 6. For the door-opening task, 6-DOF nonredundant
manipulators can therefore be calibrated. For the point con-
tact task, manipulators with as few as 4 DOF’s may be
calibrated. At the same time, the geometry of the task is
calibrated.

Since the passive task DOF’s are unsensed, they must be
eliminated from the 6 kinematic loop closure equations. Up
to five unsensed DOF’s may be eliminated to leave at least
one equation for the identification procedure. This elimina-
tion is simple for the door-opening and point-contact tasks
but more difficult for arbitrary task kinematics.

A. Point Contact

An »-DOF manipulator under point contact is equivalent
to grasping a passive spherical ball joint. There are three
passive DOF’s at the endpoint corresponding to orientation
that are unsensed. Hence the orientation equations in the
previous calibration procedure cannot be used, but the three
position equations (20) can. Again, define the base origin to
coincide with the endpoint position. For example, for the
6-DOF manipulator in Fig. 6, the position of the base
coordinates (subscript —1) is coincident with that of the
endpoint coordinates (subscript 6). The orientation of the —1

Z
Z

N

o A
V-

Fig. 6. Coordinate description of a manipulator under point contact.
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TABLE 1
7-DOF MEecHANiSM: INITIAL PARAMETERS
Joint s(m) a(m) a(rad) 8°% (rad)
1 1.694 0.837 3.774 1.100
2 1.622 -0.627 -0.553 0.080
3 1.000 -0.100 0.930 0.090
4 —0.430 —0.430 2.040 0.900
5 0.540 —0.600 -0.150 0.050
6 —0.560 —-0.550 -1.350 0.040
7 -1.693 0.711 —-1.859 0.000
TABLE 1T
7-DOF MEgcHANIsM: CALIBRATED PARAMETERS
Joint s(m) a(m) a(rad) 9°%(rad)
1 1.594 0.737 3.604 0.000
2 1.722 -0.527 —-0.503 0.000
3 1.000 0.000 0.530 0.000
4 -0.330 -0.330 2.300 0.000
5 0.440 —0.440 —-0.900 0.000
6 —0.660 —0.550 1.200 0.000
7 -1.793 0.911 —1.459 1.825
TABLE III
12-DOF MECHANISM: INITIAL PARAMETERS
Joint s(m) a(m) a(rad) 9°%(rad)
1 -1.694 —0.837 3.504 0.100
2 —1.822 0.627 —0.553 0.050
3 1.000 0.100 0.580 0.070
4 0.430 0.430 2.380 1.070
5 —0.540 0.540 —-0.980 0.080
6 0.760 0.650 1.280 0.050
7 1.200 0.760 -1.390 0.100
8 1.200 1.500 3.800 0.100
9 0.600 —1.400 1.550 0.200
10 0.300 1.100 -1.380 0.300
11 1.300 0.600 0.880 0.900
12 -1.982 —-1.839 1.772 0.400
TABLE IV
12-DOF MecHANisM: CALIBRATED PARAMETERS
Joint s(m) a(m) a(rad) 6°f(rad)
1 —1.594 —-0.737 3.604 0.000
2 -1.722 0.527 —0.503 0.000
3 1.000 0.000 0.530 0.000
4 0.330 0.330 2.300 0.000
5 -0.440 0.440 —0.900 0.000
6 0.660 0.550 1.200 0.000
7 1.100 0.660 —1.300 0.000
8 1.100 1.400 3.900 0.000
9 0.500 -1.300 1.400 0.000
10 0.200 1.000 —1.300 0.000
11 1.200 0.500 0.800 0.000
12 —-1.882 -1.939 1.722 0.000

-
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coordinates is arbitrary with respect to the O coordinates, so
05" and o, are taken as arbitrary constants. Moreover, the
orientation of the end effector coordinates is arbitrary with
respect to the five coordinates; hence o (or more generally
a,) is taken as an arbitrary constant also. Finally, it is
necessary to specify one length parameter; for the theorem
below, we select ¢, = —1.
To incorporate just the position equations, we redefine
=p, = 0 from (3) and Ax] = (dx/, dyc, dzl) from (7).
The constant parameters 09", «,, o,, and a, are removed
from ¢. Then %', #, %, and C' are redefined in (4)- 5)
and (8) to reflect the reduced dimensions. In particular, each
column of each Jacobian in (12) contains only the bottom
three rows.
(32); = x}, (%), =

Z;—l’ (Jeoj) = z;’—l X b,

(1), =
These columns are now interpreted as partial velocity vec-
tors with respect to the parameters instead of as screw
coordinates [8)]. Notice that we have used up three kinematic
equations in order to eliminate the unmeasured orientation
DOF’s of the endpoint. The identification procedure can then
be applied as before.

As before, the identifiability of the parameters depends on
the linear dependence of the columns of the Jacobian C'.
Because of the form of the columns in (28), a stronger
identifiability condition than (16) is derived.

Theorem 4 (Point-Contact Identifiability): The parame-
ters ¢ are unidentifiable if and only if there is a constant
linear relation among the partial velocity vectors for all

P i
x X by

(2)

conﬁguratlons That is, there exist constants c k=
1, ,4, not all zero, such that
n
0=> ¢ +Y ¢ ciz;_ X bh + c3x}
J=0 i=1 n—1
+ Z cixix bl (29)
foralli=1,..., m.

Again, trivial modifications to the theorem can be made if
a different length parameter than a,, is fixed.

We now simulate a 6-DOF manipulator under point con-
tact; the actual parameters are given in Table VI. The
arbitrary constant parameters are marked with an asterisk,
and in particular we have chosen s, = 1 as the fixed-length
parameter. This entire mechanism was simulated in 30 dis-
tinct configurations (9, 6,, 6, = 0 to 0.5 rad), starting with
the initial guesses in Table V. The parameters in Table VI
were recovered to within four decimal places.

B. Opening a Door

The hinge joints of a door define a rotary axis. Since the
endpomt coordinates are arbitrary, it is convenient to make
z,, coincident with the door’s axis (Fig. 7). We also pos1t1on
the base coordinates at the endpoint coordinates, and let z’_
coincide with z}. The door hinge angle 6! measured about
z' s unknown, and the orientation equation relating to this
rotation must be eliminated from the calibration procedure.

]

ringe.

Fig. 7. The coordinate description of a manipulator connected to a hinge
joint.
TABLE V
THE INnrT1aL D-H PARAMETERS OF A 6-DOF
MANIPULATOR UNDER POINT CONTACT

Joint s(m) a(m) a(rad) 0°F(rad)
0 1.694 0.837 3.600* 0.000*
1 1.622 -0.627 —0.553 0.100
2 1.000* —0.100 0.930 0.090
3 —-0.430 -0.430 2.040 0.100
4 0.540 —-0.600 -0.150 0.050
5 —0.560 -0.550 1.350 0.040
6 —-1.693 0.711 —1.860* 1.700

TABLE VI
Tue ActuaL/CALIBRATED D-H PARAMETERS OF A 6-DOF
MANIPULATOR UNDER POINT CONTACT

Joint s(m) a(m) a(rad) 9°%(rad)
0 1.594 0.737 3.600* 0.000*
1 1.722 -0.527 —0.503 0.120
2 1.000* 0.000 0.530 0.000
3 -0.330 -0.330 2.300 0.000
4 0.440 —0.440 -0.900 0.000
5 ~0.660 —0.550 1.200 0.000
6 -1.793 0.911 -1.860* 1.825

To begin, the position equations are the same as before:

p. = 0 from (3) and Ap’ = (dx!, dy!, dz!) from (7). The
endpoint orientation is given by

R, = R, (3x)R,(3y)R (67) (30)

where dx/ and 3y are infinitesimal and 6! is finite. Expand-
ing the first column of (30) and neglecting the second-order
terms, one finds that 6] = a tan 2(R%,, ), R’ 1)), where the
indices denote the elements of the rotation matrix R’. The
desired variations dx. and dy! are extracted from
RIR (0))T = R, (3x! )R ,(0y!). The computed endpoint lo-
cation is then given by the five-vector xi = (dxi, dy!, dzl,
dx., 3y!). Thus one kinematic equation has been used up in
order to eliminate the unmeasured door hinge angle.

As before, one length parameter needs to be specified, say
a, = —1. Since z_; aligns with the door hinge and with z’
then 65T and 6, can be arbitrarily set to zero. ¢ is ad]usted
to eliminate @, and 0"“. Finally, 4, 4, %, and C' are
redefined in (4), (5), and (8) to reflect the reduced dimen-
sions of x’. The kinematic calibration procedure may then be
applied. Once again, identifiability is related to the rank of
C'.

Next we simulate a 6-DOF manipulator grasping a door
with a hinge joint. The D-H parameters are given in Table
VIIL; arbitrary parameters are marked by an asterisk, includ-
ing the fixed length s, = 1. This entire mechanism was
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simulated in 40 distinct configurations (6, = 0 to 0.5 rad),
starting with the initial guesses in Table VII. The parameters
in Table VIII were recovered to within four decimal places.

C. Identifying Arbitrary Task Kinematics

We now discuss how the algorithm presented for closed-
loop kinematic calibration readily generalizes to identifying
arbitrary task kinematics. As mentioned earlier, the chief
difficulty is eliminating the unknown DOF’s, from the envi-
ronment kinematics. This may be achieved by determining
the unknown DOF’s in terms of the known ones (and the
kinematic parameters). For instance, in calibrating a system
comprised of a robot opening a door with a handle, both the
door hinge angle and the handle angle may be determined in
terms of the known manipulator joint angles. Once all of the
DOF’s are determined, the iterative identification algorithm
presented above is directly applicable to identifying the kine-
matic parameters. In particular, the overdetermined system
of equations (8) may be solved by the iterative
Levenberg-Marquardt algorithm.

Determining the unknown DOF’s may proceed as follows:
1) using the nominal model of the robot, compute the loca-
tion of the endpoint at a specific configuration, then 2) notice
that this endpoint also locates the endpoint of the environ-
ment kinematic chain, and finally 3) using the nominal kine-
matics of the environment calculate the inverse kinematic
solution of the endpoint position given in step 1). The
resulting joint angles are the unknown DOF’s. The inverse
kinematics of step 3) must in, general, be performed itera-
tively (e.g., with [18]). Notice that a nominal model of the
kinematics is required. Each iteration of kinematic calibration
algorithm presented in Section 3 improves the nominal model.
Thus, the above determination of joint angles must be per-
formed anew for each step of the kinematic calibration
iteration.

V. DiscusSION

We have presented a new kinematic calibration method
that does not require endpoint measurements or precision
points. By forming manipulators into mobile closed kine-
matic chains, we have shown that consistency conditions in
the kinematic loop closure equations are adequate to calibrate
the manipulator from joint angle readings alone. This closed-
loop kinematic calibration method is an adaptation of an
iterative least-squares algorithm used in calibrating open-chain
manipulators.

Identifiability of the kinematic parameters of the closed
loop was reduced to inspecting the rank of the Jacobian
matrix %. Rank degeneracies were then studied with the
screw coordinate interpretation of the columns of the Jaco-
bians C'. Specifically, a requirement that there be no constant
linear relation among the local link xj» and z} axes accounts
for all singularities when there are no passive DOF’s. Closed
mechanisms with passive DOF’s must be studied on a case by
case basis for identifiability.

Three tasks were studied in detail: 1) fixed endpoint, 2)
point contact, and 3) opening a door. Nevertheless, the
method readily generalizes to a large class of robot tasks.

TABLE VII
Tue INITIAL D-H PARAMETERS FOR A 6-DOF
MANIPULATOR OPENING A DOOR

Joint s(m) a(m) a(rad) 6°"(rad)
0 1.694 0.837 3.744 *
1 1.622 -0.627 —-0.553 0.080
2 1.000 —-0.100 0.930 0.090
3 —0.430 —0.430 2.040 0.900
4 0.540 -0.600 -0.150 0.050
5 —-0.560 -0.550 1.350 0.040
6 —1.693 0.711 —1.859 1.400

TABLE VIII
THE AcTUAL /CALIBRATED D-H PARAMETERS OF A
6-DOF MaNIPULATOR OPENING A DoOR

Joint s(m) a(m) af(rad) 9°%(rad)
0 1.594 0.737 3.604 *
1 1.722 -0.527 —0.503 0.000
2 1.000 0.000 0.530 0.000
3 —-0.330 -0.330 2.300 0.000
4 0.440 —0.440 —-0.900 0.000
5 —0.660 —0.550 1.200 0.000
6 -1.793 0.911 —1.459 1.825

The main requirement is that there be positive mobility in the
closed chain; in general, the sum of manipulator DOF’s plus
the passive DOF’s of the endpoint constraint must exceed
six. Fixed endpoint constraints generally require redundant
arms to achieve positive mobility. An equivalent scenario is
two manipulators rigidly attached at their endpoints with
combined DOF’s greater than six; thus two nonredundant
arms could be calibrated together. When passive endpoint
constraints are allowed, single nonredundant arms may be
calibrated as well; for example, under point contact the
manipulator only requires 4 DOF’s. In principle, up to five
passive DOF’s can be allowed in the endpoint. For every
passive DOF, one of the six kinematic loop closure equations
is used up to eliminate the unknown joint angle; this proce-
dure is akin to mechanism synthesis.

In our method, it is necessary to specify one length param-
eter to scale the mechanism. An independent means for
measuring this parameter is required. This is a feature of
other kinematic calibration methods as well, such as those
using theodolites [27].

Another issue with our method is how to handle the forces
encountered when moving the manipulator with an inaccurate
kinematic model under endpoint constraints. It is beyond the
scope of this paper to present a detailed solution, but an
appropriate force control procedure must be implemented.
The task is made easier if the joint actuation is inherently
complaint. For example, one could drive only as many joints
as there are degrees of mobility in the loop. Alternatively,
one could drive all joints using the initial guess at the
kinematic parameters to calculate the constrained joint mo-
tion, and then rely on the joint compliance to allow for error
in the commanded joint trajectories. Although more compli-
cated, this latter method is better, as the former method could
lead to the drive joints jamming at singularities. Recently, we
applied our method to calibrating two fingers of the Utah/MIT
Dextrous Hand, which were rigidly attached at the endpoints
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to form a closed-loop mechanism with 8§ DOF’s [6]; the
fingers were moved manually as a simple remedy in this
particular case.

Although the joint offsets §°T were the only nongeometric
parameters modeled in this paper, in principle more compli-
cated nongeometric joint models could be calibrated. For
example, in [6] an additional scaling factor for the joint angle
sensors was required and successfully identified.

Our closed-loop method to kinematic calibration represents
a departure from the typical dichotomy found in robotics
between model building and task performance. The removal
of this dichotomy may generalize to other problem areas in
robotics. In this paper, the models of the task and the
manipulator are improved while the task is being performed.
In a separate paper, we have also shown how an uncalibrated
stereo vision system can be calibrated together with an
uncalibrated manipulator [7]. Thus we feel that our approach
is a step toward true autonomy: no special precalibrated
endpoint measurement device—or external ‘‘teacher’ —is
needed.
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