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What properties can be recovered from random sampling?  What cannot?
 - if data is from much bigger distribution, only the first type interesting !

 ==== density based estimates ====
   + what fraction of points satisfy this property?
   + do more that X fraction of points satisfy this property?
   + what objects have high frequency?

 ==== shape estimates ====
   + what is most extreme point?
   + score of k-means clustering?

------------------------------
Let P be the phenomenon we are sampling from.  
  Q subset P is sample.  

R = class of subsets of P  "ranges"
  ~  geometric ranges (balls, rectangles, half-spaces)  | intervals
  ~  kernels (weighted subsets)
  ~  "dual"  P is rectangles and r in R is point "stabbing"
  ~  simple combination of these ranges

------------------------------
---- density -------
for r in R   let 
 r(P) = | r cap P | / | P |  
be fraction of objects from P in range r
  "density"

want property:
 ** for any range r in R **
 | r(P) - r(Q) | < eps
for some parameter eps in [0,1]   (think of eps = 0.01 = 1/100)

 Q1: Can we do this?  
 Q2: How big does Q need to be?

 A1: Yes, if R is "reasonable"



     basically if |P| = n , finite, then |R| < n^v
     bounded VC-dimension (basis of learning theory)

     balls            v = d+1
     axis-aligned rectangles   v = 2d
     half-spaces      v = d+1
     P = rectangles   v = 2d
       v ~ description complexity
         ~ degrees of freedom

     most important:
      intervals   v = 2

 A2:  |Q| = (1/eps^2)( v + log (1/delta) )
     eps = maximum error
     delta = probability of failure  (success w.p. > 1-delta)
     v = VC-dimension
     [Vapnik-Chervonenkis 1971  -->  Li, Long, Srinivasan 2001 (via Talagrand 
1984)]

eps-sample    aka    eps-approximation   aka   agnostic sampling

Chernoff Bound:  
  r independent events X1, X2, ..., Xr
  A = (1/t) sum_i Xi
  Xi in [0,1]
  Pr[A - E[A] < eps ] < 2 exp(-2 eps^2 t)   < delta
    
  X_i is 1 if sample i in r, 0 if X_i not in r  ( contribution to r(Q) )
  solve for |Q| = t > (1/2) (1/eps^2) ln (2/delta)

----------------------------------------
Frequent Objects

Let R_eps subset R such that r(P) > eps
  R_eps = {r in R | r(P) > eps}

Want Q such that 
 ** for all r in R_eps **
  r(Q) > 0

we "hit" all large enough ranges.

 Q1:  Can we do this?



 Q2:  How large does Q need to be?

 A1:  Clearly yes if R satisfies above   (v is bounded)
   
 if eps-sample
   |r(P) - r(Q)| < eps
  ->  if r(P) > eps  ->  r(Q) > 0

 Small discrete sets (only m possible values) also work.
   Here also v = 1   
   since at most n+1 distinct ranges with different subsets.

 A2:  |Q| = (v/eps) log (v/eps * delta)
     eps = maximum error
     delta = probability of failure  (success w.p. > 1-delta)
     v = VC-dimension
     [Hausler + Welzl  1986]  

eps-net    aka    heavy-hitters   aka    noiseless-learning

discrete sets:   heavy-hitters are all sets which occur more than eps*n times.

Note:  We might accidentally hit the small sets,  or over-sample large sets.

  ....  proof from Chernoff bound - small sets are easier class  .....
  ....  similar to Coupon Collectors problem .....

-------------------------------------------

extreme points:  
  max value of set.  Will sample recover?  
  Average value.    <sometimes, if variance is low / bounded>
  k-means cluster.  Can you sample Q subset P
                    run  C = k-means(Q)
                    compare average cost | |P|/|Q| cost(C,Q) - cost(C,P) | ?

     No?  

Trick:  don't try to recover density, since won't work.  
Sample C directly:   

basic:  for max, just choose maximum point.  
        No need to sample.

approx-convex hull:  
        Let u be a unit vector in some direction



        wid(u,P) = max_{p in P} <u,p>  -  min_{p in P} <u,p>
        eps-kernel Q:
            for **any** u :    (wid(u,P) - wid(u,Q))/wid(u,P)  < eps
        (other forms, but this settled upon)

        1.  normalize so P fits in [-1,1]^d
        2.  place (1/eps)^{(d-1)/2} points G evenly on each side of [-2,2]^d
        3.  Select to Q the closest point in P to each g in G

        or 
        2b. Take one point from each [eps]^d grid cell

k-means clustering:

let phi_C : P -> C
    phi_C(p) = argmin_{c in C} ||p - c||

construct C_1  = c_1 at random (q in P)
   C_{i+1} = C_i cup c_{i+1} 
      choose c_{i+1} proportional to (phi_{C_i}(p))^2

cost(C,P) is 8-approximation to optimal centers
  cost(C,P) = sum_{p in P} phi_C(p)

more general:  
  phi(p)  = sensitivity of p
     ~  phi(p) proportional to how cost(Q) changes to cost(Q / p)
        where Q is random subset
     ~  "extreme" have higher phi(p)
     ~  points near many other points have lower phi(p)
  complicated to describe in some specific settings

-----------------------
Question:  MAP Estimate?


