
8 Sparsification Algorithms

All low rank matrix approximation algorithms including the fundamental ones such as Power method or
Orthogonal iterations, involve lots of matrix-matrix or matrix-vector multiplications. These basic operations
require time proportional to number of non-zero entries in matrices, as one need to read the entire matrix
into memory. Sparsifying a matrix, i.e. decreasing number of non-zeros, and quantizing it, i.e. rounding up
entries to a constant, accelerate such computations as well as saving space in representation.

First sparsification algorithm was by Achlioptas and McSherry[1], where they sampled and quantized
entries of a given matrix A 2 Rn⇥d to lowered number of non-zeros and length of their representation.
They observed acts of sampling and quantization can be viewed as adding a random noise matrix E 2 Rn⇥d

to A, whose entries are independent random variables with zero mean and bounded variance. Since with
high probability a random matrix has a weak spectral structure, it does not alter the the main spectrum of
input matrix. Below we first state a theorem on norm of random matrices, then describe their algorithms.

8.1 Spectral Structure of Random Matrices

Theorem below[2] shows a well constructed random matrix has a weak spectral structure.

Theorem 8.1.1. [2] Let E 2 Rn⇥d
be a random matrix such that entries Ei,j = rij are independent

bounded random variables rij 2 [�k, k], with E[rij ] = 0 and Var(rij)  �2

. For all ↵ � 1, " > 0, and

n+ d � 20, if k  (

4"
4+3")

3

�
p
n+d

log

3
(n+d)

then

Pr
h
kEk

2

� (2 + "+ ↵)�
p
n+ d

i
< (n+ d)�↵2

8.2 Additive Error Sparsification Algorithms

Using theorem 8.1.1, Achlioptas and McSherry[1] showed a carefully constructed random matrix ˆA 2 Rn⇥d

can approximate spectral norm of Ak. Theorem 8.2.1 states their result.

Theorem 8.2.1. Let A 2 Rn⇥d
be an arbitrary matrix with b = maxi,j |Ai,j | being the maximum entry in

absolute value. Let
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be a random matrix where entries

ˆAi,j are independent random variables

with E[ ˆAi,j ] = Ai,j , Var( ˆAi,j) = (�b)2 and kAi,j � ˆAi,jk2  �b
p
n+d

2 log

3
(n+d)

. Then for any ↵ � 1,

kA� ˆAkk2  kA�Akk2 + (8 + 2↵)�b
p
n+ d

holds with probability atleast 1� (n+ d)�↵2
.

Proof.

kA� ˆAkk2  kA� ˆAk
2

+ k ˆA� ˆAkk2 triangle inequality

 kA� ˆAk
2

+ k ˆA�Akk2 For any rank k matrix D: k ˆA� ˆAkk2  k ˆA�Dk
2

 kA� ˆAk
2

+ k ˆA�Ak
2

+ kA�Akk2 triangle inequality

 2kA� ˆAk
2

+ kA�Akk2

Setting E = A � ˆA one can verify that E satisfies all conditions of theorem 8.1.1, as it has zero expec-
tation E[Ei,j ] = Ai,j � E[

ˆAi,j ] = 0, bounded variance Var(Ei,j)  (�b)2, and bouned entries Ei,j 2
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]. Therefore taking " = 2, the bound kA � ˆAk
2
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probability atleast 1� (n+ d)�↵2 , and therefore kA� ˆAkk2  (8 + 2↵)�b
p
n+ d+ kA�Akk2.
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As theorem 8.2.1 holds for any random matrix ˆA with above conditions, authors of [1] proposed two
concrete constructions. The first construction is based on sampling; matrix ˆA samples some entries of A
and omits others, they show the stronger spectrum of input matrix is, the larger fraction of entries they can
afford to lose. Theorem8.2.2 states their sampling result.

Theorem 8.2.2. Let A 2 Rn⇥d
be the input matrix and b = maxi,j |Ai,j | be the maximum entry in absolute

value. Define matrix
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. Then with probability atleast 1� 1/(n+ d) the following error bound holds
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Proof. It is easy to verify that matrix ˆA satisfies all conditions of theorem 8.2.1:

• E[
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• 8i 2 [1, n], j 2 [1, d] : |Ai,j � ˆAi,j | 2 {Ai,j , sAi,j}, and in both cases it is upper bounded by
|Ai,j � ˆAi,j |  sAi,j  (n+d)b
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Fitting conditions of theorem 8.2.1, and using ↵ = 1, we obtain kA � ˆAkk2  10b
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In their second construction, they randomly quantize entries of A, and shorten the representation, this
allows them to store each entry in one bit. Theorem 8.2.3 explains their result.

Theorem 8.2.3. Let A 2 Rn⇥d
be the input matrix and b = maxi,j |Ai,j | be the maximum entry in absolute
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Proof. Again it’s easy to see that matrix ˆA satisfies all conditions of theorem 8.2.1:
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Fitting conditions of theorem 8.2.1, and using ↵ = 1 completes the proof
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8.3 Relative Error Sparsification Algorithm

Latest result in using sparsification for low-rank approximation [3] takes advantange of a popular technique
in matrix completion line of work, called as alternating minimization. We first give a brief review of this
technique, then elaborate the main algorithm.

Often a target matrix A can be represented in a bi-linear form as A = UV (matrices U, V are not nec-
essarily orthonormal). Having this parametrization, the task of approximating A reduces to finding U and
V that minimize an error metric, for example kA � UV kF . The alternating minimization technique starts
with some initial guess for U and V (say U (0), V (0)), iteratively keep one of U, V fixed and optimize over
the other, that is V (i+1)

= argminV kA� U (i)V kF , then switch and repeat until it converges.
In order to use this technique in matrix approximation, algorithm[3] samples some entries of matrix A,

partition them into multiple subsets and iterates over those subsets to refine the approximation it obtained
from first subset. The full method is described in algorithm 8.3.1 and 8.3.2.

Algorithm 8.3.1 Leverage Element Low Rank Approximation (LELA)
1: Input: A 2 Rd⇥n, rank r, number of samples m, number of iterations T
2: Output: P

⌦

(A),⌦, r, q̂, T
3: ⌦ ⇢ [n]⇥ [d] indices of m independently sampled entries with probability q̂i,j = min{1, qi,j} with

qi,j = m.(
kAi,:k2+kA:,jk2
2(n+d)kAk2F

+

|Ai,j |
2kAk1 )

4: obtain P
⌦

(A) ⇢ A as the matrix of sampled entries, using another pass over A
5: ˆAr = WAltMin(P

⌦

(A),⌦, r, q̂, T )

Algorithm 8.3.2 Weighted Alternative Minimization
1: Input: P

⌦

(A),⌦, r, q̂, T
2: Output: ˆAr 2 Rn⇥d

3: For all i, j 2 [n]⇥ [d] set wi,j = 1/q̂i,j if q̂i,j > 0, otherwise wi,j = 0

4: Divide ⌦ into 2T + 1 equal uniformly random subsets ⌦ = {⌦
0

, · · · ,⌦
2T }

5: R
⌦0(A) w. ⇤ P

⌦0(A)

6: Set U (0)

⌃

(0)

(V (0)

)

T
= svd(R

⌦0(A), r)
7: for t = 0to T � 1 do
8: ˆV (t+1)

= arg min

V 2Rd⇥r
kR1/2

⌦2t+1
(A� ˆU (t)V T

)k2F

9: ˆU (t+1)

= arg min

U2Rn⇥r
kR1/2

⌦2t+2
(A� U(

ˆV (t+1)

)

T k2F
10: return ˆAr =

ˆU (T )

(

ˆV (T )

)

T

In the sampling phase, whose aim is to sparsify the matrix, each entry Ai,j is sampled with a defined
probability qi,j and weighted as Ai,j/qi,j , so that sampled matrix ˆA 2 Rn⇥d has same frobenious norm as
A in expectation. As decomposing a matrix takes time inversly proportional to the sparsity of the matrix
authors spread non-zero entries of ˆA equally and randomly amongst some fixed numbers of matrices ˆA(j) 2
Rn⇥d, therefore

P
j=1

ˆA(j)
=

ˆA. Now that each ˆA(j) is a sparse random sample of ˆA, they take svd

decomposition of ˆA(1) explicitly, i.e [U, S, V ] =

ˆA(1). Considering ˆA(1) in bi-linear form ˆA(1)

= U(SV T
),

they iterate over further matrices {A(j)} and minimize the fronbenious error of approximation.
They show that 8.3.1 needs T = O(log(

kAk2
"kA�ArkF )) iterations, runs in time O(nnz(A) + nr5

"2 2 log n)

where  = �
1

/�r is the condition number of A, and achieves the relative error bound

kA� ˆArk2  kA�Ark2 + 2"kA�ArkF
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