
6 Matrix Concentration Bounds

Concentration bounds are inequalities that bound probabilities of deviations by a random variable from
some value, often its mean. Informally, they show the probability that a random variable deviates from its
expectation is small. A basic example of random variables being concentrated around the mean is stated
by “law of large numbers” that says under mild conditions, sum of independent random variables is close
to their expectation with a high probability. Concentration bounds, which are also known as “tail bounds”,
are a major tool in analyzing average behaviour of algorithms, e.g. estimating the failure probability or
establishing high probability bounds on running time and space usage.

In this lecture, we give an introduction to some of concentration bounds on random variables and random
matrices.

6.1 Basic Tail Bounds

If X is a random variable and a 2 R is a real value, then Pr[X � a] and Pr[X  a] are called upper tail

and lower tail of the distribution on X , respectively. Concentration bounds might bound one of the tails or
both. We start with the most basic yet fundamental tail bound, called as Markov’s Inequality.

Theorem 6.1.1 (Markov’s Inequality). Let X be a non-negative random variable. Then for all a > 0

Pr(X � a)  E[X]

a

Proof. Define an indicator random variable I

a

=

(
1 if X � a

0 otherwise
. Note in both cases X � aI

a

, therefore

E[X] � a E[I

a

]

= a Pr(X � a)

And that completes the proof.

Markov’s inequality is the best possible tail bound one can get if all he knows is non-negativity of random
variable and its expectation, yet it is often too weak to yeild useful results. Tail bounds can be improved if
more information about X , e.g. its variance, is available. Below, we state a significantly stronger bound that
employs extra statistics.

Theorem 6.1.2 (Chebyshev’s Inequality). For any random variable X , and any a > 0

Pr (|X � E[X]| � a)  Var[X]

a

2

Proof. Let’s apply Markov’s inequality on random variable X = (Y � E[Y ])

2 and scalar a = b

2,

Pr

�
(Y � E[Y ])

2 � b

2
�


E

⇥
(Y � E[Y ])

2
⇤

b

2

Note that Pr

�
(Y � E[Y ])

2 � b

2
�
= Pr (|Y � E[Y ]| � b), and E

⇥
(Y � E[Y ])

2
⇤
= Var(Y ) is the definition

of variance. Therefore

Pr (|Y � E[Y ]| � b)  Var(Y )

b

2
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The use of Chebyshev’s inequality indicates that with probability larger than 1� 1/a

2, a random variable
X will fall within a times the standard deviation around E[X]. For example, 75% of the times a random
value falls in the interval [E[X]� 2Var(X),E[X] + 2Var(X)].

Both Markov’s and Chebyshev’s inequalities provide polynomially decaying bounds in amount of devi-
ation (i.e. a in the formula). More interesting are concentration bounds in which deviation probabilities
decay exponentially in the distance from mean.

Theorem 6.1.3 (Chernoff-Hoeffding Inequality). Consider a set of independent random variables {X1, X2, · · · , Xr

}.

If we know each random variable is bounded as a

i

 X

i

 b

i

with �

i

= b

i

� a

i

, then for M =

P
r

i=1Xi

and any parameter " 2 (0, 1/2)

Pr (|M � E[M ]| > ")  2 exp

✓
�2"

2

P
r

i=1�
2
i

◆

Although Chernoff-Hoeffding inequality provides a stronger exponentially decreasing bound, it requires
random variables to be independent a condition that neither the Markov’s nor the Chebyshev’s inequalities
require. Before we move on to concentration bounds for matrices, we state a concrete version of Chernoff
bound that has an analogous in matrices. This version bounds the tail distribution of a sum of independent
0, 1 random variables that are not necessarily distributed identically.

Theorem 6.1.4 (Chernoff’s Inequality). Let {X1, X2, · · · , Xr

} be a sequence of independent 0, 1 random

variables. Define M =

P
r

i=1Xi

and µ = E[M ]. Then for any " > 0:

Pr (M � (1 + ")µ) 
✓

e

"

(1 + ")

1+"

◆
µ

6.2 Matrix Concentration Bounds

In applications, it is common that a random matrix can be expressed as a sum of independent random
matrices[1]. For example, the covariance of X 2 Rn⇥d can be written as X

T

X =

P
n

i=1 x
T

i

x

i

where x

i

denotes i-th row of X . In this section, we state two common bounds on random matrices[1].

6.2.1 Matrix Chernoff Bound

Chernoff’s Inequality has an analogous in matrix setting; the 0, 1 random variables translate to positive-
semidefinite random matrices which are uniformly bounded on their eigenvalues.

Theorem 6.2.1 (Matrix Chernoff bound). Let {X1, X2, · · · , Xr

} be a finite sequence of independent d⇥d

dimensional random matrices such that each X

i

is positive semi-definite (X

i

⌫ 0) and is upper bounded

on eigenvalues, i.e. �

max

(X

i

)  R for a positive constant R. Define µ

min

= �

min

(

P
r

i=1 E[X
i

]) and

µ

max

= �

max

(

P
r

i=1 E[X
i

]), then for any " 2 [0, 1]

Pr

 
�

min

 
rX

i=1

X

i

!
 (1� ")µ

min

!
 d.


e

�"

(1� ")

1�"

�
µ

min

/R

E

"
�

min

 
rX

i=1

X

i

!#
� 0.6 µ

min

�R log d

And for any " � 0

Pr

 
�

max

 
rX

i=1

X

i

!
 (1 + ")µ

max

!
 d.


e

"

(1 + ")

1+"

�
µ

max

/R
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E

"
�

max

 
rX

i=1

X

i

!#
 1.8 µ

max

+R log d

Here, we state an example to demonstrate the application of Matrix Chernoff bound.

Example [Random Submatrix]. [1] Consider a fix matrix C = [c1, c2, · · · , cn] 2 Rd⇥n. Let’s construct
a submatrix Z 2 Rd⇥n ✓ C by randomly picking columns of C with probability s/n. If column c

i

is
selected, we set i-th column of Z to c

i

(i.e. z

i

= c

i

), otherwise z

i

= 0. We are interested in finding the
expected largest singular value of Z and expected smallest singular values of Z.

Solution: Let’s define a random variable �

i

for each column c

i

. If c

i

is selected, we set �
i

= 1 and
otherwise we set it to zero. Therefore �

i

is a 0, 1 random variable as following

�

i

=

(
1 with probability s/n

0 otherwise

Putting them in a diagonal matrix � = diag(�1, �2, · · · , �n) 2 Rn⇥n allows us to write Z as Z = C�. In
order to be able to use the Matrix Chernoff bound, we need to convert singular values to eigenvalues. Note
that singular values of Z are related to eigenvalues of ZZ

T as �
i

(Z)

2
= �

i

(ZZ

T

); therefore if we consider
singular values and eigen values indexed in descending order, we can bound largest singular value of Z as

�1(Z)

2
= �1(ZZ

T

)

and smallest singular value as
�

d

(Z)

2
= �

d

(ZZ

T

)

Next, we write ZZ

T in terms of sum of random matrices that satisfy conditions of theorem 6.2.1:

ZZ

T

= (C�)(C�)

T

= C�

2
C

T

= C�C

T

=

nX

i=1

�

i

c

i

c

T

i

If we denote each summand as X
i

,

ZZ

T

=

nX

i=1

�

i

c

i

c

T

i

=

nX

i=1

X

i

E[ZZ

T

] =

nX

i=1

E[X

i

] =

s

n

nX

i=1

c

i

c

T

i

=

s

n

CC

T

Note that X
i

s are independent, positive semi-definite, and bounded as �
max

(X

i

)  kc
i

k2. So the maximum
eigenvalue of all summands is bounded as R = max

1in

kc
i

k2. The mean parameters satisfy

µ

max

= �

n

(E[ZZ

T

]) =

s

n

�1(C)

2
µ

min

= �

d

(E[ZZ

T

]) =

s

n

�

d

(C)

2

Applying Matrix Chernoff inequality we obtain

E

⇥
�1(Z)

2
⇤
= E

⇥
�

d

(ZZ

T

)

⇤
 1.8 (

s

n

) �1(C)

2
+ max

1in

kc
i

k2 log d

and
E

⇥
�

d

(Z)

2
⇤
= E

⇥
�

d

(ZZ

T

)

⇤
� 0.6 (

s

n

) �

d

(C)

2 � max

1in

kc
i

k2 log d

As this bound shows random matrix Z gets a share of the spectrum of C in proportion to the number of
columns it picks. In other words, matrix C has n columns which random matrix Z includes about s of them
in expectation, and the bound is showing each singular value �

i

(Z)

2 of Z inherits an s/n share of �
i

(C)

2

for all 1  i  d.
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6.2.2 Matrix Bernstein Inequality

Bernstein Inequality drops the condition of positive semi-definitness and concerns a sum of zero-mean
bounded random matrices.

Theorem 6.2.2 (Matrix Bernstein Inequality). Let {X1, X2, · · · , Xr

} be a set of independent d1 ⇥ d2

dimensional random matrices with E[X
i

] = 0 and kX
i

k2  R for a positive constant R and for all X

i

s.

Define variance parameter as � = max

���Pr

i=1 E(X
i

X

T

i

)

��
,

��Pr

i=1 E(XT

i

X

i

)

�� 
, then for any t � 0

Pr

"�����

rX

i=1

X

i

����� � t

#
 (d1 + d2) exp

✓
�t

2
/2

� +Rt/3

◆

E

"�����

rX

i=1

X

i

�����

#

p
2� log(d1 + d2) +

R

3

log(d1 + d2)

Example [Randomize Matrix Multiplication]. [1] Consider matrix B 2 Rd1⇥n with unit norm columns
(i.e. kb

i

k = 1, 81  i  n) and matrix C 2 Rn⇥d2 with unit norm rows (i.e. kcik = 1, 81  i  n).
We are interested in computing an approximation to the product BC 2 Rd1⇥d2 using a random sample of
columns of B and rows of C.

solution: First note that if we construct a random variable S = (n b

j

c

j

) 2 Rd1⇥d2 where j 2 [1, n]

is sampled uniformly at random, then S will be an unbiased estimator for the product BC. This is true
because:

E[S] = E

⇥
n b

j

c

j

⇤
= n

nX

k=1

(b

k

c

k

Pr(k = j)) = n

nX

k=1

(b

k

c

k

(

1

n

)) =

nX

k=1

(b

k

c

k

) = BC

Although S is an unbiased estimator for BC, it has a large variance. In order to reduce the variance we
compute m independent copy of S and average them as Z =

1
m

P
m

i=1 Si

.Now Z is a better approximation
for BC. The error we are interested to compute is

err = E [kZ �BCk2] = E

"�����

mX

i=1

(

1

m

S

i

� 1

m

BC)

�����
2

#

Therefore each summand is X

i

=

1
m

(S

i

� BC). Note that summands are independent and E[X

i

] = 0.
Before we bound spectral norm of summands, we use symmetrization technique to say

E [kZ �BCk]  2

m

E

"�����

mX

i=1

"

i

S

i

�����

#

Where "

i

are independenet Rademacher random variables, independent of S
i

s. Therefore

kX
i

k2  k"
i

S

i

k  kS
i

k = nkb
j

kkcik = n

Therefore the upper bound R on spectral norm of any summand is n. Now we compute the variance in two
steps:

E[S

i

S

T

i

] =

nX

j=1

n

2
(b

j

c

j

)(b

j

c

j

)

T

Pr(j = i) =

nX

j=1

n

2kcjk2b
j

b

T

j

= n

2
BB

T

And

E[S

T

i

S

i

] =

nX

j=1

n

2
(b

j

c

j

)

T

(b

j

c

j

)Pr(j = i) =

nX

j=1

n

2kb
j

k2cjT cj = n

2
C

T

C
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Therefore � = max{kmn BB

T k, kmn C

T

Ck} = mnmax{kBk2, kCk2}. Applying the Bernstein Bound
we obtain

E [kZ �BCk]  2

m

E

"�����

mX

i=1

"

i

S

i

�����

#

 2

m

⇣p
2mn log(d1 + d2)max{kBk2, kCk2}+

n

3

log(d1 + d2)

⌘

=

r
8n

m

log(d1 + d2)max{kBk2, kCk2}+
2n

3m

log(d1 + d2)

In order to make sense out of this inequality, let’s take a look at numeric rank of B and C. As we know,
numeric rank of a matrix is defined as nrank(A) = kAk2

F

/kAk22. Since B and C has unit columns and unit
rows, respectively then kBk2

F

= kCk2
F

= n. Then the geometric mean of numeric ranks will be

µ =

p
nrank(B) nrank(C) =

s
n

2

kBk22kCk22
=

n

kBk2kCk2

Converting the error bound to a relative scale we obtain

E [kZ �BCk]
kBk2kCk2


r

8n

m

log(d1 + d2)
max{kBk2, kCk2}

kBk2kCk2
+

2

3

n log(d1 + d2)

mkBk2kCk2


r

8n

m

log(d1 + d2)
1

min{kBk2, kCk2}
+

2

3

µ log(d1 + d2)

m

=

s
n

kBk2kCk2
8

m

log(d1 + d2)
kBk2kCk2

min

2{kBk2, kCk2}
+

2

3

µ log(d1 + d2)

m


r

8µn

m

log(d1 + d2) +
2

3

µ log(d1 + d2)

m

Note last inequality follows since min

2{kBk2, kCk2} = min{kBk22, kCk22} and 1  kBk2, kCk2  n.
Setting the relative error to be less than ", the number of samples (m) will be m = ⌦("

�2
µn log(d1+d2)).

This shows the number of samples we need to approximate product of two matrices is proportional to the
geometric mean of their numeric rank. And that makes sense because if two matrices of high rank, it means
there are many distinct directions in their spectrum, therefore we need to pick many samples to get a good
approximation to their product.
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