
5 CUR Decomposition

Most matrix approximation techniques (including SVD) provide the basis vectors as linear combinations of
data features, e.g. in a term-document matrix a basis vector could be [(3/2) job − (2/7) society + · · · +
(1/
√

10) salary]. Typically, these vectors are not understandable and particularly informative. In addition,
analysts spend vast amount of time applying decomposition techniques to analyze the data and comprehend
it better. Therefore, it is highly preferable and sometimes necessary to obtain an interpretable compact
representation of data.

In this lecture we talk about matrix approximation techniques that are explicitly expressed in terms of a
small number of columns and rows of the input matrix, and thereby not only are more amenable to interpre-
tation, but also preserves additional structure of data such as sparsity or nonnegativity.

All CUR techniques decompose the input matrix A ∈ Rn×d as a set of three matrices C ∈ Rn×c, U ∈
Rc×d and R ∈ Rr×d that when multiplied together, closely approximate A. The CUR matrix approximation
is not unique and there are multiple algorithms for computing one.

5.1 LinearTimeCUR
First CUR algorithm named as LinearTimeCUR (LTCUR), is due to Drineas, Kannan and Mahoney[3]. This
method, presented in algorithm 5.1.1, consists of three main steps: (1) first it constructs a matrix C ∈ Rn×c

by randomly sampling c = O(k/ε4) (or c = O(1/ε4) for spectral norm) columns of A in c independent identical
trials; in each trial column A:,j is sampled with probability pj = ‖A:,j‖2/‖A‖2F and if it is picked, it is rescaled
by 1/

√
cpj , (2) then it forms a matrix R ∈ Rr×d by independently sampling r = O(k/ε2) rows of A proportional

to their squared norm; in each trial row Ai,: is sampled with porbability qi = ‖Ai,:‖2/‖A‖2F , and if it is selected
it is rescaled by 1/

√
rqi and (3) finally it constructs matrix U ∈ Rc×r as the intersection of C and R and

properly rescales such that A = CUR.

Algorithm 5.1.1 LinearTimeCUR
Input: A ∈ Rn×d, 1 ≤ c ≤ d, 1 ≤ r ≤ n, 1 ≤ k ≤ min(n, d)
Output: C ∈ Rn×c, U ∈ Rc×r, R ∈ Rr×d

for t = 1 to c do
Pick j ∈ {1, · · · , d} with probability pj = ‖A:,j‖2/‖A‖2F
Set C:,t = A:,j/

√
cpj

Set k = min(k, rank(CTC))
for t = 1 to r do

Pick i ∈ {1, · · · , n} with probability qi = ‖Ai,:‖2/‖A‖2F
Set Rt,: = Ai,:/

√
rqi

Set Ψt,: = Ci,:/
√
rqi

Let U = ([CTC]k)−1ΨT

return C,U,R

Note this method is inspired by LinearTimeSVD algorithm of same authors[2], which is a column sam-
pling method. They showed setting c ≥ 64kµ2

c/ε
4 and r ≥ 4k/δ2rε

2 where µc = 1 +
√

8 log (1/δc) and 0 ≤
ε, δr, δc ≤ 1, LTCUR achieves Frobenius error bound

‖A− CUR‖F ≤ ‖A−Ak‖F + ε‖A‖F

CS 7931
∣∣6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

and setting c ≥ 64µ2
c/ε

4 and r ≥ 4k/δ2rε
2 it obtains spectral error bound as

‖A− CUR‖2 ≤ ‖A−Ak‖2 + ε‖A‖F

with probability 1− (δr + δc).

5.1.1 Error Analysis
Let SC ∈ Rn×c and SR ∈ Rr×d denote column sampling and row sampling matrices, i.e. they are zero-
one matrices such that if in t-th trial, i-th row (similarly j-th column) of A is chosen then (SR)t,i = 1

(similarly (SC)j,t = 1), otherwise it is zero. Also consider rescaling diagonal matrices DC ∈ Rc×c and DR ∈
Rr×r such that (DR)t,t = 1/

√
rpi

(
similarly (DC)t,t = 1/

√
cqj
)

if in t-th trial, i-th row (similarly j-th column) of
A is chosen. Using these notations, we can write R, C and U as

C = ASCDC and R = DRSRA and U = ([CTC]k)−1CT (DRSR)T

Note that if we consider SVD decomposition of C as C = HΣY T , due to LTSVD algorithm of [2], HkHT
k A is

already an approximation to Ak. In LTCUR, we show an approximation to HkH
T
k A is still a “good enough”

approximation to Ak. Having this intuition and using triangle inequality we decompose the target error
bound as

‖A− CUR‖ζ ≤ ‖A−HkHT
k A‖ζ + ‖HkHT

k A− CUR‖ζ

Where ζ ∈ {2, F}. Based on [2], Frobenius and spectral norm of first term are bounded as

‖A−HkHT
KA‖2F ≤ ‖A−Ak‖2F + 2

√
k‖AAT − CCT ‖F

‖A−HkHT
KA‖22 ≤ ‖A−Ak‖22 + 2‖AAT − CCT ‖2

For the second term, notice we can write CUR as

CUR = [HΣY T]
[
(YkΣ2

kY
T
k)−1(Y ΣHT)(DRSR)T

]
[DRSRA]

= [HΣY T]
[
YkΣ−1

k HT
k (DRSR)T

]
[DRSRA]

= HkH
T
k (DRSR)TDRSRA

Therefore

‖HkHT
k A− CUR‖ζ = ‖HkHT

k A−HkHT
k (DRSR)TDRSRA‖ζ

≤ ‖HkHT
k A−HkHT

k (DRSR)TDRSRA‖F

= ‖HT
k A−HT

k (DRSR)TDRSRA‖F

Notice that HT
k (DRSR)T is a column subset of HT

k sampled and rescaled by DRSR, and DRSRA is the corre-
sponding row subset of A. Below we state a theorem used in BasicMatrixMultiplication algorithm [1] that helps
us bound last term.
Theorem 5.1.1. [1] Consider A ∈ Rm×n, B ∈ Rn×p, c ∈ Z+ such that 1 ≤ c ≤ n and {pi}ni=1 are such that pi ≥ 0 and∑n
i=1 pi = 1. Let C be a sample of c columns of A sampled with probabilities {pi}ni=1, and let R contains corresponding c rows

of B. If the probabilities are of form

pi =
‖Bi,:‖2

‖B‖2F
or pi =

‖A:,i‖‖Bi,:‖∑n
j=1 ‖A:,j‖‖Bj,:‖

then
E [‖AB − CR‖F] ≤ 1√

c
‖A‖F ‖B‖F

CS 7931
∣∣6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Since matrix SR is constructed using sampling probabilities ‖Ai,:‖2/‖A‖2F , we can say

E
[
‖HT

k A−HT
k (DRSR)TDRSRA‖F

]
≤ ‖Hk‖F ‖A‖F /

√
r =

√
k/r‖A‖F

Now using Markov’s inequality with δr ∈ (0, 1), we get

Pr

[∥∥∥HT
k A−HT

k (DRSR)TDRSRA
∥∥∥
F
≥ 1

δr

√
k

r
‖A‖F

]
≤ δr

Putting all results together we get Frobenius error bound as

‖A− CUR‖F ≤ ‖A−Ak‖F + (4k)1/4‖AAT − CCT ‖1/2F +
1

δr

√
k

r
‖A‖F

≤ ‖A−Ak‖F + (4k/c)1/4
1√
δc
‖A‖F +

1

δr

√
k

r
‖A‖F

= ‖A−Ak‖F +

(
(4k/c)1/4

1√
δc

+
1

δr

√
k

r

)
‖A‖F

= ‖A−Ak‖F +O(ε)‖A‖F setting c = k/ε4 and r = k/ε2

Note that second transition comes from the fact that column sampling probabilities satisfy condition of
theorem 5.1.1 (consider B = AT), thus we can say E

[
‖AAT − CCT ‖F

]
≤ 1√

c
‖A‖2F , and using Markov’s

inequality with δc ∈ (0, 1) we get

Pr
[
‖AAT − CCT ‖F ≥

1

δc

1√
c
‖A‖2F

]
≤ δc

Now, we bound spectral error as following

‖A− CUR‖2 ≤ ‖A−Ak‖2 +
√

2‖AAT − CCT ‖1/22 +
1

δr

√
k

r
‖A‖F

≤ ‖A−Ak‖2 +
√

2‖AAT − CCT ‖1/2F +
1

δr

√
k

r
‖A‖F

≤ ‖A−Ak‖2 +

√
2

δc
(
1

c
)1/4‖A‖F +

1

δr

√
k

r
‖A‖F

= ‖A−Ak‖2 + (

√
2

δc
(
1

c
)1/4 +

1

δr

√
k

r
) ‖A‖F

= ‖A−Ak‖2 +O(ε)‖A‖F setting c = 1/ε4 and r = k/ε2

Note both bounds hold with high probability 1− δr − δc.

5.1.2 Space and Run Time Analysis
In LTCUR, clearly sampling probabilities pi and qj can be computed in one pass, O(nd) time (for reading
data) and using O(c + r) space. A second pass is needed to compute matrices C, R and Ψ; this will take
O(nd + dc + nr) time (since sampling is with replacement and each d column (n rows) of A can be selected
for all c columns (r rows) of C (R)), also it needs O(nc + dr + cr) additional space to store these three
matrices. Having C in hand, one can compute CTC and get rank k of that in O(nc2 + c2k) time and O(c2)

space. Therefore the total run time of algorithm 5.1.1 would be O(nd + dc + nr + nc2), and the space usage
would be O(nc+ dr + cr).

CS 7931
∣∣6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

5.2 LeverageScoreCUR
In this section, we describe LeverageScoreCUR (LSCUR) algorithm[4] which constructs matrices C and R

based on “column leverage scores” and “row leverage scores” of input matrix A.
Recall that if A = USV T is SVD decomposition of A ∈ Rn×d, then one can write j-th column of A as linear

combination of all left singular vectors (column of U) rescaled by corresponding singular values and entries
of j-th row of right singular vector matrix (i.e. V); in other words

A:,j = USV Tj,: =

n∑
i=1

Si,iU:,iVj,i

If we truncate this summation to first k < n left singular vectors and values, we can approximate A:,j as

A:,j ≈
k∑
i=1

Si,iU:,iVj,i

We define the leverage score of j-th column as score(A:,j) =
∑k
i=1 V

2
j,i. Note that sum of leverage scores for

all column of A is exaclty k:

d∑
j=1

score(A:,j) =

d∑
j=1

k∑
i=1

V 2
j,i =

k∑
i=1

d∑
j=1

V 2
j,i =

k∑
i=1

‖V:,i‖2 = k

Therefore in order to define sampling probabilities we normalize leverage scores as pj = 1
k

∑k
i=1 V

2
j,i; with

the normalization {pj}dj=1 form probability distribution over columns of A as pj ≥ 0 and
∑d
j=1 pj = 1. Using

these sampling probabilities, authors of [4] proposed the ColumnSelect algorithm (depicted in algorithm 5.2.1)
that samples c = O(k log k/ε2) columns, forms a matrix C ∈ Rn×c and achieve error bound ‖A − πC(A)‖F ≤
(1 + ε/2)‖A − Ak‖F . The LSCUR which is described in algorithm 5.2.2 uses ColumnSelect algorithm on both
A and AT to achieve relative error bound ‖A− CUR‖F ≤ (2 + ε)‖A−Ak‖F .

Algorithm 5.2.1 ColumnSelect
Input: A ∈ Rn×d, 1 ≤ c ≤ d; 1 ≤ k ≤ min(n, d)
Output: C ∈ Rn×c

Compute svd of A as A = UΣV T and define normalized leverage scores as pi = 1
k

∑k
j=1 V

2
i,j

for t = 1 to c do
Pick j ∈ {1, · · · , d} with probability min(1, cpj)
Set C:,t = A:,j/

√
c2pj

return C

Algorithm 5.2.2 LeverageScoreCUR
Input: A ∈ Rn×d, 1 ≤ c ≤ d, 1 ≤ r ≤ n, 1 ≤ k ≤ min(n, d)
Output: C ∈ Rn×c, U ∈ Rc×r, R ∈ Rr×d

Run ColumnSelect on A with c = O(k log k/ε2) to construct the matrix C.
Run ColumnSelect on AT with r = O(k log k/ε2) to construct the matrix R.
Set matrix U as U = C+AR+.
return C,U,R

CS 7931
∣∣6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

PASSES RUN TIME SPACE USAGE ERROR BOUND

O(n(d + k/ε2 + 1/ε8) + d/ε4) ‖A− CUR‖2 ≤ OPT2 + ε‖A‖F
LTCUR[3] 2 O(n/ε4 + dk/ε2)

O(n(d + k/ε2 + k2/ε8) + dk/ε4) ‖A− CUR‖F ≤ OPTF + ε‖A‖F
LSCUR[4] 2 O(k log k/ε2n2d + nd2k log k/ε2) O(nd) ‖A− CUR‖F ≤ (2 + ε) OPTF

Table 5.1: Comparing different CUR algorithms. We define OPT2 = ‖A−Ak‖2 and OPTF = ‖A−Ak‖F .

5.2.1 Error Analysis
We use triangle inequality and error bound of ColumnSelect algorithm to decompose ‖A− CUR‖F as

‖A− CC+AR+R‖F = ‖A− CC+AR+R‖F

≤ ‖A− CC+A‖F + ‖CC+A− CC+AR+R‖F

≤ ‖A− CC+A‖F + ‖A−AR+R‖F

≤ ‖A− πCA‖F + ‖A− πRA‖F

≤ (1 + ε/2)‖A‖F + (1 + ε/2)‖A‖F

= (2 + ε)‖A‖F

5.2.2 Space and Run Time Analysis
Since LSCUR needs to take SVD of input matrix, it loads the whole matrix into memory, which takes O(nd)

time to read data, and O(nd) space to store it. Taking SVD of it costs O(nd2) additional time. In another
pass over data, LSCUR constructs matrices C and R, that takes O(cd+ rn) additional time and space. Finally
computing matrix U requires O(cn2d + nd2r) time and O(cr) space. Overall LSCUR runs in O(cn2d + nd2r)

time and O(nd) space.
Table 5.2.2 summarizes run time, space usage and error bounds of above mentioned CUR methods.

CS 7931
∣∣6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

CS 7931
∣∣6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Bibliography

[1] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

[2] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices ii:
Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2006.

[3] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices iii:
Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1):184–206,
2006.

[4] Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis. Pro-

ceedings of the National Academy of Sciences, 106(3):697–702, 2009.

7

