
4 Frequent Directions

Edo Liberty[3] discovered a strong connection between “matrix sketching” and “frequent items” problems.
In FREQUENTITEMS problem, we are given a stream S = hs1, s2, . . . , sni of n items from domain

[u] = {1, 2, . . . , u}, and the goal is to find the frequency of each item j 2 [u] as fj = |{si 2 S | si = j}|.
One obvious solution to this problem would be to maintain u counters, one for each member of domain,
and upon receiving an item, we increment the corresponding counter. This solution gives exact frequencies
but it is not applicable when domain [u] is large, or stream is infinite. Therefore we seek an approximate
solution that outputs estimates ˆfj (for all j 2 [u]) so that |fj � ˆfj |  "n.

One of approximate solutions to this problem is Misra-Gries (MG) [4] sketch, which uses O(1/") space
to keep ` � 1 = 1/" counters, each labeled by a value j 2 [u]: it increments a counter if the new item
matches the associated label or for an empty counter, and it decrements all counters if there is no empty
counter and none match the stream element. At any time, the approximated frequency of an item j 2 [u],
i.e. ˆfj , is the associated counter value, or 0 if there is no associated counter.

To see the connection between matrix sketching and frequent items problems, consider a matrix A as a
stream of its rows. For now, let us constrain the rows of A to be indicator vectors. In other words, we
have Ai,: 2 {e1, ..., ed}, where ej is the jth standard basis vector. Note that such a matrix can encode
a stream of items (as above). If ith element in the stream is j, then the i-th row of the matrix is set to
Ai,: = ej . The frequency fj can be expressed as fj = kAejk2. Assume that we construct a matrix
B 2 R`⇥d as follows. First, we run FREQUENTITEMS on the input. Then, for every item j for which
ˆfj > 0 we generate one row in B equal to ˆf

1/2
j · ej . The result is a low rank approximation of A. Note

that rank(B) = ` and that kBejk2 =

ˆfj . Also notice that kAk2F = n and that ATA = diag(f1, . . . , fd)

and that BTB = diag(

ˆf1, . . . , ˆfd). Porting the results we obtained from FREQUENTITEMS, we get that
kATA�BTBk2 = maxj |fj � ˆfj |  kAk2F /(`� k).

This connection is the idea behind FREQUENTDIRECTIONS, below we describe this algorithm in detail.

4.1 Frequent Directions

FREQUENTDIRECTIONS algorithm, described in 4.1.1, receives and processes the input matrix A 2 Rn⇥d

in streaming fasion, row by row. It maintains a `⇥ d sketch matrix B that is updated every time a new row
from A is received. It maintains the invariant that the last row of sketch B is always all-zero valued. During
the execution of the algorithm, rows from A simply replace the all-zero valued row in B. Then, the last row
is nullified by a two-stage process. First, the sketch is rotated (from left) using its SVD such that its rows
are orthogonal and in descending magnitude order. Then, the norm of sketch rows are “shrunk” so that at
least one of them is set to zero.

Setting ` = k + 1/", FREQUENTDIRECTIONS achieves the spectral error bound[1]

8x 2 Rd, kxk = 1 0  kAxk2 � kBxk2  "kA�Akk2F (4.1)

And using ` = dk + k/"e, FREQUENTDIRECTIONS obtains Frobenius error bound[1]

kA� ⇡k
B(A)kF  (1 + ")kA�AkkF (4.2)

Where ⇡k
B(A) is the projection of rows of A onto space spanned by top k right singular vectors of B.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Algorithm 4.1.1 FREQUENTDIRECTIONS

Input: `, A 2 Rn⇥d

B 0

`⇥d

for i 2 1, . . . , n do

B`,: Ai,: # ith row of A replaced (all-zeros) `th row of B
[U,⌃, V] svd(B)

C ⌃V T # Not computed, only needed for proof notation
� ⌃

2
`,`

B
p
⌃

2 � �I` · V T # The last row of B is again zero
return B

4.1.1 Error Analysis

In this section, we first show FREQUENTDIRECTIONS satisfies three properties, and then we prove any

algorithm that produces an approximate matrix B which satisfies the properties (for any choice of �) will
achieve the error bounds 4.1 and 4.2.

In what follows, we denote by �i, B[i], C[i] the values of �, B and C respectively after the ith row of A
was processed. Let � =

Pn
i=1 �i, be the total mass we subtract from the stream during the algorithm. We

first prove FREQUENTDIRECTIONS satisfies three auxiliary properties[1].

Property 1. For any vector x we have kAxk2 � kBxk2 � 0.

Proof. Use the observations that hAi,:, xi2 + kB[i�1]xk2 = kC[i]xk2.

kAxk2 � kBxk2 =
nX

i=1

[hAi,:, xi2 + kB[i�1]xk2 � kB[i]xk2] �
nX

i=1

[kC[i]xk2 � kB[i]xk2] � 0.

Property 2. For any unit vector x 2 Rd
we have kAxk2 � kBxk2  �.

Proof. To see this, first note that kC[i]xk2 � kB[i]xk2  kCT
[i]C[i] � BT

[i]B[i]k  �i. Now, consider the fact
that kC[i]xk2 = kB[i�1]xk2 + kAi,:xk2. Substituting for kC[i]xk2 above and taking the sum yields

X

i

kC[i]xk2 � kB[i]xk2 =
X

i

(kB[i�1]xk2 + kAi,:xk2)� kB[i]xk2

= kAxk2 + kB[0]xk2 � kB[n]xk2 = kAxk2 � kBxk2.

Combining this with
P

i kC[i]xk2 � kB[i]xk2 
P

i �i = � yields that kAxk2 � kBxk2  �.

Property 3. �`  kAk2F � kBk2F .

Proof. In the ith round of the algorithm kC[i]k2F � kB[i]k2F + `�i and kC[i]k2F = kB[i�1]k2F + kAi,:k2. By
solving for kAi,:k2 and summing over i we get

kAk2F =

nX

i=1

kAi,:k2 
nX

i=1

kB[i]k2F � kB[i�1]k2F + `�i = kBk2F + `�.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Additive Error Bound.

Now equipped with the above observations, and no additional requirements about the construction of B,
we can prove FREQUENTDIRECTIONS achieves bound 4.1. We use Property 2 verbatim and bootstrap
Property 3 to prove a tighter bound on �. In the following, yis correspond to singular vectors of A ordered
with respect to a decreasing corresponding singular values.

�`  kAk2F � kBk2F via Property 3

=

kX

i=1

kAyik2 +
dX

i=k+1

kAyik2 � kBk2F kAk2F =

dX

i=1

kAyik2

=

kX

i=1

kAyik2 + kA�Akk2F � kBk2F

 kA�Akk2F +

kX

i=1

�
kAyik2 � kByik2

� kX

i=1

kByik2 < kBk2F

 kA�Akk2F + k�. via Property 2

Solving �`  kA�Akk2F +k� for � to obtain �  kA�Akk2F /(`�k), which combined with Property 1
and Property 2 proves that for any unit vector x we have

0  kAxk2 � kBxk2  �  kA�Akk2F /(`� k)

Setting ` = k + 1/" completes the proof of additive error bound.

Relative Error Bound.

Now we can show that projecting A onto Bk provides a relative error approximation[1]. Here, yis correspond
to the singular vectors of A as above and vis correspond to the singular vectors of B in a similar fashion.

kA� ⇡k
B(A)k2F = kAk2F � k⇡k

B(A)k2F = kAk2F �
kX

i=1

kAvik2 Pythagorean theorem

 kAk2F �
kX

i=1

kBvik2 via Property 1

 kAk2F �
kX

i=1

kByik2 since
jX

i=1

kBvik2 �
jX

i=1

kByik2

 kAk2F �
kX

i=1

(kAyik2 ��) via Property 2

= kAk2F � kAkk2F + k�

 kA�Akk2F +

k

`� k
kA�Akk2F by �  kA�Akk2F /(`� k)

=

`

`� k
kA�Akk2F .

Setting ` = dk + k/"e results in the standard bound form kA� ⇡k
B(A)k2F  (1 + ")kA�Akk2F .

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

4.1.2 Running Time Analysis

Each iteration of Algorithm 4.1.1 is dominated by the computation of the svd(B). The standard running time
of this operation is O(d`2) [2]. Since this loop is executed once per row in A, the total running time would
naı̈vely be O(nd`2). However, we show below that at the expense of doubling the space (i.e. considering 2`
rows for B), we can achieve lower running time O(nd`)[3]. Algorithm 4.1.2 gives the details.

Algorithm 4.1.2 FAST-FREQUENTDIRECTIONS

Input: `, A 2 Rn⇥d

B all zeros matrix 2 R2`⇥d

for i 2 1, . . . , n do

Insert Ai,: into a zero valued row of B
if B has no zero valued rows then

[U,⌃, V] svd(B)

C = ⌃V T # Only needed for proof notation
� ⌃

2
`,`

B
p
max(⌃

2 � I`�, 0) · V T # The last `+ 1 rows of B are zero valued.
return B

Note that in Algorithm 4.1.2 the svd of B is computed only n/(` + 1) times because the “if” statement
is only triggered once every ` + 1 iterations. Thereby exhibiting a total running time of O((n/`)d`2) =

O(nd`). The reader should revisit the proofs in Section 4.1.1 and observe that they still hold. Consider the
values of i for which the “if” statement is triggered. It still holds that 0 � CT

[i]C[i] �BT
[i]B[i] � �Id and that

kC[i]k2F � kB[i]k2F � `�. For the other values of i, the sketch simply aggregates the input rows and there is
clearly no incurred error in doing that. This is sufficient for the same analysis to go through and complete
the discussion on correctness of Algorithm 4.1.2.

4.1.3 Parallelization and Merging Sketches

In extremely large datasets, the processing is often distributed among several machines. Each machine
receives a disjoint input of raw data and is tasked with creating a small space summary. Then to get a global
summary of the entire data, these summaries need to be combined. The core problem is illustrated for case
of just two machines, each processes a data set A1 and A2, where A = [A1;A2], and create two summaries
B1 and B2, respectively. Then the goal is to create a single summary B which approximates A using only
B1 and B2. If B can achieve the same formal space/error tradeoff as each B1 to A1 in a streaming algorithm,
then the summary is called a mergeable summary.

Here we show that the FREQUENTDIRECTIONS sketch is indeed mergeable[3] under the following pro-
cedure. Consider B0

= [B1;B2] which has 2` rows; then run FREQUENTDIRECTIONS (in particular Algo-
rithm 4.1.2) on B0 to create sketch B with ` rows. Given that B1 and B2 satisfy properties 1, 2, and 3 with
parameters �1 and �2, respectively, we will show that B satisfies the same properties with � = �1+�2+�,
where � is taken from the single shrink operation used in Algorithm 4.1.2. This implies B automatically
inherits the bounds in Theorem 4.1 and Theorem 4.2 as well.

First note that B0 satisfies all properties with �

0
= �1+�2, by additivity of squared spectral norm along

any direction x (e.g. kB1xk2+kB2xk2 = kB0xk2) and squared Frobenious norms (e.g. kB1k2F +kB2k2F =

kB0k2F), but has space twice as large as desired. Property 1 holds since B only shrinks all directions in
relation to B0. Property 2 follows by considering any unit vector x and expanding kBxk2 as

kBxk2 � kB0xk2 � � � kAxk2 � (�1 +�2)� � = kAxk2 ��.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Similarly, Property 3 can be seen as

kBk2F  kB0k2F � �`  kAk2F � (�1 +�2)`� �` = kAk2F ��`.

This property trivially generalizes to any number of partitions of A. It is especially useful when the matrix
(or data) is distributed across many machines. In this setting, each machine can independently compute a
local sketch. These sketches can then be combined in an arbitrary order using FREQUENTDIRECTIONS.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Bibliography

[1] Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions: Simple and
deterministic matrix sketching. arXiv preprint arXiv:1501.01711, 2015.

[2] Gene H. Golub and Charles F. van Loan. Matrix computations (3. ed.). Johns Hopkins University Press,
1996.

[3] Edo Liberty. Simple and deterministic matrix sketching. In KDD, pages 581–588, 2013.

[4] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–152,
1982.

7

