
10 Distributed Matrix Sketching

In order to define a distributed matrix sketching problem thoroughly, one has to specify the distributed

model, data model and the partition model of data. The distributed model is often considered as a set
of m distributed sites {S1, S2, · · · , Sm} and a central coordinator site C where each site has a two way
communication channel with C. Note this model is only off by a factor 2 in communication with a model
where all pairs of sites can communicate, by routing through the coordinator.

However data model and partition model can be defined in several different ways; in this lecture we
consider two following settings: 1) a distributed streaming model for data, with row-wise partitioning of it
among sites, 2) a setting of locally stored data in each site, and arbitrary partitioning of data among sites.

Below, we introduce each setting in detail.

10.1 Distributed Streaming, Row-wise Partition

First we define the underlying data model and partition model of problem:
The data model would be the “distributed streaming model”, in which each site observes a disjoint stream

of data and together attempt to monitor a function at C. Let A = (a1, . . . , an, . . .) ⇢ Rd be an unbounded
stream of items that is seen by the union of all sites. Eventhough we do not put a bound on the number of
items, we assume at the current time tnow, n denotes the number of items the system has seen so far; that
is at the current time the dataset is A = (a1, . . . , an) and it forms a n ⇥ d “distributed streaming matrix”.
The goal is to continuously track a small approximation of matrix A at coordinator. The key resources to
optimize in this model are communication between sites and coordinator, and the space usage at coordinator
and each site.

The partition model of data is “Row-wise partition”, which means at each time step any item aj 2 Rd

appears at exactly one of the sites and each site Si must process its incoming elements in streaming fashion;
therefore we can denote the set of items site Si processes as stream Ai ⇢ A, where \mi=1Ai = ; and
[mi=1Ai = A.

Now we formally state our goal: for any time instance tnow (i.e., for any n), C needs to maintain a smaller
matrix B 2 R`⇥d as an approximation to the distributed streaming matrix A 2 Rn⇥d such that ` ⌧ n and
for any unit vector x: |kAxk2 � kBxk2|  "kAk2F . The objective is to minimize the total communication
between C and all sites S1, . . . , Sm.

We clearly can run a streaming matrix sketching algorithm (e.g. Frequent Directions [3]) on each site Si,
maintain a sketch Bi as an approximation to local stream Ai, and occasionally send it to C. Exploiting the
mergeability property of FD , C can run FD on union of all received sketches and obtain an approximation to input
stream A. This forms the main idea of our first algorithm[1] in this model.

10.1.1 Distributed Matrix Tracking Protocol 1

Our first distributed matrix sketching protocol is summarized in algorithms 10.1.1 and 10.1.2. This protocol spends
O((md/"2) log kAkF) words in communication, and at any point in time, the coordinator has an approximation to the
stream A and it’s Frobenius norm, as

0  kAxk2 � k ˆAxk2  "kAk2F and (1� ")kAk2F < ˆF  kAk2F

Description. We allow each site Si to maintain two local data structures: a small matrix Bi as an approximation
to local stream Ai, and a scalar variable Fi as an approximation to kAik2F . We keep similar data structures at C too:
a small matrix ˆA as an approximation to A, and ˆF as approximation to kAk2F . The algorithm runs in epoch. At the
begining, all sites send the first item they receive to C, this step is for initializing ˆA and ˆF ; as the result ˆA will filled

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

with those items as row vectors, and ˆF will be set to sum of squared norms of items. Then C broadcasts ˆF to all sites
and first epoch starts. In each epoch, any site Si runs FD (with error parameter "0 = "/2) on local stream Ai, and
keeps updating Bi and Fi. Once the threshold ⌧ = ("/2m)

ˆF is triggered, it sends the contents of memory to C. This

Algorithm 10.1.1 P1: Deterministic Matrix Tracking (at Si)[1]
for an 2 Ai in round j do

Update Bi FD"0(Bi, an); and Fi += kank2.
if (Fi � ⌧ = ("/2m)

ˆF) then

Send (Bi, Fi) to coordinator; make Bi, Fi empty.

At coordinator side, C runs FD on rows of received sketches {Bi} and merge them into local sketch ˆA. Moreover,
it maintains the sum of scalar values it receives in temporary variable �, once � > "0 ˆF it updates ˆF , broadcasts the
new value to all sites and goes to next epoch.

Algorithm 10.1.2 P1: Deterministic Matrix Tracking (at C)[1]
On input (Bi, Fi):
Update sketch ˆA Merge"0(

ˆA,Bi) and � += Fi.
if (�/ ˆF > "0) then

Update ˆF ˆF +�, reset � and broadcast ˆF to all sites.

Space and Communication Analysis

Since each site and coordinator maintains a local sketch of size 1/"0 ⇥ d rows, the space would be O(d/"0) = O(d/")
words. For the communication analysis, note that an epoch ends when coordinator finds out � > "0 ˆF , and since
each value sent to C is of value equal to or larger than ("0/m)

ˆF , we can say in each epoch atmost m messages, each
containing 1/"0 d-dimensional row vectors, are sent to C. Before ending an epoch, C broadcasts new value of ˆF to all
sites, and that adds another m messages, each one word, to the communication. Overall, in each epoch atmost md/"0

words (or m/"0 vectors) are communicated.
In order to bound number of epoches, let’s denote value of ˆF in i-th epoch as ˆFi, then we can say ˆFi =

ˆFi�1+� �
ˆFi�1 + "0 ˆFi�1, solving this recursive formula we obtain ˆFi � (1 + "0)i ˆF0. Moreover, note ˆFi  kAk2F because there
might be some items seen by sites but not sent to C yet. Therefore in last epoch kAk2F � (1 + "0)i ˆF0 and this bounds
number of epoches as

i  log1+"0 (
kAk2F
ˆF0

) = O(

1

"0
log kAk2F)

So in overal, this algorithm requires O((md/"2) log(�N)) total words of communication.

Error Analysis

Theorem 10.1.1. Distributed Matrix Tracking Protocol 1 described in 10.1.1 and 10.1.2 runs under distributed

streaming model where union of all streams is A ⇢ Rd
, maintains a sketch of size 1/" rows at each site and co-

ordinator where " 2 (0, 1) is the error parameter, and approximates Frobenius and spectral norm of A as

(1� "0)kAk2F < ˆF  kAk2F and 0  kAxk2 � k ˆAxk2  "0kAk2F , 8x 2 Sd�1

Proof. We first prove the Frobenius error bound. At any point in time kAk2F =

ˆF +

Pm
i=1 Fi, since for all 1  i  m,

0  Fi  ⌧ = "0/m ˆF , the right hand side of inequality holds. For left hand side, we can say

ˆF = kAk2F �
mX

i=1

Fi � kAk2F �
mX

i=1

"0

m
ˆF = kAk2F � "0 ˆF � (1� "0)kAk2F

And that completes the proof for Frobenius error bound.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

For spectral error bound, note at any point in time, the stream A is the union of streams that all sites are receiving,
in other words A = [mi=1Ai. Therefore kAxk2 =

Pm
i=1 kAixk2. Since each site Si runs FD on Ai and maintains

sketch Bi, the following bound holds

0  kAixk2 � kBixk2  "0kAik2F (10.1)

Moreover, on coordinator side, the same bound holds between set of received sketches {Bi}i=1 and matrix ˆA,

0 
X

i=1

kBixk2 � k ˆAxk2  "0
X

i=1

kBik2F (10.2)

Using these two inequalities we can say

kAxk2 =

mX

i=1

kAixk2


mX

i=1

(kBixk2 + "0kAik2F) due to 10.1


mX

i=1

(kBixk2) + "0kAk2F

 k ˆAxk2 + "0
X

i=1

(kBik2F) + "0kAk2F due to 10.2

 k ˆAxk2 + 2"0kAk2F
= k ˆAxk2 + "kAk2F using " = "0/2

And that proves right hand side of the bound, for left hand side:

kAxk2 =

mX

i=1

kAixk2 �
mX

i=1

kBixk2 � k ˆAxk2

Improving Communication Bound. Protocol 1 has a communication bound proportional to 1/"2, and that’s due
to transmitting the full sketch Bi 2 R2/"⇥d in each message. An easy to lower dependence to ", would be to send
“large directions” of Bi, instead of full sketch. For that, one should take U, S, V = svd(Bi) and transmit vectors V:,j

whose Sj,j � ⌧ . Protocol 2[1], described in next section, implements this idea and obtains a lower communication.

10.1.2 Distributed Matrix Tracking Protocol 2

This protocol is described in algorithms 10.1.3 and 10.1.4. The P2 spends O(

m
" log kAkF) communication, and

gaurrantees that at all times coordinator approximates kAxk as

0  kAxk2 � k ˆAxk2  "kAk2F

Description. All sites and coordinator maintain the same data structures as before. Initially ˆF is set to zero and is
broadcasted to all sites. When site Sj receives a new row, it calls Algorithm 10.1.3, which basically sends kBjxk2 in
direction x when it is greater than some threshold provided by the coordinator, if one exists.

On the coordinator side, it either receives a vector form message �v, or a scalar message Fj . For a scalar Fj , it adds
it to ˆF . After at most m such scalar messages, it broadcasts ˆF to all sites. For vector message r = �v, the coordinator
updates ˆA by appending r to ˆA [

ˆA; r]. The coordinator’s protocol is summarized in Algorithm 10.1.4.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Algorithm 10.1.3 P2: Deterministic Matrix Tracking (at Sj)[1]
Fj += kaik2
if (Fj � "

m
ˆF) then

Send Fj to coordinator; set Fj = 0.
Set Bj [Bj ; ai]
[U,⌃, V] = svd(Bj)

for ((v`,�`) such that �2
` �

"
m

ˆF) do

Send �`v` to coordinator; set �` = 0.
Bj = U⌃V T

Algorithm 10.1.4 P2: Deterministic Matrix Tracking (at C)[1]
On a scalar message Fj from site Sj :
Set ˆF += Fj and #msg += 1.
if (#msg � m) then

Set #msg = 0 and broadcast ˆF to all sites.
On a vector message r = �v:
append ˆA [

ˆA; r]

10.2 Communication Model, Arbitrary Partition

In this section, we consider a similar distributed setting, in which the data is (already) stored at each sites, and the goal
is to do a one-time computation of a target function with the constraint of incurring a small communication among
sites. The partition model we consider is Arbitrary partition, in which each site holds a finite n ⇥ d matrix Aj such
that A =

Pm
j=1 Aj .

In [2], authors proposed the “Adaptive Compress” protocol that uses O(mdk/") words of communication and on
termination, leaves a matrix ˆAi 2 Rn⇥d in any site Si, such that ˆA =

Pm
i=1

ˆAi obtains the relative error bound

kA� ˆAk2F  (1 + ")kA�Akk2F

Note that ˆA is not computed explicitly. The key idea behind this alogrithm is that subspace embedding matrices
and scaled random sign matrices can preserve columnspace and rowspace of any matrix, respectively, if they are
constructed carefully. Employing this idea, coordinator can choose two initial seeds and broadcast them to all sites
to multiply their local data into these random matrices. Then each site sends the result, which is a small matrix now,
back to coordinator. Coordinator sums them up and computes spectral space of it.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Bibliography

[1] Mina Ghashami, Feifei Li, and Jeff M. Phillips. Continuous matrix approximation on distributed data. In Pro-

ceedings of the 40th International Conference on Very Large Data Bases, 2014.

[2] Ravindran Kannan, Santosh S Vempala, and David P Woodruff. Principal component analysis and higher corre-
lations for distributed data. arXiv preprint arXiv:1304.3162, 2013.

[3] Edo Liberty. Simple and deterministic matrix sketching. In SIGKDD, 2013.

5

