
24 PageRank on MapReduce

PageRank and MapReduce go well together, and this synergy was important for the growth of Google, and
proliferation of the MapReduce paradigm (and related ideas).

MapReduce. Recall that MapReduce works roughly as follows.
We start with some big data set D that has been partitioned into blocks D1, D2, . . . , Dm. These are

distributed among different machines, and we can think of them as being each on one machine; that is, let
Di be on machine i. These blocks are also replicated, but (part of the beauty of MapReduce is that) we can
ignore this.

The core constraint to keep in mind is that each machine has limited memory compared to D (but can
easily store any one Di).

We now proceed in rounds, each with 3 steps.

1. Mapper: Convert all d ∈ D to (key(d), value(d))
2. Shuffle: Moves all (k, v) and (k′, v′) with k = k′ to same machine.
3. Reducer: Transforms {(k, v1), (k, v2), . . .} to an output D′k = f(v1, v2, . . .).

... and don’t forget ...

1.5. Combiner: If one machine has multiple (k, v1), (k, v2) with same k then it can perform part of Reduce
before Shuffle.

We can think of the output of the reducer as Di on machine i, and then pump this into another round of
MapReduce. For many simple analytics task (the non-PageRank biggest use), this is unnecessary, but for
certain more involved problems, we may want to iterate a constant number of times.

A programmer only needs to specify the Mapper and Reducer, the rest is taken care of behind the scenes;
this includes the hard parts: Shuffle, any node going down, replication, ...

Example: Histogram
Mapper: d ∈ D converts to (k = bin(d), 1)
(combiner)
Reducer: {(k = i, v)} converts to bini =

∑
v.

24.1 PageRank
The Internet is stored as a big matrix M (size n× n). Specifically the column-normalized adjacency matrix
where each column represents a webpage and where it links to are the non-zero entries.
M is sparse. Even as n grows, each webpage probably on average only links to about 20 other webpages.

Over 99.99% of entries in M are M [a, b] = 0.
We define another matrix

P = βM + (1− β)B

where B[a, b] = 1/n and typically β = 0.85 or so.
Recall that we want to calculate the PageRank vector using Markov Chain theory. The PageRank of a

page a is q∗[a] where q∗ = P tq as t → ∞. Here we can usually use t = 50 or 75. This describes the
importance of a webpage from a random surfer’s perspective.

1

Problems: The matrix M is sparse and can be stored (on many machines at Google). Its size is roughly
20n, where n is on the order of 1 billion. But the matrix P is dense (since B is dense). So of course P t is
also dense. Since n is about 1 billion, it is too big to store.

But qi is only size n, and we need to store this. So we can just iterate as qi+1 = Pqi and then we only
need to store P implicitly as M and B.

qi+1 = βMqi + (1− β)1/n

And repeat this step t times.
Still, n is very big, so we cannot store M or qi on any one machine. This could be terabytes of data. And

when working with many machines, some will crash!
MapReduce to the rescue.

24.1.1 PageRank on MapReduce : v1
Here is a first attempt. BreakM into k vertical stripesM = [M1 M2 . . . Mk] so eachMj fits on a machine.
Break q into qT = [q1 q2 . . . qk] (a horizontal split), again so each qj fits on a machine with Mj . (This can
be assumed how the data is stored, or can be done in a earlier round of MapReduce if not.)

Now in each round:

• Mapper: j → (key= j′ ∈ [k] ; value = row r of Mj ∗ qj)
• Reducer: adds values for each key i to get qi+1[j] ∗ β + (1− β)/n.

Note that the output of each mapper is an entire vector qi+1 (or at least part needs to be added together
with other components to obtain qi+1), of length n. This follows since each stripe Mj has n/k full columns.
Is this feasible?
... Yes, since qi+1 only has as many non-zero entries as Mj .

However, we are not getting that much out of the combiner phase. We will see next how this can be
improved.

24.1.2 PageRank on MapReduce : v2
Let ` =

√
k and tile M into `× ` blocks

M =


M1,1 M1,2 . . . M1,`

M2,1 M2,2 . . . M2,`

.
M`,1 M`,2 . . . M`,`


• Mapper: Each of k machines gets one block Mi,j and gets sent qi for i ∈ [`].

• Reducer: On each row i′ adds Mi,jqi to q[i′]. Then does q+[i′] = q[i′]β + (1− β)/n.

slight problems still... Each qi (for i ∈ [`]) is stored in ` =
√
k places.

Thrashing on Mi,j . It may fit on disk, but not in memory. Solution: blocking on Mi,j so it fits in disk, but
its sub-blocks {Bs}s fit in memory. Now only need to read each Bs once, but read/write q and q+ for each
block (this takes up less space). But this is becoming less of a problem as MapReduce type machines have
more and more memory.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

24.1.3 Example

M =


0 1/2 0 0

1/3 0 1 1/2
1/3 0 0 1/2
1/3 1/2 0 0


Stripes:

M1 =


0

1/3
1/3
1/3

 M2 =


1/2
0
0

1/2

 M3 =


0
1
0
0

 M4 =


0

1/2
1/2
0


These are stored as

(
1 : (1/3, 2), (1/3, 3), (1/3, 4)

)
,
(
2 : (1/2, 1)(1/2, 4)

)
,
(
3 : (1, 3)

)
, and

(
4 : (1/3, 1), (1/2, 2)

)
.

Blocks:

M1,1 =

[
0 1/2

1/3 0

]
M1,2 =

[
0 0
1 1/2

]
M2,1 =

[
1/3 0
1/3 1/2

]
M2,2 =

[
0 1/2
0 0

]
These are stored as

(
1 : (1/2, 2)

)
,
(
2 : (1/3, 1)

)
, as

(
2 : (1, 3), (1/2, 4)

)
, as

(
3 : (1/3, 1)

)
,
(
4 :

(1/3, 1), (1/2, 2)
)
, and as

(
3 : (1/2, 4)

)
.

Note that some blocks have no effect on the some vector elements they are responsible for. M2,2 has no
effect on q+[3] and M1,2 has no use for q[3]. Both effects are quite common and can be used to speed things
up.

CS 6140 Data Mining; Spring 2015 Instructor: Jeff M. Phillips, University of Utah

