Introduction to Statistics

CS 3130 / ECE 3530: Probability and Statistics for Engineers

March 21, 2023
Independent, Identically Distributed RVs

Definition

The random variables X_1, X_2, \ldots, X_n are said to be independent, identically distributed (iid) if they share the same probability distribution and are independent of each other.

Independence of n random variables means

$$f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_{X_i}(x_i).$$
Independent, Identically Distributed RVs

Definition

The random variables X_1, X_2, \ldots, X_n are said to be **independent, identically distributed (iid)** if they share the same probability distribution and are independent of each other.

Independence of n random variables means

$$f_{X_1, \ldots, X_n}(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_{X_i}(x_i).$$

$$= \prod_{i=1}^{n} f_{X_i}(x_i).$$
Random Samples

Definition

A random sample from the distribution F of length n is a set (X_1, \ldots, X_n) of iid random variables with distribution F. The length n is called the sample size.

- A random sample represents an experiment where n independent measurements are taken.
- A realization of a random sample, denoted (x_1, \ldots, x_n) are the values we get when we take the measurements.
Random Samples

Definition

A **random sample** from the distribution F of length n is a set (X_1, \ldots, X_n) of iid random variables with distribution F. The length n is called the **sample size**.

- A random sample represents an experiment where n independent measurements are taken.
- A realization of a random sample, denoted (x_1, \ldots, x_n) are the values we get when we take the measurements.
Random Samples

Definition

A **random sample** from the distribution F of length n is a set (X_1, \ldots, X_n) of iid random variables with distribution F. The length n is called the **sample size**.

- A random sample represents an experiment where n independent measurements are taken.
- A **realization** of a random sample, denoted (x_1, \ldots, x_n) are the values we get when we take the measurements.
A **statistic** on a random sample \((X_1, \ldots, X_n) \) is a function \(T(X_1, \ldots, X_n) \).

Examples:

- **Sample Mean**
 \[
 \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
 \]

- **Sample Variance**
 \[
 S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
 \]
Statistics

Definition

A **statistic** on a random sample \((X_1, \ldots , X_n) \) is a function \(T(X_1, \ldots , X_n) \).

Examples:

- **Sample Mean**

\[
\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

- **Sample Variance**

\[
S^2_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

another R.V.
A **statistic** on a random sample \((X_1, \ldots, X_n)\) is a function \(T(X_1, \ldots, X_n)\).

Examples:

- **Sample Mean**

 \[
 \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
 \]

- **Sample Variance**

 \[
 S^2_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
 \]
Order Statistics

Given a sample X_1, X_2, \ldots, X_n, start by sorting the list of numbers.

- The **median** is the center element in the list if n is odd, average of two middle elements if n is even.
- The ith order statistic is the ith element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- **Quartiles** are $q_n(p)$ for $p = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The *inner-quartile range* is $IQR = q_n(0.75) - q_n(0.25)$.
Order Statistics

Given a sample X_1, X_2, \ldots, X_n, start by sorting the list of numbers.

- The **median** is the center element in the list if n is odd, average of two middle elements if n is even.
- The **ith order statistic** is the ith element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- **Quartiles** are $q_n(p)$ for $p = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The inner-quartile range is $IQR = q_n(0.75) - q_n(0.25)$.
Order Statistics

Given a sample X_1, X_2, \ldots, X_n, start by sorting the list of numbers.

- The **median** is the center element in the list if n is odd, average of two middle elements if n is even.
- The **ith order statistic** is the ith element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- Quartiles are $q_n(p)$ for $p = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The inner-quartile range is $IQR = q_n(0.75) - q_n(0.25)$.

- $q_n(0.5)$
Order Statistics

Given a sample X_1, X_2, \ldots, X_n, start by sorting the list of numbers.

- The **median** is the center element in the list if n is odd, average of two middle elements if n is even.
- The ith **order statistic** is the ith element in the list.
- The **empirical quantile** $q_n(p)$ is the first point at which p proportion of the data is below.
- **Quartiles** are $q_n(p)$ for $p = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$. The **inner-quartile range** is $IQR = q_n(0.75) - q_n(0.25)$.
Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample \((x_1, x_2, \ldots, x_n)\). Plugging these numbers into the formula for our statistic gives a realization of the statistic, \(t = T(x_1, x_2, \ldots, x_n)\).

Example: given realizations \(x_i\) of a random sample, the realization of the sample mean is \(\bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i\).

Upper-case = random variable, Lower-case = realization
Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample \((x_1, x_2, \ldots, x_n)\). Plugging these numbers into the formula for our statistic gives a realization of the statistic, \(t = T(x_1, x_2, \ldots, x_n)\).

Example: given realizations \(x_i\) of a random sample, the realization of the sample mean is \(\bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i\).

Upper-case = random variable, Lower-case = realization
Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample \((x_1, x_2, \ldots, x_n)\). Plugging these numbers into the formula for our statistic gives a realization of the statistic, \(t = T(x_1, x_2, \ldots, x_n)\).

Example: given realizations \(x_i\) of a random sample, the realization of the sample mean is \(\bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i\).

Upper-case = random variable, Lower-case = realization
Realizations of Statistics

Remember, a statistic is a random variable! It is not a fixed number, and it has a distribution.

If we perform an experiment, we get a realization of our sample \((x_1, x_2, \ldots, x_n)\). Plugging these numbers into the formula for our statistic gives a realization of the statistic, \(t = T(x_1, x_2, \ldots, x_n)\).

Example: given realizations \(x_i\) of a random sample, the realization of the sample mean is \(\bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i\).

Upper-case = random variable, Lower-case = realization
Statistical Plots

(See example code “StatPlots.r”)

- Histograms
- Empirical CDF
- Box plots
- Scatter plots
Sampling Distributions

Given a sample \((X_1, X_2, \ldots , X_n)\). Each \(X_i\) is a random variable, all with the same pdf.

And a statistic \(T = T(X_1, X_2, \ldots , X_n)\) is also a random variable and has its own pdf (different from the \(X_i\) pdf). This distribution is the **sampling distribution** of \(T\).

If we know the distribution of the statistic \(T\), we can answer questions such as “What is the probability that \(T\) is in some range?” This is \(P(a \leq T \leq b)\) – computed using the cdf of \(T\).
Sampling Distributions

Given a sample \((X_1, X_2, \ldots, X_n)\). Each \(X_i\) is a random variable, all with the same pdf.

And a statistic \(T = T(X_1, X_2, \ldots, X_n)\) is also a random variable and has its own pdf (different from the \(X_i\) pdf). This distribution is the **sampling distribution** of \(T\).

If we know the distribution of the statistic \(T\), we can answer questions such as “What is the probability that \(T\) is in some range?” This is \(P(a \leq T \leq b)\) – computed using the cdf of \(T\).
Given a sample \((X_1, X_2, \ldots, X_n)\). Each \(X_i\) is a random variable, all with the same pdf.

And a statistic \(T = T(X_1, X_2, \ldots, X_n)\) is also a random variable and has its own pdf (different from the \(X_i\) pdf). This distribution is the **sampling distribution** of \(T\).

If we know the distribution of the statistic \(T\), we can answer questions such as “What is the probability that \(T\) is in some range?” This is \(P(a \leq T \leq b)\) – computed using the cdf of \(T\).
Sampling Distribution of the Mean

Given a sample \((X_1, X_2, \ldots, X_n)\) with \(E[X_i] = \mu\) and \(\text{Var}(X_i) = \sigma^2\),

What do we know about the distribution of the sample mean, \(\bar{X}_n\)?

- It’s expectation is \(E[\bar{X}_n] = \mu\)
- It’s variance is \(\text{Var}(\bar{X}_n) = \frac{\sigma^2}{n}\)
- As \(n\) get’s large, it is approximately a Gaussian distribution with mean \(\mu\) and variance \(\sigma^2/n\).
- Not much else! We don’t know the full pdf/cdf.
Sampling Distribution of the Mean

Given a sample \((X_1, X_2, \ldots, X_n)\) with \(E[X_i] = \mu\) and \(\text{Var}(X_i) = \sigma^2\),

What do we know about the distribution of the sample mean, \(\bar{X}_n\)?

- It’s expectation is \(E[\bar{X}_n] = \mu\).
- It’s variance is \(\text{Var}(\bar{X}_n) = \frac{\sigma^2}{n}\).
- As \(n\) gets large, it is approximately a Gaussian distribution with mean \(\mu\) and variance \(\sigma^2/n\).
- Not much else! We don’t know the full pdf/cdf.
Sampling Distribution of the Mean

Given a sample \((X_1, X_2, \ldots, X_n)\) with \(E[X_i] = \mu\) and \(\text{Var}(X_i) = \sigma^2\),

What do we know about the distribution of the sample mean, \(\bar{X}_n\)?

- Its expectation is \(E[\bar{X}_n] = \mu\)
- Its variance is \(\text{Var}(\bar{X}_n) = \frac{\sigma^2}{n}\)
- As \(n\) gets large, it is approximately a Gaussian distribution with mean \(\mu\) and variance \(\sigma^2/n\).
- Not much else! We don’t know the full pdf/cdf.
Sampling Distribution of the Mean

Given a sample \((X_1, X_2, \ldots, X_n)\) with \(E[X_i] = \mu\) and \(\text{Var}(X_i) = \sigma^2\),

What do we know about the distribution of the sample mean, \(\bar{X}_n\)?

- It’s expectation is \(E[\bar{X}_n] = \mu\)
- It’s variance is \(\text{Var}(\bar{X}_n) = \frac{\sigma^2}{n}\)
- As \(n\) gets large, it is approximately a Gaussian distribution with mean \(\mu\) and variance \(\sigma^2 / n\).
- Not much else! We don’t know the full pdf/cdf.
\[\text{Var}[\alpha X] = \alpha^2 \text{Var}[X] \]

\[\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}(X, Y) \]

R.V. \(X, Y \) \(\text{const} \alpha \)

\[X_i \text{ independent } \text{Cov}(X, Y) = 0 \]

\[\text{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \text{Var}\left[\sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \cdot n \cdot \text{Var}[X_i] = \frac{1}{n} (n \cdot \sigma^2) = \frac{\sigma^2}{n} \]

\[\text{Var}[X_i] = \sigma^2 \]
Sampling Distribution of the Mean

Given a sample \((X_1, X_2, \ldots, X_n)\) with \(E[X_i] = \mu\) and \(Var(X_i) = \sigma^2\),

What do we know about the distribution of the sample mean, \(\bar{X}_n\)?

- It’s expectation is \(E[\bar{X}_n] = \mu\)
- It’s variance is \(Var(\bar{X}_n) = \frac{\sigma^2}{n}\)
- As \(n\) gets large, it is approximately a Gaussian distribution with mean \(\mu\) and variance \(\sigma^2/n\).
- Not much else! We don’t know the full pdf/cdf.
Sampling Distribution of the Mean

Given a sample \((X_1, X_2, \ldots, X_n)\) with \(E[X_i] = \mu\) and \(\text{Var}(X_i) = \sigma^2\),

What do we know about the distribution of the sample mean, \(\bar{X}_n\)?

- It’s expectation is \(E[\bar{X}_n] = \mu\)
- It’s variance is \(\text{Var}(\bar{X}_n) = \frac{\sigma^2}{n}\)
- As \(n\) get’s large, it is approximately a Gaussian distribution with mean \(\mu\) and variance \(\sigma^2/n\).
- Not much else! We don’t know the full pdf/cdf.
When the X_i are Gaussian

When the sample is Gaussian, i.e., $X_i \sim N(\mu, \sigma^2)$, then we know the exact sampling distribution of the mean \bar{X}_n is Gaussian:

$$\bar{X}_n \sim N(\mu, \sigma^2 / n)$$
The **chi-square distribution** is the distribution of a sum of squared Gaussian random variables. So, if $X_i \sim N(0, 1)$ are iid, then

$$Y = \sum_{i=1}^{k} X_i^2$$

has a chi-square distribution with *k* degrees of freedom. We write $Y \sim \chi^2(k)$.

Read the Wikipedia page for this distribution!!
The **chi-square distribution** is the distribution of a sum of squared Gaussian random variables. So, if $X_i \sim N(0, 1)$ are iid, then

$$Y = \sum_{i=1}^{k} X_i^2$$

has a chi-square distribution with k **degrees of freedom**. We write $Y \sim \chi^2(k)$.

Read the Wikipedia page for this distribution!!
Sampling Distribution of the Variance

If $X_i \sim N(\mu, \sigma)$ are iid Gaussian rv’s, then the sample variance is distributed as a *scaled* chi-square random variable:

$$\frac{n - 1}{\sigma^2} S_n^2 \sim \chi^2(n - 1)$$

Or, a slight abuse of notation, we can write:

$$S_n^2 \sim \frac{\sigma^2}{n - 1} \chi^2(n - 1)$$

This means that the S_n^2 is a chi-square random variable that has been scaled by the factor $\frac{\sigma^2}{n-1}$.
How to Scale a Random Variable

Let’s say I have a random variable X that has pdf $f_X(x)$.

What is the pdf of kX, where k is some scaling constant?

The answer is that kX has pdf

$$f_{kX}(x) = \frac{1}{k} f_X\left(\frac{x}{k}\right)$$

See pg 106 (Ch 8) in the book for more details.
Theorem

Let X_1, X_2, \ldots be iid random variables from a distribution with mean μ and variance $\sigma^2 < \infty$. Then in the limit as $n \to \infty$, the statistic

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$$

has a standard normal distribution.

Recall $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.
Importance of the Central Limit Theorem

- Applies to real-world data when the measured quantity comes from the average of many small effects.
 - Examples include electronic noise, interaction of molecules, exam grades, etc.
 - This is why a Normal distribution model is often used for real-world data.
 - Also, this “concentration of measure” effect is the basis for all of machine learning (more data, more accuracy).
Importance of the Central Limit Theorem

- Applies to real-world data when the measured quantity comes from the average of many small effects.
- Examples include electronic noise, interaction of molecules, exam grades, etc.
- This is why a Normal distribution model is often used for real-world data.
- Also, this “concentration of measure” effect is the basis for all of machine learning (more data, more accuracy).
Importance of the Central Limit Theorem

- Applies to real-world data when the measured quantity comes from the average of many small effects.
- Examples include electronic noise, interaction of molecules, exam grades, etc.
- This is why a Normal distribution model is often used for real-world data.
- Also, this “concentration of measure” effect is the basis for all of machine learning (more data, more accuracy).
Importance of the Central Limit Theorem

- Applies to real-world data when the measured quantity comes from the average of many small effects.
- Examples include electronic noise, interaction of molecules, exam grades, etc.
- This is why a Normal distribution model is often used for real-world data.
- Also, this “concentration of measure” effect is the basis for all of machine learning (more data, more accuracy).