
CS7960 L25 : distrib | Dynamic Hash Tables

distributed nodes

Many nodes in graph
 - each node knows only small number of neighbors
 - need to communicate of calculate

key bottleneck is communication

Distributed Hash Tables
 store massive data
 - quick look-up (routing)
 - robust to (many) node failures
 - no node stores too much data
 - small degree

History:

Napster (1999) :
 - central index
 - data stored distributed
 - all routing through central node.
 (not scalable, vulnerable to attack & lawsuit)

Gnutella (2000) :
 - query sends request to all nodes (no central index)
 - data stored distributed
 - slow queries, but safe(r) from attacks & lawsuits

Freenet (2000) :
 - distributed storage
 - heuristic routing, not guarantee to find data

2001 (very exciting times):
 CHORD (Oct 01), Pastry (Nov 01), Tapestry (TR), CAN (TR)
 - decentralized storage and routing
 - fault tolerant (many nodes come, go)
 - scalable (degree small, routing fast)

KEY SPACE
hash (SHA-1) h : data -> key (with 128 or 160 bits)

K = key-space, circular so largest value (111...11) next to
smallest (000...00)
each node has ID_i in K and responsible for data such that
 ID_i <= h(data) < ID_{i+1}
(and usually a bit more for limited redundancy)

ROUTING

key-based routing: greedy algorithm.
 - needs notion of distance between keys d(k1, k2)

On query get(key,ID_i) at node i either:
 - returns object (since it stores it)
 - or calls get(key, ID_j) at node j such that
 d(key,ID_i) > d(key,ID_j)
 (must converge)

Routing degree tradeoff (on n nodes)
 degree | routing
 O(1) O(log n) (tree, or expander)
 either low tolerance, or hard to maintain
 O(log n) | O(log n) most common, flexible for other properties
 O(sqrt n)| O(1) degree too costly
 O(log n) | O(log n / log log n) theoretically optimally, too
restrictive

--
Example: Pastry

 - node ID_i assigned randomly when entering network
 (recall by Chernoff bound, they are well-distributed - no more
than double gap)

 - key-space K is 128 bit integer

 - node has degree deg = 128/b * (2^b-1) + L + M + "slack"
 (choose some b >= 1)
 + For each j in [1,2,...,128/b] link to node with first same
(j-1)b bits,
 different jth set of b bits (2^b) links for each j

 + L other leaf nodes (closest L/2 in either direction by
d(ID_i, .))
 + M closest peers in latency
 typically b = 4, L = 2^b, M = 2^b
 deg =~ 34 * 16 ~ 500
 (large enough that on many random failures all nodes
still connected)

 - ROUTING:
 match prefix of key, and send to key in neighborhood with
largest aligned prefix
 - if failure, route to other node with same length prefix of
size j \in [128/b],
 but next b bits numerically closer - still converges.

 - Data Entry/Storage: (PAST)
 key = h(data)
 find ID_i = argmin |ID_i - key|.
 Add data to ID_i and closest L nodes (usually in neighborhood
list)

 (note, since IDs are random, data is automatically distributed
 - geographically
 - by latency)

 On build neighbors, choose node with same j-prefix with
smallest latency
 - then on look-up, tend to find data with smallest latency
 (bit more potential for attacks)

 - Publish/Subscribe: (SCRIBE)
 each node can publish categories (of data it will send out,
like blog RSS, twitter)
 each node can subscribe to categories

 + to announce: compute key = h(category), and route towards
key: using hierarchy
 + on subscribe, send "subscribe to key" up hierarchy,
 nodes register direction where "subscribe" came from
 + on publish: route towards key, and if node sees route to
key, and has subscribe,
 sends towards subscriber.
 By DFS principals, sends messages with low over-head and
efficiently.

