
CS7960 L18 : MapReduce | Simulating BSP+PRAM

MapReduce

M = Massive Data

Mapper(M) -> {(key,value)}

Shuffle({(key,value)}) -> group by "key"

Reducer ({"key,value_i}) -> ("key, f(value_i))

Can repeat, constant # of rounds

Today: Simulate EREW PRAM in MR
 Simulate CRCW PRAM in MR
 Simulate BSP in MR
 + algorithms...

MUD (Feldman, Muthukrishnan, Sidiropoulos, Stein, Svitkina 2008)

M = O(log^c n)

Linear sketch streaming algorithms can be simulated in MR

Karloff, Suri, Vassilvistskii 2010

M = O(n^{1-eps})
P = O(n^{2-eps})
Simulate EREW PRAM with MR
 in MR P = O(n^{1-eps})
R = O(log^c n)

MST in MR
Minimum spanning tree of graph G=(V,E)
 works with E=O(V^2)

 - Partition V into sets V_i s.t. |V_i| = N/k

 - on each pair V_i cup V_j,
 consider all edges (v1,v2)=e in E s.t. v1,v2 in V_i cup V_j
 - Return MSF on each V_i cup V_j, discard other edges.

"filter" (preview)

Goodrich, (Sitchinava, Zhang) 2011

Simulate CRCR PRAM and BSP with MR

R = # rounds

n_{r,i} size I/O of mapper/reducer i in round r
C_r = sum_i n_{r,i}
C = sum_{r=0}^{R-1} C_r == communication complexity

t_r = internal running time for round r
 >= max_i {n_{r,i}}
t = sum_{r=0}^{R-1} t_r
 == total running time

L = latency of shuffle (number of steps mapper or reducer waits for shuffle)
B = bandwidth of shuffle network
 # elements delivered in unit of time (like block in I/O)

Total time T = Omega(t + RL + C/B)

word count has (R=1, C=Theta(n), t=Theta(n))
 "the" occurs 7% of time = Theta(n)

M = I/O buffer memory size: require n_{r,i} <= M

T = Omega(R(M+L) + C/B)
 rounds + work in PRAM

Let M = Theta(n^eps) for eps>0
 then algorithms can run in O(log_M N) rounds, a constant!

Any BSP algorithm in R super-steps, with memory size of N and P<=N processors
 -> simulated in MR in R rounds with C = O(RN) with M = O(N/P)

Any CRCW PRAM (including sum on concurrent write)

 with T steps w/ P processors, memory size N
 -> simulated in MR in R = O(T log_M P) rounds
 C = O(T(N+P)log_M(N+P)) comm.complex.

Key idea: think of computation in the (dynamic) DAG model.
 ... edges defined based on data.

Prefix sum in 2 log_M N rounds with N log_M N communication
 each element has (a_i, i) a_i=value, i=order
return (i, sum_{j=1}^i a_i)

Just like PRAM/BSP algorithm, but with M-way split tree
 stage 1 (log_M N rounds) : sum of all items
 stage 2 (log_M N rounds) : filter down using partial prefix sums

key trick is to split indexes into chunks of size M each round

Can be extended when index values i are not consecutive and N not known whp.

MultiSearch in R=O(log_M N) and CC=O(N log_M N)
 N searches on N data items

Sorting in R=O(log_M N) and CC=O(N log_M N)

