CS7960 L10 : Streaming | Count Min Sketch
Streaming Algorithms
Stream : A = <al,aZ,...,am>

ai in [n] size log n
Compute f(A) in poly(log m, log n) space
Let f_j = [{a_1i in A | a_i = j}|

F_.1 =sum_j f_J = m == total count
F_2 = sgrt{sum_j f_jA2} == RMS count

Goal:

eps-FREQUENCY-ESTIMATION: Build data structure S.
For any j in [n], hat{f}_j = S(3) s.t.

f_j - eps*F_1 <= hat{f}_j <= f_j MG
f_j <= hat{f}_j <= f_j + eps F_1 CMS (today)
|f_j - hat{f}_jl| <= eps F_2 CS (maybe)

aka eps-approximate phi-HEAVY-HITTERS:
Return all f_j s.t. f_j > phi
Return no f_j s.t. f_j < phi - eps*m

Count-Min Sketch [Cormode + Muthukrishnan '05]

t independent hash functions {h_1, ..., h_t}
each h_1 : [n] -> [k]



2-d array of counters:
h_1 -> [C_{1,1}] [C_{1,2}] ... [C_{1,k}]
h 2 -> [C_{2,1}] [C_{2,2}] ... [C_{2,k}]

hot -> [C_{t,13] [C_{t,2}] ... [C_{t,k}]
for each a \in A -> increment C_{i,h_i(a)} for 1 in [t].

hat{f}_a = min_{1 in [t]} C_{1,h_1Ca)}

Set t = log(1/delta)
Set k = 2/eps

Clearly f_a <= hat{f}_a
hat{f}_a <= f_a + W. What is W?

One hash function h_1i.
Adds to W when there is a collision h_i(a) = h_1(j). wp
1/k

random variable Y_{i,j}
Y_{i,j} = {f_j wp 1/k, 0 wp 1-1/k}
ECY_{i,J}] = f_j/k

random variable X_i = sum_{j in [n], j!=a} Y_{1,3}
E[X_1] = E[sum_j Y_{i,j}] = sum_j f_j/k = F_1/k = eps *
F_1/2

o o S
Markov Inequality



X a rv and a>0
PrIXl >= a] <= E[IXI|]/a
F+

X_1>0 so IX_il = X_1
setting a = eps F_1 then

E[IXI]/a = (eps*F_1 /2)/(eps F_1) = 1/2
PriX_1 >= eps F_1] <= 1/2

Now for t *independent* hash functions:

Pr[hat{f}_a - f_a >= eps F_1]
= Pr[min_1 X_1 >= eps F_1]
= Pr[forall_{1 in [t]} (X_1 >= eps F_1)]
= Prod_{i in [t]} Pr[X_i >= eps F_1)]
<= 1/2/t
= delta (since t = log(1/delta) )

Hence:
f_a <= hat{f}_a <= f_a + eps F_1
- first inequality always holds
- second inequality holds wp > 1l-delta

Space:

each of k*t counters requires log m space

OCk*t*1log m)

Store t hash functions: 1log n each

0((k 1log m + log n)*t) = 0((1/eps) log m + log n) log (1/
delta))



turnstile model: add or subtract (as long as is there)

Count Sketch:

t independent hash functions {h_1, ..., h_t}
each h_1 : [n] -> [k]

t independent secondary hash functions {g_1, ... g_t}
each g_1 : [n] -> {-1,+1}

2-d array of counters:
h_1 -> [C_{1,1}] [C_{1,2}] ... [C_{1,k}]
h_2 -> [C_{2,1}] [C_{2,2}] ... [C_{2,k}]

H;é -> té;{t,l}] [C_{t,2}] ... [é;{t,k}]

for each a \in A -> adds g_1(a) to C_{1i,h_i(a)} for 1 1in
[t].

hat{f}_a = median_{i in [t]} C_{i,h_iCa)}

Set t = 2*¥log(1/delta)
Set k = 4/epsA2

One hash function pair h_i,g_1.
E[hat{f}_a] = g_1(a) f_a



random variable : Y_{1,]j} expected error caused by f_j on
hat{f}_a
Y_{i,3} = {f_j wp 1/2k, -f_j wp 1/2k, @ wp 1-1/k}

random variable : X_i expected error of hat{f}_a
X_1 = sum_j Y_{1,7}
E[X_i] = 0

Y_{1,7} pairwise independent, so

Var[X] = sum_j Var[Y_{1,3}]

Var[Y_{1,3}] = E[Y_{i,j}*2] - E[Y_{1,j}]A2
= ELY_{1,]j}"2]
= f_jA2 / k

Var[X_i] = sum_j f_jA2/k <= F_2A2/Kk.

e o e e S
Chebyshev's Inequality:

X a rv and b>0
PrIX-E[X]| >= b) <= Var(X)/bA2
ST B B S W T S S IS S S S

using b = eps F_2
PrIX_il >= eps F_2] <= (F_272/k) / (eps F_2)A2
= 1/(k * epsA2) <= 1/4
since k = 4/epsA2

t *independent* hash function pairs:

Recall: hat{f}_a = median_1 {(f_a + X_1)/g_1(a)}



Prllf_a - hat{f}_al < eps F_2]
= Pr[median_i X_1i > eps F_2]
<=2 * Pr[t/2 {1 in [t]} (X_i >= eps F_2)]
<= 2 * Prod_{1 in [t/2]} Pr[X_i >= eps F_2)]
<= 2 * 1/47{t/2}
<= delta (since t = 2*log(1/delta) )

Space:
each of k*t counters requires log m space
OCk*t*1log m)
Store t hash function pairs: 1log n each
0(Ck Tog m + log n)*t)
= 0((1/epsr2) log m + log n) log (1/delta))

CMS: eps F_1 error
space 0(((1/eps) log m + log n) log (1/delta))
CS : eps F_2 error

space 0(((1/epsAr2) log m + log n) log (1/delta))

F_2 < F_1 (generally), but 1/eps << 1/epsA2
CMS very practical because of only (1/eps) term.



