K-means Clustering: Choosing k

El Kindi Rezig




Clustering (refresher)

* In order to do clustering, we need to have two things:
* The input datasetto be clustered X = {x;, x5, ..., x,} € R?

* Adistance function d(xi,xj) = 0 that can tell us how similar two points
are

* In this class, d(xi,xj) = ||xl- — xj|| (Euclidean distance)
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Clustering (refresher)

* Goal of clustering is to group objects into k sets (or clusters)
* Objects in the same set (or cluster) are close to each other
* Objects in different sets (or clusters) are far away from each other

@ @ | We want objects in the same set to be close to each otheg

-

We want objects in different sets to be far away

Set 1



Clustering — Cost function (refresher)

* In mathematical terms, for a set of sites S = {5, S,,..,S,} C R4
and a dataset X ¢ R% we want to minimize:

* costy(X,S) = ?=1(xi _‘qbs(xi)l)z

Can be thought of as the projection of
x; onto closest site s;

¢ p(x;) = argminSjES”xi — Sj” is the site s; that is closest to x;




Clustering — Cost function (refresher)

* In mathematical terms, for a set of sites S = {5, S,,..,S,} C R4
and a dataset X ¢ R% we want to minimize:

* cost,(X,S) = ?=1(Xi — ¢s(xi))2

* p.(x;) = argminSjES”xi — Sj” is the site s; that is closest to x;

Example. We have

S2 3 site points
* (represented with

s, stars). k=3

* %



Clustering — Cost function (refresher)

* In mathematical terms, for a set of sites S = {5, S,,..,S,} C R4
and a dataset X ¢ R% we want to minimize:

* cost,(X,S) = ?=1(Xi — ¢s(xi))2

¢ p(x;) = argminSjES”xi — Sj” is the site s; that is closest to x;

° *
QO O O Data points (blue circles)

*x ok



Clustering — Cost function (refresher)

* In mathematical terms, for a set of sites S = {5, S,,..,S,} C R4
and a dataset X ¢ R% we want to minimize:

* cost,(X,S) = ?=1(Xi — ¢s(xi))2

¢ p(x;) = argminSjES”xi — Sj” is the site s; that is closest to x;

"} Projecting data points onto closest site
Ty . which is applying the projection functior
® o PR ® ¢.(x;) to every data point

O ®



But how do we choose k?

Whenever you can, especially when data X € R?, you should plot the data!
Consider the two data sets shown:
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But how do we choose k?

Whenever you can, especially when data X € R?, you should plot the data!
Consider the two data sets shown:
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Which one shows ”"better” clusters?



But how do we choose k?

Whenever you can, especially when data X € R?, you should plot the data!
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The left one has 4 well-defined blobs, the right one does not.



But how do we choose k?

Whenever you can, especially when data X € R?, you should plot the data!
Consider the two data sets shown:
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Dimensionality reduction for clustering

e If your data is not naturally in R?, you may need to apply
dimensionality reduction to visualize it.

* One method already seen: Laplacian Eigenmaps (covered in
Lecture 10 as part of spectral clustering).



Dimensionality reduction for clustering

e If your data is not naturally in R?, you may need to apply
dimensionality reduction to visualize it.

* One method already seen: Laplacian Eigenmaps (covered in
Lecture 10 as part of spectral clustering).

e Additional methods that will be covered in this course:

* PCA (Principal Component Analysis)
* MDS (Multidimensional Scaling)
* Distance metric learning techniques

* Choosing a different distance metric can change the visualization:
* [t may transform a diffuse "smear" into more distinct clusters/blobs.



Dimensionality reduction for clustering

1 dimension:
10 positions

2 dimensions:
100 positions
(]

Dimensionality reduction captures all the
”significant” directions In which the data is
changing

3 dimensions:
> 1000 positions!

Img source:
https://lh3.googleusercontent.com/proxy/FgcaiVRuul2fc5ndqO6BorllstmvkHNiwzEAveT5qW8YGpre_HEjxic5)ZcFn2uEv67ms1NaQujAU2)_50EUqgnrevbLus5LHC-
G101JInEpZggmap4W8dVTO0



Dimensionality reduction for clustering

* Dimensionality reduction and visualization approaches are not
limited to assignment-based clustering.

* They can also work for non-centrally symmetric clusters (e.g.,
irregular shapes).

* Regarding the two-moons example:
* |f you think it’s relevant, you should demonstrate real-world data that
resembles it.
 Artificial examples generated with t-SNE or UMAP don’t count as
evidence.

* Regardless, you can still plot your data and circle clusters to
highlight structure.
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How to choose k: The Elbow method

* In clustering methods, we define a cost function (Cost of a clustering).

* The goalis to find the clustering that minimizes this cost (e.g., using
Lloyd’s algorithm).

* One might think:
e Evaluate the cost for each choice of k.
e Return the kwith the smallest cost.
* Problem: For most formulations, the cost will always decrease as k
increases.



How to choose k: The Elbow method

* For a clustering defined by sites s ={s,, S,, ..., S, } for a data set X,
consider the cost

Cost2 (S, X) Z (x — ¢s(z
IXI reX

Recall that: ¢g(r) = argming s ||z — ||



How to choose k: The Elbow method

For some choice of k, if we let S* be the optimal clustering in terms of Costs(S*, X)), then we can plot
the score for each k. It will look something like this:
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How to choose k: The Elbow method

For some choice of k, if we let S* be the optimal clustering in terms of Costs(S*, X)), then we can plot
the score for each k. It will look something like this:
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How to choose k: The Elbow method

For some choice of k, if we let S* be the optimal clustering in terms of Costs(S*, X)), then we can plot
the score for each k. It will look something like this:
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Now that as k increases the curve (in purple) decreases. It should start high, and then decrease towards 0. When k = n
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How to choose k: The Elbow method

e Suppose there are well-defined clusters for some choice of k™.
* Whenk < k™:

* Multiple true clusters get merged into one site s;.
* This causes the cost to be high.

 Whenk > k*:

* True clusters get split across multiple sites.

* The cost decreases only slightly, since points were already in compact
clusters.

* The elbow point occurs where:
* The cost transitions from rapidly decreasing to slowly decreasing.
* This bend in the curve (like an arm) indicates a good choice of k.



Caveats of the Elbow method



Caveats of the Elbow method

* Which elbow pointis best?

Cost(X,S*) |

https://community.ibm.com/community/user/blogs/moloy-de1/2020/07/02/points-to-ponder



Caveats of the Elbow method

* Which elbow pointis best?

Cost(X,S*) |

—eo o ___

Caveat: Multiple elbow points are possible

https://community.ibm.com/community/user/blogs/moloy-de1/2020/07/02/points-to-ponder



Caveats of the Elbow method

 Caveat: Elbow point is not always clear-cut
* Even in well-clustered data, some points are very well separated >
splitting them lowers cost a lot.
* Some clusters are close together > splitting has only a moderate effect on
cost.

* Some clusters are spread out > splitting them still reduces cost
noticeably.

* = Even with good clustering, the elbow point may not be obvious.
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» Getting k slightly wrong may still be acceptable.



Caveats of the Elbow method

 Caveat: Elbow pointis not always clear-cut

* Evenin well-clustered data, some points are very well separated - splitting them
lowers cost a lot.
* Some clusters are close together > splitting has only a moderate effect on cost.

« Some clusters are spread out 2> splitting them still reduces cost noticeably.
* = Even with good clustering, the elbow point may not be obvious.

* Positive side
» Getting k slightly wrong may still be acceptable.

* Additional complication: Hierarchical structure
 Data may have multiple levels of clusters (clusters within clusters).

* This can produce two elbow points.
* Either choice may be reasonable—pick the one that best fits the analysis scale.



What makes a clustering model good/bad?

K-Means (Six Centroids) K-Means (Four Centroids)
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What makes a clustering model good/bad?

K-Means (Six Centroids) K-Means (Four Centroids)

X & & v

We don’t want pointsin

different clusters to be -
- close to each other (inter- *
"‘: cluster distance)
= - .

Img source: https://www.geeksforgeeks.org/machine-learning/what-is-silhouette-score/



What makes a clustering model good/bad?

K-Means (Six Centroids) K-Means (Four Centroids)
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The Silhouette score

For each point x;:

* Cohesion (within-cluster distance)

« Compute a(i) :the average distance from x;to all other points in its own
cluster.

* Small a(i)means x;is close to its cluster mates - good.

* This assumes some model similar to k-means, k-medioid, or mean-link HAC.
We want to quantify a disjoint clustering S,, S,, .. ., S,. We then quantify the
average inter-cluster distance for a point x; € X in clusterj as:

, 1
a(i) = S1—1 Z d(z;, x)

€S j;XxFx;




The Silhouette score

For each point x;:

* Separation (distance to other clusters)

» Compute b(i) :the smallest average distance from x;to all points in
another cluster (the “next-best” cluster).

 Large b(i)means x;is far from other clusters > also good.



The Silhouette score

For each point x;:

* Separation (distance to other clusters)

» Compute b(i) :the smallest average distance from x;to all points in
another cluster (the “next-best” cluster).

 Large b(i)means x;is far from other clusters > also good.

* We also consider the average replacement cluster score again for

a pointx; € Xin cluster j where
This is what the score a(i) would be for

1 x;if it could not use cluster S;and
Z (i, % instead had to use the next best
option (which would be cluster S; )

b(i) = min
J'#7 |Sjl| mEij



The Silhouette score

With these values, we can define the Silhouette score for a point x; € X as

N b(7) —a(3)
S0 = ax{a(i), b(0)}

Note that a(¢) is not defined if the cluster for x; is of size 1. In this case, we define s(i) = 0.




The Silhouette score

With these values, we can define the Silhouette score for a point x; € X as

N b(7) —a(3)
S0 = ax{a(i), b(0)}

Note that a(¢) is not defined if the cluster for x; is of size 1. In this case, we define s(i) = 0.

How to interpret s(i) > 0



The Silhouette score

With these values, we can define the Silhouette score for a point z; € X as

~  b(i) —al(i)
s(8) = max{a(i), b(i)}

Note that a(¢) is not defined if the cluster for x; is of size 1. In this case, we define s(¢) = 0.

Note that s(i) € [—1, 1], and that if s(¢) > 0, then its “better off” in its cluster than the replacement one
scored by b(%).

The average silhouette score for the entire clustering is reported as

sil(S, X) = x| > s(i)



The Silhouette score

Finally, we can choose k as the value which results in the clustering
with highest average silhouette score. This is a popular way to fully
automate the decision on k, but note that it assumes a specific model
of what constitutes a good cluster. For instance, this may not be
meaningful for density based clustering or single-link HAC.



Bayesian Information Criteria (BIC)

e The BIC is a model selection criterion that tries to balance two
things:
e Goodness of fit

* How well the model explains the data (e.g., likelihood).
« Amore complex model (higher k) will usually fit better.

* Model simplicity (penalty for complexity)

* Adding parameters always risks overfitting.

* BIC penalizes models with more parameters, especially when the dataset
Is large.



Bayesian Information Criteria (BIC)

* We want to fit each cluster S; with a generative likelihood modelfj .
Given a data element x, we can measure f(x) which evaluates how
likely a pointisto come from the model. It is a positive probability
density function, so itis normalized so its integral is 1.

* Let’s make this concrete by fitting each cluster S; € X with an
isotropic Gaussian (multi-dimensional normal) distribution. The
Isotropic term means we consider the same variance o in each
direction; for simplicity, assume o is fixed. To define this we need a
center parameter s; € R%. Then

1 lz — s;]°

fix) = (Varo)d P (— 52 )




Bayesian Information Criteria (BIC)

* And the the likelihood for a cluster, assuming the datais iid from fj
IS

168 =TI fi@) = 1 ( Q;U)d exp (_lez—;jll )

mESj .’L‘ESj

Indeed if we were to maximize this for S;over the choice of center s;, the mean
) Z.’EESJ' “is the optimal choice: the maximum likelihood estimator.



Bayesian Information Criteria (BIC)

We can assume we have defined a likelihood for a set f(S;) for the best clustering
Sk= {51’52"Sk}

It is typically more numerically stable to work with the negative log-likelihood.:

£(Sk) = —In(f(Sk))



Bayesian Information Criteria (BIC)

We can assume we have defined a likelihood for a set f(S;) for the best clustering
Sk= {51’52"Sk}

It is typically more numerically stable to work with the negative log-likelihood.:

£(Sk) = —In(f(Sk))

For one cluster Sj

£(S;) = —In(f;(S Z In(f;) = Z (”m 2_;3'” N dln(\/21—7w))

IES LBGSJ'

Because we negated it, we seek to minimize £(-) when we sought to maximize the likelihood f(:).\



Bayesian Information Criteria (BIC)

* Likelihood challenge: Increasing the number of clusters k always
Increases the likelihood.

* As k grows, the model can fit the data more closely (sometimes
overfitting).

* Correspondingly, the negative log-likelihood always decreases
with larger k.

* This makes it tricky to use likelihood or negative log-likelihood
alone for choosing the “right” k.



Bayesian Information Criteria (BIC)

* To avoid overfitting, we penalize models with more
parameters.

e In k-means clustering in R?:
* Each cluster center s; has d parameters.
 Total parameters = kd
* Using information-theoretic arguments and a Bayesian

perspective, we derive the Bayesian Information Criterion
(BIC).



Bayesian Information Criteria (BIC)

* For amodel M with m parameters and n observations, the BIC is:

BIC(M) = —2In(f(M)) + mIn(n)



Bayesian Information Criteria (BIC)

* For amodel M with m parameters and n observations, the BIC is:

BIC(M) = —21n(f(M)) + mIn(n)

* Since our k-means algorithm has kd parameters, for a best-fit clustering S,
of size k we have

BIC(Sk) = —21In(f(Sk)) + kdIn(| X|)

* Now the first termis twice the ne ative log-likelihood, and so
decreases with k increasin e other hand, the second term kd
In(|X]|) has a fixed quantity ln(|X| ) and so increases linearly with k.

* The value k which minimizes BIC(Sk) provides a choice for k.



Bayesian Information Criteria (BIC)

* The BIC method applies broadly to any model with a well-defined
likelihood function.

e |tis well-defined for:
 Mixture of Gaussians
e k-means

* For Hierarchical Agglomerative Clustering (HAC):
* Application of BIC is possible but debated.

* For Spectral clustering or DBScan:
* Applying BIC is difficult and not straightforward.
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