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Clustering (refresher)

• In order to do clustering, we need to have two things:
• The input dataset to be clustered 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 ⊂ ℝ𝑑

• A distance function 𝑑 𝑥𝑖 , 𝑥𝑗 ≥ 0 that can tell us how similar two points 
are

• In this class, 𝑑 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 − 𝑥𝑗 (Euclidean distance)
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• Objects in the same set (or cluster) are close to each other
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We want objects in different sets to be far away

We want objects in the same set to be close to each other

Set 1

Set 2

Set 3



Clustering – Cost function (refresher)

• In mathematical terms, for a set of sites 𝑆 = 𝑠1, 𝑠2, . . , 𝑠𝑘 ⊂ ℝ𝑑  
and a dataset 𝑋 ⊂ ℝ𝑑  we want to minimize:

• 𝑐𝑜𝑠𝑡2 𝑋, 𝑆 =  σ𝑖=1
𝑛 𝑥𝑖 − 𝜙𝑠 𝑥𝑖
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• 𝜙𝑠 𝑥𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠𝑗∈𝑆 𝑥𝑖 − 𝑠𝑗  is the site 𝑠𝑗  that is closest to 𝑥𝑖
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Can be thought of as the projection of 
𝑥𝑖 onto closest site 𝑠𝑗
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Example. We have 
3 site points 
(represented with 
stars). k = 3s1

s2

s3
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Data points (blue circles)
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Projecting data points onto closest site
which is applying the projection function
𝜙𝑠 𝑥𝑖  to every data point



But how do we choose k?
Whenever you can, especially when data X ⊂ ℝ2, you should plot the data! 
Consider the two data sets shown: 
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But how do we choose k?

The left one has 4 well-defined blobs, the right one does not. 

More data sets than you might suspect are like the right one. 
They are often what I would call a smear (like cream cheese on 
a bagel): there may be some denser regions, but no well-
defined separations and usually more diffuse around the edges. 
Clustering such data does not add much value.

Whenever you can, especially when data X ⊂ ℝ2, you should plot the data! 
Consider the two data sets shown: 



Dimensionality reduction for clustering

• If your data is not naturally in ℝ², you may need to apply 
dimensionality reduction to visualize it.

• One method already seen: Laplacian Eigenmaps (covered in 
Lecture 10 as part of spectral clustering).



Dimensionality reduction for clustering

• If your data is not naturally in ℝ², you may need to apply 
dimensionality reduction to visualize it.

• One method already seen: Laplacian Eigenmaps (covered in 
Lecture 10 as part of spectral clustering).

• Additional methods that will be covered in this course:
• PCA (Principal Component Analysis)
• MDS (Multidimensional Scaling)
• Distance metric learning techniques

• Choosing a different distance metric can change the visualization:
• It may transform a diffuse "smear" into more distinct clusters/blobs.



Dimensionality reduction for clustering

Img source: 
https://lh3.googleusercontent.com/proxy/FgcaiVRuuJ2fc5ndqO6BorIIstmvkHNiwzEAveT5qW8YGpre_HEjxic5JZcFn2uEv67ms1NaQujAU2J_5OEUqnrevbLu5LHC-
G101JInEpZggmap4W8dVT0

Dimensionality reduction captures all the 
”significant” directions In which the data is 
changing



Dimensionality reduction for clustering

• Dimensionality reduction and visualization approaches are not 
limited to assignment-based clustering.

• They can also work for non-centrally symmetric clusters (e.g., 
irregular shapes).

• Regarding the two-moons example:
• If you think it’s relevant, you should demonstrate real-world data that 

resembles it.
• Artificial examples generated with t-SNE or UMAP don’t count as 

evidence.
• Regardless, you can still plot your data and circle clusters to 

highlight structure.
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How to choose k: The Elbow method

• In clustering methods, we define a cost function (Cost of a clustering).
• The goal is to find the clustering that minimizes this cost (e.g., using 

Lloyd’s algorithm).
• One might think:

• Evaluate the cost for each choice of k.
• Return the k with the smallest cost.

• Problem: For most formulations, the cost will always decrease as k 
increases.

• Simply minimizing cost would always favor larger k, which is not 
meaningful.



How to choose k: The Elbow method

• For a clustering defined by sites s = {s1, s2, ..., sk} for a data set X, 
consider the cost 

Recall that:



How to choose k: The Elbow method



How to choose k: The Elbow method

What happens when k = n? 



How to choose k: The Elbow method

Now that as k increases the curve (in purple) decreases. It should start high, and then decrease towards 0. When k = n 
it will be exactly 0, since each x ∈ X can be a center, and the distance to the closest one is 0. 
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How to choose k: The Elbow method

• Suppose there are well-defined clusters for some choice of 𝑘∗.

• When 𝑘 < 𝑘∗:
• Multiple true clusters get merged into one site 𝑠𝑗.

• This causes the cost to be high.
• When 𝑘 > 𝑘∗:

• True clusters get split across multiple sites.
• The cost decreases only slightly, since points were already in compact 

clusters.
• The elbow point occurs where:

• The cost transitions from rapidly decreasing to slowly decreasing.
• This bend in the curve (like an arm) indicates a good choice of 𝑘.



Caveats of the Elbow method



Caveats of the Elbow method

• Which elbow point is best?

https://community.ibm.com/community/user/blogs/moloy-de1/2020/07/02/points-to-ponder

Cost(X, S*)

k



Caveats of the Elbow method

• Which elbow point is best?

https://community.ibm.com/community/user/blogs/moloy-de1/2020/07/02/points-to-ponder

Cost(X, S*)

k

Caveat: Multiple elbow points are possible



Caveats of the Elbow method

• Caveat: Elbow point is not always clear-cut
• Even in well-clustered data, some points are very well separated → 

splitting them lowers cost a lot.
• Some clusters are close together → splitting has only a moderate effect on 

cost.
• Some clusters are spread out → splitting them still reduces cost 

noticeably.
• ⇒ Even with good clustering, the elbow point may not be obvious.
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Caveats of the Elbow method

• Caveat: Elbow point is not always clear-cut
• Even in well-clustered data, some points are very well separated → splitting them 

lowers cost a lot.
• Some clusters are close together → splitting has only a moderate effect on cost.
• Some clusters are spread out → splitting them still reduces cost noticeably.
• ⇒ Even with good clustering, the elbow point may not be obvious.

• Positive side
• Getting 𝑘 slightly wrong may still be acceptable.

• Additional complication: Hierarchical structure
• Data may have multiple levels of clusters (clusters within clusters).
• This can produce two elbow points.
• Either choice may be reasonable—pick the one that best fits the analysis scale.



What makes a clustering model good/bad?

Img source: https://www.geeksforgeeks.org/machine-learning/what-is-silhouette-score/ (modified)
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What makes a clustering model good/bad?

Img source: https://www.geeksforgeeks.org/machine-learning/what-is-silhouette-score/

We don’t want points in 
different clusters to be 
close to each other (inter-
cluster distance)



What makes a clustering model good/bad?

Img source: https://www.geeksforgeeks.org/machine-learning/what-is-silhouette-score/

We don’t want points in 
the same cluster to be far 
away from each other 
(intra-cluster distance)
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The Silhouette score

For each point 𝑥𝑖:

• Cohesion (within-cluster distance)
• Compute 𝑎 𝑖  :the average distance from 𝑥𝑖to all other points in its own 

cluster.
• Small 𝑎 𝑖 means 𝑥𝑖is close to its cluster mates → good.

• This assumes some model similar to k-means, k-medioid, or mean-link HAC. 
We want to quantify a disjoint clustering S1, S2, . . . , Sk. We then quantify the 
average inter-cluster distance for a point xi ∈ X in cluster j as:



The Silhouette score

For each point 𝑥𝑖:

• Separation (distance to other clusters)
• Compute 𝑏 𝑖  :the smallest average distance from 𝑥𝑖to all points in 
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The Silhouette score

For each point 𝑥𝑖:

• Separation (distance to other clusters)
• Compute 𝑏 𝑖  :the smallest average distance from 𝑥𝑖to all points in 

another cluster (the “next-best” cluster).
• Large 𝑏 𝑖 means 𝑥𝑖is far from other clusters → also good.

• We also consider the average replacement cluster score again for 
a point xi ∈ X in cluster j where 

This is what the score a(i) would be for 
xi if it could not use cluster Sj and 
instead had to use the next best 
option (which would be cluster Sj′ ) 



The Silhouette score



The Silhouette score

How to interpret s(i) > 0



The Silhouette score



The Silhouette score

Finally, we can choose k as the value which results in the clustering 
with highest average silhouette score. This is a popular way to fully 
automate the decision on k, but note that it assumes a specific model 
of what constitutes a good cluster. For instance, this may not be 
meaningful for density based clustering or single-link HAC. 



Bayesian Information Criteria (BIC) 

• The BIC is a model selection criterion that tries to balance two 
things:

• Goodness of fit
• How well the model explains the data (e.g., likelihood).
• A more complex model (higher 𝑘) will usually fit better.

• Model simplicity (penalty for complexity)
• Adding parameters always risks overfitting.
• BIC penalizes models with more parameters, especially when the dataset 

is large.



Bayesian Information Criteria (BIC) 

• We want to fit each cluster Sj with a generative likelihood model fj . 
Given a data element x, we can measure fj(x) which evaluates how 
likely a point is to come from the model. It is a positive probability 
density function, so it is normalized so its integral is 1. 

• Let’s make this concrete by fitting each cluster Sj ⊂ X with an 
isotropic Gaussian (multi-dimensional normal) distribution. The 
isotropic term means we consider the same variance σ in each 
direction; for simplicity, assume σ is fixed. To define this we need a 
center parameter sj ∈ Rd. Then 



Bayesian Information Criteria (BIC) 

• And the the likelihood for a cluster, assuming the data is iid from fj 
is

Indeed if we were to maximize this for Sj over the choice of center sj , the mean 
                        is the optimal choice: the maximum likelihood estimator.



Bayesian Information Criteria (BIC) 

We can assume we have defined a likelihood for a set f(Sk) for the best clustering 
Sk = {S1,S2,...,Sk}. 

It is typically more numerically stable to work with the negative log-likelihood:



Bayesian Information Criteria (BIC) 

We can assume we have defined a likelihood for a set f(Sk) for the best clustering 
Sk = {S1,S2,...,Sk}. 

It is typically more numerically stable to work with the negative log-likelihood:

For one cluster Sj

Because we negated it, we seek to minimize ℓ(·) when we sought to maximize the likelihood f(·).\ 



Bayesian Information Criteria (BIC) 

• Likelihood challenge: Increasing the number of clusters 𝑘 always 
increases the likelihood.

• As 𝑘 grows, the model can fit the data more closely (sometimes 
overfitting).

• Correspondingly, the negative log-likelihood always decreases 
with larger 𝑘.

• This makes it tricky to use likelihood or negative log-likelihood 
alone for choosing the “right” 𝑘.



Bayesian Information Criteria (BIC) 

• To avoid overfitting, we penalize models with more 
parameters.

•  In 𝑘-means clustering in ℝ𝑑:

• Each cluster center 𝑠𝑗  has 𝑑 parameters.
• Total parameters = 𝑘𝑑

• Using information-theoretic arguments and a Bayesian 
perspective, we derive the Bayesian Information Criterion 
(BIC).



Bayesian Information Criteria (BIC) 

• For a model 𝑀 with 𝑚 parameters and 𝑛 observations, the BIC is:



Bayesian Information Criteria (BIC) 

• For a model 𝑀 with 𝑚 parameters and 𝑛 observations, the BIC is:

• Since our k-means algorithm has kd parameters, for a best-fit clustering Sk 

of size k we have 

• Now the first term is twice the negative log-likelihood, and so 
decreases with k increasing. On the other hand, the second term kd 
ln(|X|) has a fixed quantity dln(|X|) and so increases linearly with k. 

• The value k which minimizes BIC(Sk) provides a choice for k.



Bayesian Information Criteria (BIC) 

• The BIC method applies broadly to any model with a well-defined 
likelihood function.

• It is well-defined for:
• Mixture of Gaussians
• k-means 

• For Hierarchical Agglomerative Clustering (HAC):
• Application of BIC is possible but debated.

• For Spectral clustering or DBScan:
• Applying BIC is difficult and not straightforward.
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