
9 Approximate Nearest Neighbors

When we have a large data set with n items where n is large (think n = 1,000,000) then we discussed two
types of questions we wanted to ask:

(Q1): Which items are similar?

(Q2): Given a query item, which others are similar to the query?

For (Q1) we don’t want to check all roughly n2 distances (no matter how fast each computation is), and for
(Q2) we don’t want to check all n items. In both cases we somehow want to figure out which ones might be
close and the check only those.

We discussed LSH as a general technique to answer (Q1), but it did not really answer how to solve (Q2)
since it still needed to at least look at each element once.

The key to solving this problem is pre-computation. We will first build a data structure DP on the data
set P . Then we can ask DP questions and expect fast answers. For instance, given a query object q we can
ask for all points within distance r of q in P with notation DP (q, r) = {p ∈ P | d(p, q) ≤ r}. Or we can
ask for the nearest neighbor of q in P denoted φP (q) = arg minp∈P d(p, q).

With LSH, this preprocessing was to precompute all hash bins for each object in P . Then for a query
point q, compute its hash bins, and check the exact distance to those that fall in all bands in at least one set
of bands. But LSH is not the only way, and other techniques typically work better in “low” and “medium”
dimensions.

9.1 Approximate Nearest Neighbors
We now answer question (Q2). We will focus on a data set P ∈ Rd where |P | = n is quite large (think
millions). We will focus mainly on Euclidean distance d(p, q) = ‖p− q‖2.

Given a query point q ∈ Rd then φP (q) = arg minp∈P d(p, q) is the nearest neighbor of q. For d = 1,
this is possible with about log n time using a balanced binary tree on P (sorted on the one-dimensional value
of each p ∈ P). For really large data sets, a B-tree works better with the cache. It splits each node of the
tree into B pieces and each leaf has at most B elements. B is set as the block size of the cache.

9.1.1 Small Dimensions (d = {2, 3})
For general d, this can be done exactly by building a Voronoi diagram on P ; Vor(P), it is a decomposition
of Rd into n cells, and each cell vp is associated with one point p ∈ P so that each q ∈ vp has p =
arg minp′∈P d(p, q). The complexity of Vor(P) is the numbed of boundary sections (d′-dimension facets
for 0 ≤ d′ ≤ d) needed to describe all cells in Vor(P). The complexity of the Voronoi diagram can be as
large as Θ(ndd/2e). This means for d = {1, 2} it is linear size, but it grows exponentially in size as d grows.
In many practical cases, the size of the Voronoi diagram may be closer to linear in d = {3, 4, 5}, but very
rarely in even higher dimension.

So in low dimensions, d = {2, 3} data structures (based on Vor(P)) can be constructed to find the nearest
neighbor in about log(n) time.

9.1.2 Approximate Nearest Neighbors
Often the exact nearest neighbors are unnecessary. Consider many points P very close to the boundary of a
circle (or higher dimensional sphere), and a single query point q at the center of the circle (or sphere). Then

1

all points are about the same distance away from q. Since the choice of distance is a modeling choice, it
should often not matter which points is returned.

So we introduce a parameter ε ∈ (0, 1], and we say a point p such that d(p, q) ≤ (1 + ε)d(φP (q), q) is
an ε-approximate nearest neighbor of q. There can be many such points, and finding one of these can be
dramatically simpler and faster (especially in practice) than finding the exact nearest neighbor. This becomes
essential in high dimensions.

9.1.3 Medium Dimensions (d ∈ [3− 12+])
In medium dimensions (usually between d = 3 and say d = 12, but miles may vary), a hierarchical spatial
decomposition can be used to quickly find approximate nearest neighbors. Think of all points being in a box
B = [0, 1]d (assume all points are in [0, 1]d). In each level of the hierarchy, the box is divided into two (or
more) smaller boxes. This hierarchy reaches the bottom (the leaf of the tree) when there is at most 1 point
(or often more efficiently some constant number like 10 or 20 points) in the box.

These structures are queries with a point q as follows.

• First, find the leaf B` that contains q. Find τ` = φP∩B`
(q). This provides an upper bound on the

distance to the nearest neighbor. Specifically any box Bi such that

min
x∈Bi

d(x, q) ≥ τ`/(1 + ε) (9.1)

can be ignored.
• Second, walk up the hierarchy, visiting sibling boxes Bi to the current one visited B`. If Bi satisfies

equation (9.1) then we continue up the hierarchy. Otherwise find τi = φP∩Bi(q) and if τi < τ`, set
τ` ← τi and move up the hierarchy. (Note that τiφP∩Bi(q) can be answered with an approximate
query using the hierarchy structure.) Denote the parent node `, as the new active node.
• Stop when the root is reached and B` = B.

The key structures most often used are

• kd-tree: It divides a box, by alternatively splitting each dimensions. So if there are d = 3 dimensions,
then the first split is on the x-dimension, the second level on the y-dimension, the third on the z-
dimension, and then the fourth on the x-dimension again, and so on. The choice of the split is the
median point along that dimension (the splits adapt to the data).

This guarantees that it is balanced, so it has log2 n levels, and is of size 2n.

• quad-tree: It divides each box into 2d axis-aligned rectangles around the geometric center of the box.
Each box on the same level is the same size and shape. So the size of each box decreases each level,
but not necessarily the size of the point set.

Most algorithms with theoretical guarantees use some variant of the quad-tree. In particular a com-
pressed quad-tree (where empty nodes and nodes where only one child is non-empty are removed)
can be shown to find the leaf containing q in O(log n) time and have size O(n) and take O(n log n)
to construct.

• R-trees: These structures divide a boxB into two (or more) rectangles (that are possibly overlapping)
that contains all P ∩B. These can work very well in practice if a good set of rectangles can be found
at each level, but finding the best set of rectangles can be challenging. Can achieve searching bounds
of about 2d log n.

The dimension that these work in depend on how large of ε is permitted, and how much the data looks
like it is actually in a lower dimension. R-trees and compressed quad trees adapt better than naive kd-trees.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

9.1.4 High Dimensions (d > 12)
The problem in higher dimensions (d > 12) is that just about all distance look almost the same. In data
randomly inside a cube or ball, most points are about the same distance apart!

In particular, these structures typically work with boxes since they are easier to compute with. But we
really want all points within a ball. And as dimensions get larger, balls look less and less like boxes.

The volume of a unit ball (radius 1) in Rd is

vol(B(d, rad = 1)) =
πd/2

Γ(d/2 + 1)
radd ≈ πd/2

(d/2)!
.

So it gets small as d→∞.
On the other hand, the volume of a unit cube (side length 2) in Rd is

vol(C(d, rad = 1)) = 2d.

So it gets large (quickly goes to∞) as d→∞.
As in rectilinear search we get everything in the box, when we want everything in the ball. And this

becomes a big difference. So what can be done?

• ANN: https://www.cs.umd.edu/˜mount/ANN/ is a library pushes rectilinear kd-trees and
quadtrees to the limit with various sampling and geometric approximate techniques. Reports are that
this can scale to maybe d = 20, but depends largely on the niceness of the data.

• random rotations kd-tree: Instead of alternating by the dimensions (and on their axis), find a random
dimension and split on that dimension. Purely random does not work all that well and there are several
heuristics that work pretty well (and some have provable guarantees). One is, choose several random
directions, see which one has best geometric split, and use that one. Another is to choose two random
points, use that direction as the split direction (I am not sure I have seen this one in a publication - it
may not have good worst case guarantees, but should have good average case guarantees).

• clustering kd-trees: On each node, construct a 2-means clustering (or any other fast clustering algo-
rithm) and split the data set so each cluster is in one of the two subtrees. David Lowe (the inventor of
SIFT – the pioneering way to embed image patches in R128) has an implementation of this that works
very well in R128 (and seems to beat other variants up to that date ≈ 2007).

These last two work well when data is intrinsically in a lower dimension space. These techniques adapt
to these data-dimensions, and then the behavior is similar to the regular (axis-aligned) kd-tree in the corre-
sponding data dimension.

Locality Sensitive Hashing: Recall this precompute the hash functions and placement of all p ∈ P in
the hashes. If the number of hashes is about the same as the dimension, then this is linear space. The FAL-
CONN library https://github.com/FALCONN-LIB/FALCONN is an implementation that follows
best theoretical guarantees and is well-engineered.

Recall LSH requires a set of t hash functions that are grouped in bands of b hash functions each; which
can each be stored in a single super-hash table. We then need to probe r = t/b of these to see if any find
collisions. Thus pre-processing requires storing each of |P | = n data points in r (super)-hash tables, and
a query takes O(r) time. To find nearest neighbors we can start with a very selective set-up but unlikely
to find collisions; then gradually adjust it to be less selective (small threshold of similarity) until we find
collisions. Among these will be the (approximate nearest neighbor).

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

How does the approximation factor affect this? If the margin between collides with high probability, and
does not collide with high probability is large around a threshold, we may stop when we find a collision,
but it is not the true nearest-neighbor. The number of hash tables needed (and storage and query time
O(r)) depends on the approximation factor. These are rigorously proven, but the query time is not nearly
logarithmic; rather it is roughly O(nρ) for some value ρ that depends on the approximation factor. For a
2 approximation, then we have ρ = 1/7. Note that for n = 10 billion = 10, 000, 000, then n1/7 = 10.
The storage cost is then roughly O(n1+ρ). For the approximate nearest neighbor problem on Euclidean
vectors (or for Cosine/Angular distance) with no control of the dimension (e.g., d = 2) these trade-offs are
asymptotically tight.

Hierarchical/Neighborhood Graph Search: An old idea has recently become very popular, and well-
engineered with exciting new solutions. Preprocess P by connecting nodes together in a graph by edges
(e.g., connect each p ∈ P to its k-nearest neighbors in P). Then on a search query q ∈ Rd, we follow the
simple graph gradient descent approach:

• 1. Choose arbitrary p′0 ∈ P and i = 0

• 2. Consider neighborhood set N(p′i) = {p1, p2, . . . , pk}

• 3. Let p′i+1 = arg minpj∈N(p′i)
‖q − pj‖

• 4. If ‖q − p′i+1‖ ≥ ‖q − p′i‖, then stop and return p′i.

• 5. Else, go to Step 2.

This has been made practical and effective with a couple of innovations. First, maintain a set ofK possible
nearest neighbors (instead of K = 1 and just p′i), and do not stop until none can locally improve (upon the
set of K values). This makes the process much more robust for getting stuck in local minimum.

Second, instead of just the k-nearest neighbor (k-NN) graph, it tries to maintain a hierarchy over nodes,
so the starting point is connected diversely across the graph, and then those next nodes connected also
broadly, but less so than the top-level, and so on a few levels down (sort of like kd-trees and quad-trees, but
less formally structured). Then there is still a k-NN graph at the bottom. This allows for fast movement
early in the search, and then the same sort of local convergence at the end.

Common libraries are Hierarchical Navigable Small Worlds (HNSW: https://github.com/nmslib/
hnswlib) and DiskANN (https://www.microsoft.com/en-us/research/project/project-akupara-approximate-nearest-neighbor-search-for-large-scale-semantic-search/).

Finally FAISS (https://faiss.ai) uses quantization (a vector compression trick) on top of this to
make each step fast on a GPU. Pinecode (a market leader in the ANN industry) has a nice write-up on these
ideas (https://www.pinecone.io/learn/series/faiss/).

This is still an active area with many common practical improvements, but a lack of mathematical under-
standing of when and why these methods (beyond LSH) work so well.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

