
8 Word Embeddings towards LLMs

The ability of computer programs to effectively process, categorize, and generate language has been a recent
and momentous advancement in AI. We have so far seen the k-gram approaches, which revolutionized how
we could categorize and search document-level objects – which propelled web search in the early 2000s.
However, these next level challenges need to represent language as a more granule level – so each word (or
potentially subword) is given an abstract, easy-to-use representation. Namely, a high-dimensional vector.

How do we represent words as abstract objects? The classic approach to natural language processing
was through linguistics, and breaking sentences down into semantic structures of verbs, nouns, prepositions,
conjunctions, etc, and their use as subjects, objects, actions, etc. While this provided useful context for
analysis, it was hard – and did not fit naturally with the rest of developing data mining and machine learning
infrastructure.

The key to unlocking language was, (1) mapping words to high-dimensional vectors where we could use
Euclidean distance and cosine similarity, and (2) embracing a simplistic ansatz:

The Distributional Hypothesis: Words that occur in the same contexts have similar meanings.
(c.f., Zellig Harris, J.R. Firth)

8.0.1 Word Vectors
This approach is data driven; it takes a very large corpus of text (say all of Wikipedia – as a small example)
and generates a vector representation for each word. And in this setting, the Euclidean distance or cosine
similarity is most appropriate. This is useful for many more detailed natural language applications. For
starters synonyms typically have vectors close to each other, and in general all verbs are closer to each other
than all nouns, or all adjectives. At a finer level, these embeddings usually reveal more structure like there
is a direction that captures properties like gender (from man to woman, etc). Moreover, one can sometimes
solve analogy questions. The most famous example is to take the representative vectors for king (vking),
queen (vqueen), and man (vman), and then consider the vector manipulation

v̂ = vking − vqueen + vman.

Impressively, the nearest vector to v̂ is often vwoman, the vector representation of woman.

8.1 Three Generations of Word Vector Embedded Representations
These methods basically follow 3 generations:

8.1.1 PPMI Vectors from Aggregated CBOW
A common preliminary approach, starts with an understandable, but very high-dimensional, vector called a
PPMI (positive pointwise mutual information) vector for each word. This is extremely high-dimensional,
often too high to easily work with or represent explicitly.

PPMI vectors. We start with defining a fixed vocabulary we care about; lets say the m = 100,000 most
common distinct words. Then we define a window around each word in the text corpus. The window may
be the 3 words on either side of the work in question; or more recently, this context window is often only the
k � 3 words preceding the word in question. Then for each word, lets say i = octopus, we keep a count of
how often it appears noctopus and the number of times each other vocabulary word co-occurs with it within

1



a window (i.e., continuous bag of words). For word i, define its number of cooccurrences with word j as
bi,j . Let these counts be a vector bi ∈ Rm for word i with the jth coordinate as bi,j .

Now define the probability of a word i as p(i) = ni/N (where there are a total of N words in the corpus
we consider), and the co-occurence probability as p(i, j) = bi,j/N . Then the pointwise mutual information
of i and j as log p(i,j)

p(i)p(j) . Ultimately we create a vector vi ∈ Rm for each word, in which we enforce each
coordinate to be non-negative. The jth coordinate is then the PPMI between i and j, defined as

vi,j = max

(
0, log

p(i, j)

p(i)p(j)

)
.

Now for the ith word, this leads to a vector:

vi = (vi,1, vi,2, . . . , vi,j , . . . , vi,m) ∈ Rm.

As a whole vi captures a representation of the co-occurence patters of the ith word with all of the other words.
Connecting back to our distributional hypothesis, when words i and i′ are similar if dEuc(vi, vi′) = ‖vi−vi′‖
is small or dcos(vi, vi′) is small; that is they have similar word distributions in their aggregated context
windows.

8.1.2 Self-supervised Embeddings
Traditional supervised machine learning takes as input a data set {(x1, y1), (x2, y2), . . .}where each xi ∈ X
(typically X = Rd) and each yi is an associated label (often yi ∈ {−1,+1}). It is classical to think of each
label being witnessed from a past observational study, or assigned by an expert (e.g., doctor assesses cancer
/ no-cancer). Supervised machine learning is very powerful to identify patterns in the X = {xi}i which
correlate with the labels in yi ... as long as there is enough data for the models to generalize.

In the last 20 years, we started to be able to generate, store, and compute-on much larger data sets X , but
our ability to get expert labels has mostly not kept up. To build larger and more general models we sought
to engineer more labels.

Self-supervision is the process where a machine learning model is set up to try to predict the input data
(or part of it), itself.

An early example were auto-encoders for images, where a large image (1000s of pixels large) is passed
through a two functions (often as a neural network): an Encoder to a lower-dimensional space, and then
from there to a Decoder which attempts to recover the original pixels. So the input and desired output are
the same! In this case, the reason the function cannot just be the identity is that the intermediate latent
layer is much lower-dimensional than the input size, so it is forced to somehow capture some compact (and
hopefully meaningful representation of the data). Unless the data family has a true low-dimensional latent
space, this inevitably loses some information – perhaps one can argue it ”denoises” but in practice, it tends
to add noise to the output. That is, auto-encoded reconstructed images often appear blurry than the originals.

In text, another option is available: a masked model. In this setting, we do not try to predict the entire
input, but only a subset of each input xi. In images, this could be masking out a square of the image that is
hidden from the input, and predicted by the output. In text, this aligns perfectly with the CBOW formulation,
as we mask a single word from a string of text (the context window).

Around 2013-14 the Word2Vec (Google) and GloVe (Stanford) models were introduced using CBOW
and masked models to build self-supervised learning for text. However, the training did not just predict the
masked word, but it did so via an embedding. It used a neural network (LSTMs) where the last layer was a
moderate dimensional vector (e.g. d = 300 dimensions). Each word (of say m = 100,000) was assigned a
vector vword ∈ Rd and the prediction was based on the nearest word (under cosine distance). The network
was trained for this high-dimensional nearest-neighbor task.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah



The resulting output was an embedding in Rd for each word (among say m = 100,000) in the English
language. This quickly became the default starting point for most natural language processing tasks, and
several long-standing benchmarks for tasks within that field quickly saw improvement comparable to a
decade of progress.

Moreover, from these representations arose emergent behaviors. Word types tended to group together.
Linear subspaces (e.g., defining male-female gender) were clearly observable. Analogies could be solved
by vector transport (e.g., vFrance + (vLondon − vParis) ≈ vEngland).

While the 100,000-dimensional PPMI vectors probably would have worked similarly, these worked very
well, and were several of orders of magnitude smaller, which made things much more efficient to work with.

So what was the self-supervised learning, learning? The co-occurrence properties for the English
language. In the case where the context window was before the predicted word, it was learning in a string
of text, what was likely to come next: next token prediction.

What should we make of un-intended correlations? What if the male-female subspace was aligned
with the engineer-secretary subspace? That this occurs, may not be surprising given the sort of text (all of
the internet) that these models are trained on. But should we use this for all prediction tasks involving input
language?

Generalized mask-model embeddings. These ideas from self-supervised masked model embeddings
has wide use beyond language. More famously, DeepWalk and Node2Vec masked nodes in random walks
in graphs to embed the nodes of a graph in a vector space. Learning masked parts of images can give image-
patch embeddings. Similar approaches have led to embeddings for spatial data, geometry objects, genomic
data, financial transactions etc. The resulting useful representations are sometimes called ”foundational
models.”

8.1.3 Contextual Transformer Embeddings
This was followed by the 3rd generation (roughly where we are now), although there are many nuances that
are specialized for language, and beyond the scope of this class. This was driven by two advances that came
almost on top of each other.

Contextual embeddings. These gave each instance of a word its own vector representation, based on its
specific context. This was addressing well-known concern that homonyms (words with two or more distinct
meanings – like apple the company and apple the fruit) would be embedded in the same vector location.
These words and their representations did not work well in linguistic tasks, somehow splitting the difference
between the multiple ideal positions of their distinct meanings. Moreover, even within a single meaning,
there were nuances lost.

Instead this learned a function fθ : [context+word]→ Rd. The parameters θ of the function were trained
using self-supervised learning. This was pioneered as ELMo (Allen Institute for AI & U Washington) where
f used a bidirectional LSTM (type of neural networks for sequences).

Transformer with attention. ELMo ran into issues where it could only use a limited context size, since
sometimes far away words (at start of sentence, or 3 sentences earlier) was very influential in the words
meaning. Moreover negation (in its many subtle forms) was still a real challenge to deal with. This was
addressed with a recent break through of transformer neural architectures with attention. This would take
a long sequence of token (e.g., words in context) and determine which were mostly like to influence the
prediction at hand.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah



BERT and then RoBERTa (Google) were the prototypes for this method, and are still roughly near the
state-of-the-art. These were the models that were adapted by GPT at OpenAI and were an essential part of
their ChatGPT chat bot and subsequent models.

As ELMo and RoBERTa are neural networks, they operates in layers. And while traditionally the last
layer can be seen as the embedding layer, the previous layers can be useful as well for various prediction
tasks. The first layer roughly acts as a non-contextual network (like GloVe, Word2Vec), and the subsequent
layers (to a first approximation) gradually add more context to the representation.

Another change these models made was using subwords instead of words. These included most very
common words, but for uncommon words, it would break them into their basewords (e.g., latin or greek
bases), and could generalize better to rarely seen words. The details of how this was done is along the lines
of k-gram modeling, and involves modeling and many engineered choices.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah


