
24 Markov Chains

Markov Chains represent and model the flow of information in a graph, they give insight into how a graph
is connected, and which nodes are important.

As we will see, they also provide important life lessons:

• [L1] Only your current position matters going forward, don’t worry about the past.

• [L2] You just need to worry about one step at a time; you will get there eventually (or you won’t).

• [L3] In the limit, everyone has perfect karma.

24.1 Review of Graphs
We start by reviewing the abstract data type of graphs, and their interpretation as matrices.

A graph G = (V,E) is defined by a set of vertices V = {v1, v2, . . . , vn} and a set of edges E =
{e1, e2, . . . , em} where each edge ej is an unordered (or ordered in a directed graph) pair of edges: ej =
{vi, vi′}.

Consider an example graph portrayed three ways.

Mathematically: G = (V,E) where

V = {a, b, c, d, e, f, g} and

E =
{
{a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {c, e}, {e, f}, {e, g}, {f, g}, {f, h}

}
.

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be
symmetric). This is known as the adjacency matrix.

A =

a b c d e f g h

a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

=



0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0



Pictorially: A ball stick model of a graph.

a

b

c

d

e

f

g

h

1

24.2 Markov Chains
A Markov chains (V, P, q) is defined by a set of nodes V , a probability transition matrix P , and an initial
state q. In some contexts q is not needed, and P is implicitly described by the associated matrix of a graph.

The initial state q represents a probability distribution over which nodes we are located. For instance, if
we are at state b ∈ V (with probability 1) then

qT = [0 1 0 0 0 0 0 0].

If we have a 10% chance of being in state a, a 30% chance of being in state d and a 60% change of being in
state f , then

qT = [0.1 0 0 0.3 0 0.6 0 0].

In general we need to enforce that

• each q[i] ≥ 0

•
∑

i q[i] = 1.

Now the transition matrix P can be described as the normalized adjacently matrix

P =



0 1/2 1/3 1/3 0 0 0 0
1/3 0 0 1/3 0 0 0 0
1/3 0 0 1/3 1/3 0 0 0
1/3 1/2 1/3 0 0 0 0 0
0 0 1/3 0 0 1/3 1/2 0
0 0 0 0 1/3 0 1/2 1
0 0 0 0 1/3 1/3 0 0
0 0 0 0 0 1/3 0 0


That is each row Aj of A is represented in P as the column Pj = Aj/‖A‖1, after it has been normalized.

Now given a state qT = [0 1 0 0 0 0 0 0] can “transition” to the next state as

q1 = Pq =

[
1

2
0 0

1

2
0 0 0 0

]T
.

Then we can get to the next state as

q2 = Pq1 = PPq = P 2q =

[
1

6

2

6

2

6

1

6
0 0 0 0

]T
.

and

q3 = Pq2 =

[
1

3

1

9

1

9

1

3

1

9
0 0 0

]T
.

In general we can write qn = Pnq, that is starting with q and “hitting” q on the left n times by P , the
transition matrix.

This is called a “Markov” chain after Andrey Markov, because it is a Markov process. This means that
it only depends on its current state, and nothing prior to that (unless it is implicitly encoded in the current
state). This fulfills L1.

There are now two ways to think about this Markov chain process.

• It describes a random walk of a point starting at q (or in some position with distribution described by
q). Then at each step it decides where to go next randomly based on the column of P describing the
column its state corresponds to. It moves to exactly one new state. Then repeat.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

• It describes the probability distribution of a random walk. At each state, we only track the distribution
of where it might be: this is qn after n steps. Alternatively, we can consider Pn, then for any initial
state q0, Pnq0 describers the distribution of where q0 might be after n steps. So entry Pn

j,i (jth column,
ith row) describes the probability that a point starting in j will be in state i after n steps.

Usually, only one of these two interpretations is considered. They correspond to quite different algorithms
and purposes, each with their own advantages. We will talk about both, and in particular the first one shortly.
... but first some more definitions!

24.2.1 More Definitions!
A Markov chain is ergodic if there exists some t such that for all n ≥ t, then each entry in Pn is positive.
This means that from any starting position, after t steps there is always a chance we are in every state. That
is, for any q, then qn = Pnq is positive in all entries.

It is important to make the distinction in the definition that it is not that we have some positive entry for
some n ≥ t, but for all n ≥ t, as we will see.

When is a Markov chain not ergodic?

• It is cyclic. This means that it alternates between different sets of states every 2 or 3 or in general p
steps. Here are some example cyclic transition matrices:

(
0 1
1 0

)  0 1 0
0 0 1
1 0 0




0 1/2 1/2 1/2 1/2 0
1/4 0 0 0 0 1/4
1/4 0 0 0 0 1/4
1/4 0 0 0 0 1/4
1/4 0 0 0 0 1/4
0 1/2 1/2 1/2 1/2 0


• It has absorbing and transient states. (This only happens when the initial graph is directed, so you

cannot go backwards on an edge.) In some Markov chains we can classify V into two classA, T ⊂ V
so that if a random walk leaves some node in T and lands in a state in A, then it never returns to any
state in T . In this case, the nodes A are absorbing, and the nodes in T are transient. Here are some
examples:

(
1/2 0
1/2 1

)  0 1 0
1 0 1
0 0 0




1/2 1/2 0 0 0 0
1/2 49/100 0 0 0 0
0 1/100 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4


• It is not connected. There are two sets of notes A,B ⊂ V such that there is no possible way to

transition from any node in A to any node in B. And some examples:

(
1 0
0 1

)  0 1 0
1 0 0
0 0 1




1/2 1/2 0 0 0 0
1/2 1/2 0 0 0 0
0 0 1/3 1/2 1/3 0
0 0 1/3 0 1/3 0
0 0 1/3 1/2 1/3 0
0 0 0 0 0 1



CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

When it is ergodic. From now on, we will assume that the Markov chain is ergodic. At a couple of critical
points we will show simple modifications to existing chains to help ensure this.

Now there is an amazing property that happens.
Let P ∗ = Pn as n→∞ (it will converge). Now let q∗ = P ∗q (this does not depend on the choice of q).

• That is, for all starting states q, the final state is q∗ (if we run the chain long enough L2).

• As we do a random walk, we will eventually have an expected stated precisely described by q∗.

Also, q∗ = PP ∗q thus q∗ = Pq∗. Thus fulfilling L3 since at this point, the probability of being in a state i
and leaving to j, is the same as being in another state j and arriving at i (this is called the delicate balance).
Globally, we can generalize this to say, the probability of being in any state i and leaving (to any other state)
is the same as being any other state and arriving in i. Thus, if a distribution starts in q0 = q∗ it is already in
the final distribution. The “further” it starts (e.g. q0 is different from q∗), the longer it takes to converge.

Moreover, q∗ is the first eigenvector of P , after normalizing so the sum of its elements are 1. In Mat-
lab [V,L] = eig(P); and let v1 = V(:,1); and qstar = v1/sum(v1) to get the stable dis-
tribution qstar. This second eigenvalue λ2 determines the rate of convergence. The smaller λ2, the
faster the rate of convergence. In our example graph, q∗ = (0.15, 0.1, 0.15, 0.15, 0.15, 0.15, 0.1, 0.05)T =
(3
20 ,

1
10 ,

3
20 ,

3
20 ,

3
20 ,

3
20 ,

1
10 ,

1
20)

T and the second eigenvalue of P is 0.875 which indicates a kinda (but not
too) slow convergence.

24.3 Metropolis Algorithm
The Metropolis Algorithm, sometimes referred to as Markov Chains Monte Carlo (MCMC) was developed
by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953 to help develop the atomic bomb. There
is some controversy over who really deserves credit for the invention. But, the lesson is, it pays to have a
name that is both cool sounding, and earliest in alphabetical order!

This was latter generalized by Hastings (1970) and it eventually led to enormous applications in comput-
ing Bayesian statistics, as Gibbs sampling (Geman, Geman 1984 and Gelfand, Smith 1990).

Here each state v ∈ V has a weight associated with it:

w(v) where
∑
v∈V

w(v) =W.

More generally, V may be continuous and then W =
∫
v∈V w(v) dv. Then we want to land in a state v with

probability w(v)/W . But...

• V might be very large, and W unknown.

• V can be continuous, so there can be no way to calculate W . I call this a probe-only distribution,
since you can measure µ(v) = cw(v) at any one state at a time where c is some unknown constant
(related to W).

So our goal is to design a special Markov chain so q∗[v] = w(v)/W (without knowing W).

The Algorithm. Start with some v0 ∈ V so q = [0 0 0 . . . 1 . . . 0 0]T .
Now iterate as follows:

Choose neighbor u (proportional to K(v, u)) where K is some notion of neighborhood/similarity (for in-
stance a kernel, like a Gaussian kernel). And move to u with probability min{1, w(u)/w(v)}. See Algo-
rithm 24.3.1.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 24.3.1 Metropolis on V and w
Initialize v0 = [0 0 0 . . . 1 . . . 0 0]T .
repeat

Generate u ∼ K(v, ·)
if (w(u) ≥ w(vi)) then

Set vi+1 = u
else

With probability w(u)/w(v) set vi+1 = u
else

Set vi+1 = vi
until “converged”
return V = {v1, v2, . . . , }

This implicitly defines a Markov chain on the state space V . The transition matrix is implicitly defined
by the algorithm. And moreover, if the chain is ergodic, then there exists some t such that i ≥ t, then
Pr[vi = v] = w(v)/W .

NOTE: this is not just in the limit, but for some finite t (even for continuous V), through the AMAZING
property called “coupling from the past”. But t is hard to find.

Often the goal is to create many samples (from ∼ w).

• Officially: run for t+ steps, take one sample,
run for another t+ steps, take one sample,
repeat.
• In practice: Run for 1000 steps (the “burn in” period)

take next 5000 steps as random sample.

The second method has “auto-correlation”, as samples vi and vi+1 are likely to be “near” each other (either
since K is local, or because it did not accept new state).
Officially, we should take on every s steps, where s depends on the degree of auto-correlation. But in
practice, we take all n samples, but treat them (for purpose of bounds) as n/s samples.

Big challenge: neither t or s is known.
This is inherently sequential (at least the practical version), this makes it very hard to parallelize. Another

major challenge.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

