23 Graph Embeddings

Working with large graphs G = (V, E) can be computational expensive, because since there are many
combinatorial options to exam. A more recent approach has been to find a way to embed the graph in a
(often high-dimensional) Euclidean space R?. By this we mean that:

e cach node/vertex v; € V is mapped to a point z; € R?

e the relative position deos(x;, ;) for any pair of vertices v;,v; € V is reflective of how similar the
nodes are in the graph

The specific meaning of the second point is not yet clear, and could mean several things. Different interpre-
tations lead to different formulations. We will start with some we have seen already, an conclude with the
basis for the most common approaches.

We will focus on undirected graphs. And assume there are |V'| = n vertices.

23.1 Edges as Similarity in Graphs

The first idea is to draw a graph in R%. If we treat each edge ¢ = (v;, vj) as something with similarity
S;,j = 1, then we can form a similarity matrix S € R"*". Drawing points along the top d eigen-vectors of
S is precisely classic MultiDimensional Scaling (cMDS) into R¢.

This is a very reasonable way to capture the connectivity information of a graph, but only gives a very
local picture, and is a very blunt form of similarity. While if two nodes v;, v; are not directly connected by
an edge, it tries to place them far apart — even if there are many other nodes v, which are connected to both
Vi and vj.

Alternatively, if we first L;-normalize each of the columns S (note that S is the adjacency matrix), then
we get P, a probability transition matrix, of a Markov Chain. We can then consider the top eigenvectors
of this. If the Markov Chain is ergodic, this is less intuitive as an embedding. The top-eigenvector places
all of the central connected nodes on one side, and the less connected nodes on the other. And, so it is not
commonly used for embeddings.

Planar graphs. Given that cMDS is often used to draw data in R?, we can consider what properties it has.
In particular, a planar graph drawing is one where vertices are drawn in R? and no edges cross. You cannot
always do this, and if you can, the graph is called a planar graph. Classical MDS does not guarantee that a
planar graph will be shown as a planar graph drawing.

A common method to draw low-dimensional graphs, is to put a Spring force between vertices — more if
no edge, and less if an edge. Then run a simple simulation of the physics. If each vertex has degree 3, then
Tutte’s theorem says this will converge to a planar drawing of the graph.

23.2 Laplacian Matrices and Spectral Clustering

In discussion on Spectral clustering, we considered the adjacency matrix A € {0, 1 , and the degree
matrix D € diag(n), which has the degree of the ith vertex at location D; ; on the diagonal. Recall that [is
the identity matrix. Then the (unnormalized) Laplacian is defined

}TZXTL

Lo=D— A

and the normalized Laplacian is defined
L=1-D12ADp12 = p-121,p~1/2,

In that context, we considered the top-eigenvectors of L (and Lg). Recall that the second eigenvector of
the normalized Laplacian L spread out the data in a way, that helped us find a good normalized cut. This
tried to keep the spread-out-ness of vertices controlled (the eigenvector is a unit vector, so the sum of squared
values is 1), while stretching edges as little as possible. If there were good clusters (partitions), we could
likely find them by scanning vertex subsets in the sorted order. Then recurse on the subsets.

Another common approach is to use the top d eigenvectors, using each as one coordinate for each vertex.
With the goal of clustering, this is often part of a two-step process.

Step 1: project on to top d eigenvectors of the normalized Laplacian L.
Step 2: run an algorithm for Euclidean k-means clustering on this embedding into R?

However, we do not need to run step 2. We can just use the resulting embedding into R¢ as a nice embedding
of the vertices in a way that tries to preserve cluster structure (as may be defined by Normalized Cut).

Another place this arises is when we calculate graphs as k-nearest neighbor graphs. Assume that our data
Z € R lies on a nice manifold (this was a very 2005 assumption!). Then we build a graph G = (V, E)
where each z; € Z becomes a vertex v; € V. The edges in F are chosen as the k-nearest neighbors of
z; among Z in R¥. Then we use the top eigenvectors of the Laplacian of G to get an embedding of this
graph as X C RY. This is called Laplacian Eigenmaps, and was a popular manifold learning / non-linear
dimensionality reduction algorithm.

23.3 Random Walk based Embeddings

These approaches have two draw-backs. First, they are somewhat slow, especially if one wants to map to
a high-dimensional d; since then one needs to compute d eigenvectors on large graphs. And, so if there is
update to the graph data, it may need to be re-calculated. Second, they are still implicitly only looking at
edges, and not well-connected neighbors, or what you can get to in a few hops (when a few hops is small,
in a very large graph).

Inspired directly by word embeddings (methods of word2vec and GloVe) spawned the idea of what if we

measured “neighborhood co-occurrence among random walks” on graphs. Lets unpack this — as explored in
papers named DeepWalk and nodeZvec.
Consider we took an infinitely long random walk on a connected graph G. Then consider where the path
goes through a node v;. Then we say a nodes v; are in the L-neighborhood of v; if that random walk included
v; within L steps before or after v; on its path. Then we can describe the similarity of nodes v; and v; as
the probability that a random walk through v; has v; within a L-sized neighborhood on the the walk. To
be precise, its not quite a probability, and in fact, we can tabulate the number of times it would be in the
neighbor on a walk on average (which might be more than 1, especially if L is very large). Think of L as
small like L = 3 or = 5.

Let Dgl be the operator which L;-normalizes be degree, so the probability transition matrix P is trans-
formed from the adjacency matrix A as P = D;lA. The we can define the co-occurrence matrix for a
random walk of length T (starting from the limiting distribution g¢.) as

T —j A

Note that like in pageRank where we teleport after roughly 1/ steps, here we perform random walks of
limited length.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

This captures a more comprehensive notion of similarity between nodes of the graph, for neighbors up to
size L, instead of just size 1.

While one could compute C' exactly, and use eigenvectors of X. However, this would be slow, since pPL
would get quite dense — that is before the eigen-decomposition.

So instead, it is common to use stochastic gradient decent, where a random walk of length T’ is the batch
size. Then we can learn embeddings z; € R? of nodes v; that try to respect the similarity encoded in C.

23.4 Warnings about Embeddings

Embeddings, like the graph embeddings, but also word embeddings are now ubiquitous in Al, ML, and Data
Mining. They give a nice compact Euclidean representation of objects, which allows for meaningful, easy
and fast comparison, classification, and clustering. It is what we kept striving for in this course!

However, it can encode properties that may be unwanted in and unintentional. These are learned embed-
dings but on what data were they trained — is that the truth? The concerns can be seen most clearly with word
embeddings, where each word is a single vector in R%. This is convenient and powerful, but then relations,
and correlations can be encoded in ways that might not be desired. Some linear structures can make apparent
such correlations. Famously, one can identify an axis between definitionally male and definitionally female
words; and this axis was correlated with leadership jobs (engineer, lawyer), versus stereotypically female
jobs (secretary, homemaker). While this may reflect historical statistics, it may not be desired in a classifier
build on this to predict performance of an applicant (from the resume) on an occupation.

doctor @

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

