
22 Privacy

As companies, and governments, and researchers are getting better at collecting data, what if this data is
about you?! Google, Facebook, Yahoo! and most other web companies make money by understanding their
customer base, and applying targeted advertising. The government would like to identify terrorists before
they strike. Researchers would like to study properties of large data sets. But if you are the subject of the
data, are you ok with your data being available to be mined?

How can we preserve the “privacy” of individual data points while also being able to mine the data?
This goal has a long history. Since privacy is hard to define, there have been many attempts which have

come up short in achieving their intended goal. As researchers devise new standards by which data should
be private, others find weaknesses that allow more information than one might have thought. Yet, these
attempts are useful for demonstrating the problems and issues.

Ethics and Empathy. Before we get into technical definitions and examples, its worth noting that what
follows will not necessary provide solutions to ethical dilemmas – just tools and examples to think about
them. As data scientists, you will at some point face an ethical dilemma! The only mechanism to prevent
bad ethical behavior is societal pressure (shame people for doing bad things, or at least let them know it is
bad), and laws. The other way of course, is to hold yourselves to high ethical standards. But one may argue
these standards may be evolving, and there is no way to know what the right choice is. I argue that there
is a simple rule that you can follow, “if you were the data point, would you want to be treated that way.”
Basically don’t hide behind technology to justify your ethical decisions.

22.1 Attempts to Define Privacy
What does it mean to have privacy?

Here is the prototypical problem. A company C wants to release a dataset D about its costumers habits,
first to its own data scientists, but then they may want to share with researchers in universities. The goal is
to develop new ways to extract information to improve business (e.g. advertising, product pricing).

So the data scientists want to compute some statistics / mine some structure from D, but not to be able to
identify individual’s information.

Example: health records Consider an “anonymized” survey of hospital patients. Only provide zip code
to identify location. Some have cancer. What if a CEO went for routine treatment on a treatable cancer, but
was the only person in that zip code (e.g. the one with big houses ... she is a CEO after all). If someone
knows the CEO was part of the study, they may know they have cancer, and it can cause the stock to plummet!

STORY TIME:

• In 2000, Massachusettes released all stated employee’s medical records in an effort for researchers to
be able to study them.
• They wiped all ids, but kept zip codes, birthday, gender. Was declared anonymized by the government.
• In Massachusettes, it was possible to buy voter data for $20. It has names, birthday, zip codes, and

birthdays of all voters.
• A grad student, Latanya Sweeney combined the two to identify the governor of Massachusettes. Story

is, she mailed him his own health records!
• Dr. Sweeney now teaches at Harvard.
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This demonstrates the danger of other data sets D′ which are released or available independently of the
one D you release. How can we circumvent this? There was a series of several attempts:

k-anonymity: With datasets D, one can only identify someone up to k other people, for some parameter k.
That means, there must be at least k people with the same public set of tests in the same zip code / birthday
/ gender if D is released. Otherwise, some data is withheld.

Teacher evaluations work like this, I only see them if there are at least k = 4 people who respond.

`-diversity: In this setting, for each of the anonymization groups (with at least k people), these exists
someone from each one of `-well separated classes. If you cannot identify a single person (the governor),
but know they are one of k people, and all of those people have cancer, then you still know the governor has
cancer. Instead, `-diversity ensures that some person in each such set of k is in one of ` distinct clusters, and
thus has the hidden attributes different.

t-closeness: This starts with `-diversity, but also ensures that within each anonymization group, the set
needs to look like the full data set D among the hidden parameters (less than distance t in Wasserstein
distance).

But none of these can completely prevent corruption from outside data. You never know what other
information is available.

What if height was an important quantity? (say for movie star, Silvester Stallone?)

• Information: Sly Stallone is same height as average New Jersey man

• Independent survey: Average New Jersey man is 5’ 8”

This gives away Stallone’s height? (Or did he have surgery to become taller ?)

STORY TIME: Netflix Prize

• In 2006, Netflix released awesome data sets D1 = {〈user-id, movie, date of grade, grade〉}. And
another set D2 = {〈user-id, movie, date of grade〉}. Wants researchers to develop algorithm to
predict grade on D2. (Had another similar private data D3 to evaluate grades – cross validation.)

• If certain improvement over Netflix’s algorithm, get $1 million!

• Led to lots of cool research!

• Raters of movies also rate on IMDB (with user id, time stamp)

• Researchers showed that by linking who rated similar sets of movies, with similar scores and times,
they could identify many people.

• (maybe watched embarrassing films on Netflix, not listed on IMDB)

• Class action lawsuit filed (lated dropped) against Netflix.

• Netflix Prize had proposed sequel, dropped in 2010 for more privacy concerns.
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22.2 Differential Privacy
These scenarios led to a formal approach to release data, called differential privacy.

The goal is to take a data set X and create a data structure S which represents the data through a mecha-
nism M . So M(X)→ S, this mechanism is often random. We can then make queries on this data structure
q(X) in the same way (or similar ways) we would do to the data set.

To define differential privacy, we need to consider two very similar data sets X1 and X2. These should
only differ in one data point xi, e.g., the data point that contains our data. So in particular |X14X2| = 1.

Now we say that a mechanism is ε-differentially private (or ε-DP) if for any query q and any range R over
the outputs (X1, X2 | |X14X2| = 1), the following holds:

Pr[q(X1) ∈ R]

Pr[q(X2) ∈ R]
≤ exp(ε) ≈ 1 + ε.

If its easier to intuitively think about just this condition for any value r

Pr[q(X1) = r]

Pr[q(X2) = r]
≤ exp(ε) ≈ 1 + ε.

its probably ok, except one needs to be careful about using likelihood, since we’ll be working with continu-
ous random values, and the “probability” is 0. But the ratio cancels out the normalizing factors anyway.

OK, so what does this mean? That is, if we observe a value r on a query, then which data set X1 or X2

is more likely. If the ratio is 2, this means that between the two options for X1 or X2, it is twice as likely
to be X1 than X2. If the ratio is even larger, say 99, then between the two, we can think its X1 with 0.99
probability. And we can suppose our data point xi is in the data set. On the other hand, if ε = 0.1 so the
ratio is 1.01, then we are only slightly more likely to think it is X1 (and out data point is included), but are
not very confident.

The Laplacian Mechanism. The simplest way to achieve ε-differential privacy is to add appropriate
Laplacian noise to each data element. The Laplacian distribution is Lap(x;w) = 1

2w exp(−|x|/w). When
discussing Laplacian noise Lap(w) we draw x ∼ Lap(x;w).

To achieve ε-differential privacy on a set X ⊂ R, we can let S = {s1, s2, . . . , sn} ← M(X) where
si = xi + Lap(1/ε). That is, each data point xi is given independent Laplacian noise with bandwidth
w = 1/ε. Lets see this in a few examples.

Height example. Lets say the dataset X is a single data point x = 68 (e.g., the supposed true height of
Sylvester Stallone in inches), and we consider another data set X ′ which is a single data point x′ = 69
(listed height on Wikipedia). Now consider these two hypothetical data sets, passed through the Laplacian
mechanism with Lap(w = 1/ε) noise to get s and s′, respectively.

Lets evaluate how this holds up; what is the probability that r = 70.

Pr[s = 70]

Pr[s′ = 70]
=

1
2w exp(|68− 70|/w)
1
2w exp(|69− 70|/w)

= exp(
1

w
(|68− 70| − |69− 70|)) = exp(

1

w
) = exp(ε).

Reviewing this calculation, this exp(ε) ratio holds up for any r and for any two values values x and x′ such
that |x− x′| = 1.

That is, if we know that we applied a Lap(1/ε)-mechanism, we only believe with confidence (1+ε)/(2+
ε) what was the original value.
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Binary example. Another example data set is just a bit X = {x} where x ∈ {0, 1}. We want to know if
something is there or not there. So if x = 1, then our alternative data set is X ′ = {x′} with x′ = 0. Again,
we apply the Laplacian mechanism (adding noise Lap(1/ε)) and return a value s ∈ R (it may be negative.
Now lets check what confidence is if the item is there r = 1.

Pr[s = 1]

Pr[s′ = 1]
=

exp(|1− 1|/(1/ε))
exp(|0− 1|/(1/ε))

= exp(ε(|0| − |1|)) = exp(ε).

Binary database example. Now lets consider that we have a larger data set X = {x1, x2, . . . , xn}, where
each xj = {0, 1} indicating if the jth person has cancer (xj = 1) or not (xj = 0). We apply the Laplacian
mechanism on each point to get S = {sj = xi + Lap(1/ε)}. If there query is does a certain person have
cancer, the calculation is the same as in the binary example.

But now we can ask more complicated queries. We can ask in an interval range I = [a, b] so I ∩ X =
{xa, xa+1, . . . , xn}, how many people in this interval range have cancer qI(X) =

∑
j∈I xi.

Only asking the query on the data structure S, we could just return qI(S) = |I ∩X|+Lap(1/ε). On each
query, if there is another database X ′ that swaps one bit xi, then by the same calculation

Pr[
∑

i∈I si = r]

Pr[
∑

i∈I s
′
i = r]

=
exp(|

∑
i∈I xi − r|ε)

exp(|
∑

i∈I x
′
i − r|ε)

= exp(|
∑
i∈I

xi−r|ε−|
∑
i∈I

x′i−r|ε) ≤ exp(ε(|
∑
i∈I

xi−
∑
i∈I

x′i|) ≤ exp(ε).

But we must store this noise, since if it was independently applied to each instance of the query, they could
ask over and over again, and take the average.

Also dangerously, even if we did store noise, we could ask multiple queries for intervals I = [a, b] and
for I ′ = [a, b − 1], then subtracting qI(S) − qI′(S) we can an estimate for qb(S). We can then repeat this
for other intervals that only differ on b to get more estimates, and aggregate them to improve our knowledge
of b – getting less than ε-DP.

Alternatively, they could combine queries in sum so qI(S) =
∑

i∈I q(i). We need to be able to apply
Lap(1/ε) to each query, otherwise they could use just the result to q(i) to determine xi. But then applying
Lap(1/ε) to each xi, the answer becomes

qI(S) =
∑
i∈I

(xi + Lap(1/ε)) ∈ q(X) + |I| exp(ε),

which is |I| times more error than we would like. If the interval is size |I| = n (or nearly as large), then this
would give n exp(ε) error. Its not quite so bad since the error concentrates, so using linearity of variance,
we can argue that the total error acts like

√
n exp(ε), but still fairly large.

Can we achieve much less dependence on n for interval queries, while still achieving ε-DP? It turns out,
Yes!

Build a binary tree on X , so each node j of the binary tree corresponds to an interval Ij query. For each
node we can store additional data sj = qIj + Lap(1/ε). This is still linear space in n. Now any query
interval I can be composed as the disjoint union of at most 2 log n disjoint intervals J = {Ij} defined by
subtrees. We can then use the data structure S to compose queries as

qI(S) =
∑
Ij∈J

q(si) =
∑
Ij∈J

[|Ij ∩ x|+ Lap(1/ε)] = |I ∩ x|+
√
|J |Lap(1/ε) ≤

√
2 log n exp(ε),

and this still achieves ε-DP on each interval query.
Note: now there are only logarithmic ways to estimate a value by the subtraction of two queries. Thus we

can scale ε by 1/ log(1/ε) and prevent this attack. It only adds one additional logarithmic factor.
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Big Picture. The final picture should be clear.

More noise implies that data is more private, but less informative.

The underlying hypothesis, is that if you are trying to learn a model, you should want your model to be
robust. If it is robust, then adding removing a small amount of low-level noise should hopefully not affect
the result. Then you should be able to apply differential privacy to hide individual elements without spoiling
the global analysis.

It is currently the subject of active research to understand the effective of this trade-off, and when and
how this can be made practical and useful.
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