
19 Feature Selection

Feature selection in the high-dimensional setting (let X ⊂ Rn×d) has the goal of selecting the most useful
subset of columns of X . The important question is ”useful for what”?

We already saw the column sampling approach (called row sampling in our context there) to solving the
column subset selection problem. This attempts to find the subset of columns that best capture the variance in
the data, specifically the best rank-k subspace. While norm sampling (selecting proportional to the squared
norm of the columns), the better answer is selecting according to the leverage score.

For this lecturing we will more naturally define ”useful for what” in the context of regression. Now each
row xi ∈ X is paired with a real label yi ∈ R. The linear regression problem seeks to find an α ∈ Rd so
that 〈xi, α〉 ≈ yi. [Sometimes this is written with a learned constant offset, but this can be incorporated into
this setting, but adding a 1 coordinate to each xi.] The least squared linear regression specifically asks for
the choice of α that minimizes

L(α;X, y) =
n∑
i=1

(yi − 〈x, α〉)2 = ‖Xα− y‖2.

And this has a closed form solution

α = (XTX)−1XT y. (19.1)

Notably, this will almost always given a solution α that is non-zero in all coordinates. This means that
each coordinate has some importance in this optimal least-squared prediction. So how do we choose which
is best?

The answer is not so easy. But in this setting, at least we can provide some formalization to study it. We
will provide:

• a formulation, called Lasso, that explains (under some assumptions) the best set of k coordinates

• an algorithm towards solving Lasso iteratively, Orthogonal Matching Pursuit.

• Discussion on ”featurization” which, explains how to get to this formulation from non-Euclidean
inputs

The hope is that these aspects together give insight into the way that this sort of approach can be solved
more generally, and the troubling aspects of trying to draw too many conclusions from it.

Other elements to this story are left in the notes for historical reasons.

19.1 Regularization
By the Gauss-Markov Theorem, that (19.1) is the minimum variance (least squares) solution to the problem
with P given that it is unbiased. However, it may be advantageous to bias towards a small slope solution.

This models the residual as only in the y direction, and thus implicitly assumes that the X coordinates
have no error. Thus when noise happens, it happens in the y-coordinate, and we want to minimize the effect
of this. To do so, we can “regress to the mean.”

1

Example: Consider a hard TRUE-FALSE test. Each student knows some fraction of the answers (say 50%
of them) and guess on the rest. The expected score is 75%. Say this was the case for 100 students, and
we took the 10 students who scored the best; say their average score was 80%. If we gave these same 10
students another similar test (still TRUE-FALSE, and they know half, guess half), then what is going to be
their expected score: 75%. That is we expect them to regress towards the mean!

So in linear regression, we expect that y-values will not be as wild in this observed data as it would be if
we observed new data. So we want to give a prediction that made more extreme data have less affect. These
solutions can have overall less variance, but do not have 0 bias.

Another view is that we have a prior (as in Bayesian statistics), say of weight s/(s + n), that the mean
value of the y-coordinates is correct. So we don’t want to entirely use the raw data.

Tikhonov regularization. To this end, we can change the loss function, that which was measuring the
error of our solution α. The Tikhonov regularization for a parameter s ≥ 0 finds

argmin
α
‖Xα− y‖2 + s‖α‖2. (19.2)

This is also known as ridge regression. Magically, this can be solved just as easily as least squares by setting

αs = (XTX + s2)−1XT y.

19.1.1 Lasso
An alternative approach (the focus here) will be a bit more complicated to solve, but has a couple of other
very nice properties. It is called the Lasso, or alternatively basis pursuit; for a parameter s ≥ 0 it finds

argmin
α
‖Xα− y‖2 + s‖α‖1. (19.3)

Note that the only difference is that it has an L1 norm on the ‖α‖ instead of the L2 norm in ridge regression.
This also prevents the simple matrix-inverse solution of ridge regression. However it will have two other
very nice properties:

• In high dimensions, it will bias towards sparse solutions

• It forces one to consider multiple values of s, and hopefully choose a reasonable one.

A formal way to solve for Lasso solution (in fact all solutions) is called Least Angle Regression, and is
documented below. But a simpler approach (with weaker guarantees), OMP, is more heavily used.

Hard versus soft constraint. The first insight is that instead of (19.3) it is equivalent to solve

argmin
α
‖Xα− y‖22 such that ‖α‖1 ≤ t. (19.4)

for some parameter t. Note that we have replaced the parameter s with another one t. For any value of s and
solution αs to (19.3), there is a value t that provides an identical solution αt to (19.5). To see this, solve for
αs, and then set t = ‖αs‖1.

Moreover, for any choice of k ∈ [0, d] number of desired non-zero coordinates, we can find values of s
(or equivalently, of t), so that there are k non-zero coordinates. For instance, by binary search – although
algorithms below will give more direct approaches.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Units. While non-regularized regression is does not care about units (since the choice of α cancels out the
units), the regularized regression does! If xi = (weight in lbs, height in inches, age in years) then α1 has
units 1/lbs, α2 has units 1/inches, and α3 has units 1/years. Then the dot product is a unit-less calculation.
However, then ‖α‖1 adds up those 1/unit values, and so this operation does not make sense.

A common approach is then to first normalize the coordinates, so each coordinate does not have units,
and thus the same for α. The two common approaches are:

• standardize / normalize: so each variable has mean 0 and variance 1. Mean 0 is accomplished by
centering the data. Variance 1 is accomplished by then computing the variance (the σ2i = ‖Xi‖2), and
dividing all values by σ2i .

• 0-1 normalize: so each variable is in range [0, 1]. First find smallest value, and subtract it from all
values. Then find largest value, and divide all values by it.

These do not solve the issue of mixed units, but they do tend to help. Challenges are:

• If we observe more data, the way we normalize changes.

• Outliers might have a large effect on the scaling.

• If columns are co-linear (eg., height and weight are correlated), then they have accumulated their
effect on a distance. Whereas independent values (e.g., income) will not be correlated, and could
have.

Interpretation. So given a regression solution α, can we know which coordinates are the most important?
In general: NO!!
While this might work, it is dangerous, and may lead to false conclusions!

Why is this?

• The units in regular regression may affect which αi coefficient is largest.

• If we normalize first, there may be co-linear coordinates that affect the scale. Only one may be
“causal” and the other may be nuisance – how can we know which is which? In reality, probably
both are nuisance, and correlated with something else causal – we measure what we can measure, not
necessarily what drives the mechanism.

• If we consider the k non-zero Lasso coefficients, there may be a disjoint set of k coordinates with
almost as much predictive power. In fact (by inspecting the Least Angle Regression algorithm), there
may be two or more distinct sets of k coefficients which provide a Lasso solution for different values
of s, t.

• If we use OMP (see below) we may have greedily picked the wrong first choice.

In general, I am not convinced (in general) much can be interpreted from coordinates of linear regression.
There are methods like Shapely Values that attempt to isolate these effects. They do sometimes work, but
are not always conclusive – there are other more subtle challenges.

19.1.2 Orthogonal Matching Pursuit
Orthogonal Matching Pursuit (OMP) is a greedy algorithm to solving Lasso (or other regression problems).
Here it is sometimes called forward subset selection. This may be slightly easier to implement, but will not
provide the optimal solution and allows one to cherry-pick a value s.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 19.1.1 Orthogonal Matching Pursuit
Set r = y; and αj = 0 for all j ∈ [d].
for i = 1 to t do

Set Xj = argmaxXj′∈X |〈r,Xj′〉|.
Set αj = argminγ ‖r −Xjγ‖2 + s|γ|.
Set r = r −Xjαj .

Return α.

k↵k2

k↵k1

t

↵ with Lasso

↵ with Tikhonov

↵ with LS

Figure 19.1: Radius t ball under L1 and L2, and the results of Lasso and Tikhonov regularization.

19.2 Least Angles Regression
The first insight is that instead of (19.3) it is equivalent to solve

argmin
α
‖Xα− y‖22 such that ‖α‖1 ≤ t. (19.5)

for some parameter t. Note that we have replaced the parameter s with another one t. For any value of s and
solution αs to (19.3), there is a value t that provides an identical solution αt to (19.5). To see this, solve for
αs, and then set t = ‖αs‖1.

This same dual version exists for ridge regression as well. Why is this useful?

Sparsity. This biases solutions to have 0 along many of the coordinates αj . This is illustrated in Figure
19.1 where the Lasso solution for α is restricted to lie within an L1 ball of radius t, but otherwise be as
close to y as possible. The least squares solution is the best possible fit for A. We can see the extra L2 error
around this solution which is minimized with respect lying in a radius t L1 ball for Lasso or L2 ball for
Tikhonov regularization.

Note that the L1 ball has “pointy” corners, and thus bias solutions for α towards these corners. The
corners have some coordinate of α as 0. In higher dimensions, this L1 ball has even more corners, and they
play an even more prominent role in the solutions to these minimization problems.

As t becomes smaller, it is more and more likely that the solution to α is found on a higher-degree corner.
But also the solution found becomes further and further away from the least squares solution. If we set
t = ∞ then the Lasso (and Tikhonov) solution is the least squares solution. How do we balance these
aspects?

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Increasing t. As we increase t (our coefficient budget), then we allow some αj to increase. If we start
with t = 0, then all aj = 0. Now using the (piecewise-) linear equation t =

∑d
j=1 |αj | and

r(t) = y −
d∑
j=1

Xjaj(t).

The goal is to minimize ‖r(t)‖, and we note that changing some αj have more effect on r(t) than others.
First find, j1 = argmaxj |〈Xj , r〉|. This is the coordinate with maximum influence on r(t). We vary

this first and set αj1(t) = αj · t. We now increase t, while only varying αj (as specified) until some other
coordinate is worth increasing.

Next find j2 such that j2 6= j1 and has

|〈Xj1 , r(t)〉| = |〈Xj2 , r(t)〉|.
We can solve for the value t at which this will happen for each j 6= j1 since the above is a linear equation in
t. The index j2 is selected in that it has the smallest value t2 at which this equality happens. This is the first
time that (19.5) is minimized with 2 non-zero coefficients. The next step is to reset the correlations (via the
first derivatives) such that |b1|+ |b2| = 1 as

αj1(t) = αj−1(t2) + (t− t2)b1 for t ≥ 0

αj2(t) = (t− t2)b2 for t ≥ t2.
This implies that as t increase, the optimal choice in αj is linear in t with slopes defined by b1, b2, . . .

We continue this, in each ith step finding a time ti at which increasing some coefficient αji will have
|〈Xji , r(ti)〉| = |〈XJ , r(ti)〉| where J is the set of indices we are tracking and XJ is the subset of columns
of X corresponding to those indices. Then we add this ji to J , update r(t) for t ≥ ti, and recompute
the derivatives b1, . . . , bi, and find the next value ti+1 and so on. See Algorithm 19.2.1 for a more formal
description of the algorithm.

Algorithm 19.2.1 Least Angle Regression
Set αj = 0, bj = 0 for all j ∈ [d].
Set j1 = argmaxj |〈Xj , r(0)〉|; bj1 = 1; and J = {j1}.
Set r(t) = y −∑d

j=1Xjαj(t) where αj(t) = bj · t. αj1(t) = t, otherwise αj(t) = 0 for j 6= j1
for i = 2 to n do

for all j /∈ J do
Find τj > t such that |〈Xj , r(t)〉| = |〈Xj1 , r(t)〉| Note: all j ∈ J have same |〈Xj , r(t)〉|

Set ti = min τj and ji = argminj τj ; J = J ∪ ji.
Solve for bj for all j ∈ J such that

∑
j∈J |bj | = 1. Take derivatives of |〈Xj , r(t)〉| and normalize

For t ≥ ti redefine r(t) = y −∑d
i=1Xjaj(t) where αj(t) = αj(ti) + (t− ti)bj .

Return α(t) when its cross-validation score is smallest.

So in the process we have solved the optimal choice of α for each value t (and hence each value s). We
can choose the best one with cross-validation where we leave out some data and evaluate how well the
model works on that data (more later). We can maintain this estimate and solve for the minimum (since we
have all linear equations) along the way.

There is a variant of this algorithm where we may want to snap values αj to 0 even if j ∈ J . This happens
since initially bj may be positive, but as J increases, it may become negative. Then when αj hits 0, we
remove it from J (this can time can be treated as its τj value.). Then we can later re-add it to J . This is
needed to get the optimal solution for any t. Is a little more work, but could require an exponential number
of steps.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

19.3 Featurization
To build a linear regression model, or most models in machine learning or data mining, one typically needs
the data to have formX ⊂ Rd. With this setting, even without the same units on different columns/variables,
one can invoke distance metric learning tricks to convert to such a setting; but this either needs to start with
X ⊂ Rd or already some distance d that is trusted. For many initial data sets, this is not the case.

For different types of fields, there are different mechanisms for transforming into Euclidean.

Text field. If there are individual words, one can use word vector embedding to get a multi-dimensional
embeddings (e.g., Word2Vec, GloVe). Yes, these are high-dimensional, but we can try to reduce dimension
later if needed.

If the text is longer, then mechanisms like SBert, can give better embeddings that recognize the entire
context.

Ordinal data. Data is ordinal if it has discrete values, but there is a clear order. Examples include

• grades: A > A− > B+ > B > B− > C+ > C...

• education levels: elementary, middle school, high school, trade school, college degree, MS, PhD

While there are more complicated approaches, the simple and easy solution is just to assign them integer
values that encode the ordering. E.g., A = 10, A-= 9, B+ = 8, ...

Categorical Data. This data are ones that have no clear order, like gender, or which high school someone
attended, or a choice from the menu of a restaurant.

The simplest way to encode this is one-hot encoding where each object gets its own dimension. So one
coordinate that has options for eye color: brown, blue, green. This is mapped to a 3-dimensional vector so
brown is (1, 0, 0), blue is (0, 1, 0), and green is (0, 0, 1). So the mapping puts a 1 in the new coordinate that
corresponds with the trait, and 0 in all others.
This can be a bit strange to take the average of such coordinates, and it can turn low-dimensional data
into very high-dimensional data (e.g., a menu may have many items on it!). But this is the most common
approach here.

Another data-driven approach is to use other coordinates which have real values. Either choose a mean-
ingful one, or (after adjusting for units’ co-linearity in an appropriate way) take the top principal component.
Either gives a one-dimensional setting; define it by a unit vector v. Now for all of the data points with a
certain categorical value j, let µj be the average value all this data along v. Now sort categories j along
direction v, and use this as a continuous coordinate in place of the category.
This has the advantage that it does not blow up the dimension, and may find a meaningful order. However,
it may jumble up different categories to be almost the same – when they are not. And it is data dependent,
so as data changes, so would this embedding.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

