16 Matrix Sketching

The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an
(n x d) matrix A (or n points in R%). Typically n > d. It is typically easy to call a built in version of the
SVD in many programming languages

[U,S,V] = svd(A)

where U = [u, ..., u,], S = diag(c1,...,04),and V = [v1,...,v4). Then A = USVT and in particular

A= 2?21 ajujva. To approximate A we just use the first £ components to find Ay, = Z?Zl ojujv;r =
UkSkaT where Uy = [uy,...,ug], Sy = diag(o1,...,04), and Vi, = [v1,...,v;]7. Then the vectors v}

(starting with smaller indexes) provide the best subspace representation of A.

But, although SVD has been heavily optimized on data sets that fit in memory (via LAPACK, found in
Matlab; Python in SciPy; C++ in Armadillo, and just about every other language), it can sometimes be
improved. The traditional SVD takes O(min{nd?, n?d}) time to compute, which can be prohibitive for
large n and/or d. Here we highlight two of these ways:

e to provide better interpretability of each v;.

e to be more efficient on enormous scale, in a stream, or in distributed settings.

16.0.1 Covariance Matrix Summation

The first regime we focus on is when n is extremely large, but d is moderate. For instance n = 100 million,
and d = 100. The a simple approach in a stream is to make one pass using d> space, and just maintain the
sum of outer products C' = >, aial’, the d x d covariance matrix of A exactly.

Algorithm 16.0.1 Summed Covariance
Set C' all zeros (d x d) matrix.
for rows (i.e. points) a; € A do
cC=C+ aiaiT
return C

We have that at any point 4 in the stream, where A; = [a;; ag; . . ., a;], the maintained matrix C' is precisely
C= AiAiT. Thus the eigenvectors of C' are the right singular vectors of A, and the eigenvalues of C' are the
squared singular values of C. This only requires d? space, and nd? total time, and incurs no error.

We can choose the top & eigenvectors of C' as V};, and on a second pass of the data, project all vectors on
a; onto Vj, to obtain the best k-dimensional embedding of the dataset.

16.1 Frequent Directions

The next regime assumes that n is extremely large (say n = 100 million), but that d is also uncomfortably
large (say d = 100 thousand), and our goal is something like a best rank k-approximation with k£ ~ 10. So
k < d < n. In this regime perhaps d is so large that d? space is too much, but something close to dk space
and ndk time is reasonable. We will not be able to solve things exactly in the streaming setting under these
constraints, but we can provide a provable approximation with slightly more space and time.

This approach, called Frequent Directions, can be viewed as an extension of the Misra-Gries sketch. We
will consider a matrix A one row (one point a; € R%) at a time. We will maintain a matrix B that is 2¢ x d,

that is it only has 2¢ rows (directions). We say a row of B is empty if it contains all Os. We maintain that
one row of B is always empty at the end of each round (this will always include the last row Boy).

We initialize with the first 2¢ — 1 rows a; of A as B, again with the last row By left as all zeros. Then
on each new row, we put a; in the empty row of B. We set [U,S,V] = svd(B). Now examine S =
diag(oy, .. .,09¢), which is a length 2¢ diagonal matrix. If o9y = 0 (then a; is in the subspace of B), do

nothing. Otherwise subtract § = ag from each (squared) entry in .S, that is a} = ,/max{0, 0'32- — ¢} and in

general S" = diag(\/0? — 0, /03 — 6,...,yJo? 1 —0,0,...,0).

Now we set B = S'VT. Notice, that since S’ only has non-zero elements in the first £ — 1 entries on the
diagonal, then B is at most rank £ — 1 and we can then treat V and B as if the th row does not exist.

Algorithm 16.1.1 Frequent Directions
Set B all zeros (2¢ x d) matrix.
for rows (i.e. points) a; € A do
Insert a; into a zero-valued row of B
if (B has no zero-valued rows) then
[U,S,V] = svd(B)

Set §; = o} # the (th entry of S

Set 8" = diag (/0T = 8,\/aF —0,...,\ [0} | — 6,0,...,0).

Set B=S'VT # the last rows of B will again be all zeros
return B

The result of Algorithm 16.1.1 is a matrix B such that for any (direction) unit vector 2 € R¢
0 < [[Az[* — || Bz|* < [|A - Apl|F/(¢ — k)

and

14
IA — Allg, |IF < 7— 114 — Akl
-k
for any k < ¢, including when k& = 0. So setting £ = 1/, then in any direction in R, the squared mass in
that direction is preserved up to || A||% (that is, ¢ times the total squared mass) using the first bound. And
in the second bound if we set ¢ = [k/e + k] then we have |4 — Allp, ||% < (1 +¢)||4A — Ag||%. Recall

that |A|[p = /> 0.ca llaill?

e Why does this work?
Just like with Misra-Greis, when some mass is deleted from one counter it is deleted from all ¢
counters, and none can be negative. So here when one direction has its (squared) mass decreased, at
least ¢ directions (with non-zero squared mass) are decreased by the same amount. So no direction
can have more than 1// fraction of the total squared mass || A||% decreased from it.

Finally, since squared mass can be summed independently along any set of orthogonal directions, we
can subtract each of them without affecting others.

o Why do we use the svd?
The SVD defines the true axis of the ellipse associated with the norm of B at each step. If we shrink
along an basis (or even a set of non-orthogonal vectors) we will warp the ball, and we will not be able
to ensure that each direction of B shrinks in squared norm by at most ¢;.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

e Did we need to use the svd? (its expensive, right)?
The cost is amortized. We only call the svd once every ¢ steps, so at most O(n/¢) times. Since each
call takes O(d¢?) time, the total cost is O(ndl), or only ¢ times as long as reading the matrix.
It is also possible to call approximate versions of the SVD. This allows versions which have runtime
depending on the number of non-zeros in the input matrix. This makes a big difference for very sparse
word count or recommendation system matrices.

e What happened to U in the svd output?
The matrix U just related the main directions to each of the n points (rows) in A. But we don’t want
to keep around the space for this. In this application, we only care about the directions or subspace
that best represents the points; e.g. PCA only cares about the right singular vectors.

The Frequent Direction algorithm calls an SVD operation multiple times, so what it is useful to bound its
runtime to ensure it does not take much longer than a single decomposition of A, which would take time
proportional to nd?. In this case, the matrix B which has its SVD computed is only 2¢ x d, so this operation
can be performed in time proportional to only d¢?. We do this step every £ rows, so it occurs n /¢ times. In
total this takes time proportional to n/¢ - d¢?> = ndl. So when ¢ < d, (recall £ ~ k/¢) this is a substantial
decrease in running time. Moreover, it only requires 2¢d space, so it can perform these operations without
reading data from disk more than once.

16.2 Row Sampling

We next move to a regime where n and d are again both large, and so might be k. But a runtime of ndk may
be too large — that is we can read the data, but maybe a factor of % times reading the data is also large. The
next algorithms have runtime slightly more than nd, they are almost as fast as reading the data. In particular,
if there are nnz(A) non-zero entries in a very sparse matrix, and we only need to read these entries, then the
runtime is almost proportional to nnz(A).

The goal is to approximate A up to the accuracy of Ay. Butin Ay the directions v; are linear combinations
of features.

e What is a linear combination of genes?

e What is a linear combination of typical grocery purchases?

Instead our goal is to choose V' so that the columns of V' are also columns of A.

For each row of a; € A, set w; = ||a;||?. Then select t = (k/e)? - log(1/J) rows of A, each proportional
to w; (recall weighted random sampling in a stream). Let R be the “stacking” of these rows.

These ¢ rows will jointly act in place of VkT. However since V' was orthogonal, then the columns v;, v; €
Vi were orthogonal. This is not the case for R, we need to orthogonalize R. Let Iz = RT(RRT)™'R
be the projection matrix for R, so that A = Allr describes the projection of A onto the subspace of the
directions spanned by R. Now

A= Allg[lr < ||A = AkllF + <l AllF
with probability at least 1 — .

o Why did we not just choose the t rows of A with the largest w; values?
Some may point along the same “direction” and would be repetitive. This should remind you of the
choice to run k-means++ versus the Gonzalez algorithm for greedy point-assignment clustering.

o Why did we not factor out the directions we already picked?
We could, but this allows us to run this in a streaming setting. (See next approach)

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

e But AllR could be rank t, can we get it rank k < t?
Yes, you can take its best rank k& approximation [IIz A]; and about the same bounds hold, you may
need to increase ¢ slightly.

o Can we get a better error bound?
Yes. First take SVD [U, S, V]| = svd(A) and let Uy, be the top k left singular vectors. Let Uy (i) be
the ith row of Uy. Now the leverage score of data point a; is ¢; = ||Uy(i)||?. Using the leverage scores
as weights w; = ¢; allows one to achieve stronger bounds

A = Allg[|r < (1 +&)[|A = Akl p-

But this requires us to first take the SVD (or other time-consuming procedures), so its is harder to
do in a stream; although it is possible to get good enough approximations of the leverage scores. In
many cases, these approaches do not seem to provide tangible benefits over the faster ||a; ||*-weighted
sampling.

o Can we also sample columns this way?
Yes. All tricks can be run on A7 the same way (in fact most of the literature talks about sampling
columns instead of rows). And, both approaches can be combined. This is known as the CUR-
decomposition of A.

A significant downside of these row sampling approaches is that the (1/c2) coefficient can be quite large
for a small error tolerance. If ¢ = 0.01, meaning 1% error, then this part of the coefficient alone is 10,000.
In practice, the results may be better, but for guarantees, this may only work on very enormous matrices.

16.3 Projection and Count Sketch

Stronger guarantees can be obtained through random projection-based sketches (see next lecture). The start-
ing point is a random projection matrix S € R**" that maps A to a £ x d matrix B = SA. As with the
random projections approach, each element S; ; of S is drawn iid S; ; ~ N - \/W from a normal distribu-
tion. That is, each row s; of S is a n-dimensional Gaussian random variable ~ G,,, properly normalized.

Using ¢ =~ k/e columns in S yields the rank-k approximation result, with a few linear algebra steps. First
let V € R?*? be the orthogonal basis defined by the right singular vectors of B = SA. Then let [AV];, be
the best rank-k approximation of AV, found using the SVD. Ultimately, we have

1A = [AVIV|F < (1 +)| A= Axlr.

A factorized form (like the output of the SVD) can be computed for the product [AV]; V7T in time which
scales linearly in the matrix size nd, and polynomially in ¢ = k/e.

Moreover, this preserves a stronger bound, called an oblivious subspace embedding, using ¢ ~ d/e? so,
for all z € R¢

[Az|
(1-¢)< < (1+e).
| B]]
This is a very strong bound that also ensures that given a matrix A of d-dimensional explanatory variables,
and a vector b of dependent variables, then the result of linear regression on SA and Sb provides a (1 £ ¢)
approximation to the result on the full A and b.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Count Sketch Hashing for Sparse Matrices

By increasing the size of the sketch to £ ~ k? + k/e for the rank-k approximation result, or to £ ~ d? /&
for the oblivious subspace embedding result, then a faster count sketch based approach can be used. In this
approach S has each column S; as all Os, except for one randomly chosen entry (this can be viewed as a
hash to a row of B) that is either —1 or 41 at random. This works just like a count sketch but for matrices.

The runtime of these count-sketch approaches becomes proportional to nnz(A), the number of non-zeros
in A. For very sparse data, such as those generated from bag-of-word approaches, this is as fast as only
reading the few relevant entries of the data. Each row is now randomly accumulated onto one row of the
output sketch B instead of onto all rows as when using the Gaussian random variables approach. However,
this sketch B is not as interpretable as the row selection methods, and in practice for the same space often
works a bit worse (due to extra factors necessary for the concentration of measure bounds to kick in) than
the Frequent Directions approach.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

