
13 Frequency Approximation

A core mining problem is to find items that occur more than one would expect. These may be called outliers,
anomalies, or other terms. Statistical models can be layered on top of or underneath these notions.

We begin with a very simple problem. There are m elements and they come from a domain [n] (but both
m and n might be very large, and we don’t want to use Ω(m) or Ω(n) space). Some items in the domain
occur more than once, and we want to find the items which occur the most frequently.

If we can keep a counter for each item in the domain, this is easy. But we will assume n is huge (like all
possible IP addresses), and m is also huge, the number of packets passing through a router in a day.

13.1 Streaming
Recall that streaming is a model of computation that emphasizes space over all else. The goal is to compute
something using as little storage space as possible. So much so that we cannot even store the input. Typically,
you get to read the data once, you can then store something about the data, and then let it go forever! Or
sometimes, less dramatically, you can make 2 or more passes on the data.

Formally, there is a stream A = 〈a1, a2, . . . , am〉 of m items where (for this lecture) each ai ∈ [n]. This
means, the size of each ai is about log n (to represent which element), and just to count how many items
you have seen requires space logm (although if you allow approximations you can reduce this). Unless
otherwise specified, log is used to represent log2 that is the base-2 logarithm. The goal is to compute a
summary SA using space that is only poly(log n, logm).

Let fj = |{ai ∈ A | ai = j}| represent the number of items in the stream that have value j. Let

F1 =
∑

j fj = m be the total number of elements seen. Let F2 =
√∑

j f
2
j be the sum of squares of

elements counts, squarerooted. Let F0 =
∑

j f
0
j be the number of distinct elements.

13.1.1 Heavy Hitters
Consider the motivation of a streaming algorithm running on an internet router. It seems packets, which
each include a destination IP address, a source IP address, and some data. There are a huge number n = 216

IP addresses, and also a huge number of packets m every hour or day.
A distributed denial of service (DDS) attach happens when many machines send packets to the same IP

address, overwhelming the machine at that destination address, and effectively shutting it down. If we can
detect this at the router level, we can block traffic before it gets to the destination machine. To do this,
we need to identify an IP address that is getting a large fraction of all internet traffic (say more than 5%;
φ = 0.05); these are often called the heavy-hitters.

But it requires too much space to store a counter for each IP address, and we cannot store all packets.
How do we keep track of the very frequent items without too much space?

13.2 Majority
One of the most basic streaming problems is as follows:

MAJORITY: if some fj > m/2, output j. Otherwise, output anything.
How can we do this with log n+ logm space (one counter c, and one location `)?
Answer: Maintaining that single label and counter, do the only thing feasible. If you see a new item with

same label, increment the counter. If the label is different, decrement the counter. If the counter reaches

1

zero and you see a new element, replace the label, and set the counter to 1. The pseudocode is in Algorithm
13.2.1.

Algorithm 13.2.1 Majority(A)
Set c = 0 and ` = ∅
for i = 1 to m do

if (ai = `) then
c = c+ 1

else
c = c− 1

if (c < 0) then
c = 1, ` = ai

return `

Why is Algorithm 13.2.1 correct? Consider the case where for some j ∈ [n] we have fj > m/2, the only
relevant case. Since then fj >

∑
j′ 6=j fj we can match each stream element with ai 6= j (a “bad element”)

to another element ai′ = j (a “good element”). If we chose the correct pairing (lets assume we did) then
either the good element decremented the counter when the label was not j, or the bad element decremented
the counter when the label was j. This results in a net 0 change in the counter for each pair. Its also possible
that a bad element decremented the counter when the label was not equal to j, but this will only help. After
this cancelation, there must still be unpaired good elements, and since then the label would need to be ` = j
or the counter c = 0, they always end their turn with ` = j and the counter incremented. Thus after seeing
all stream elements, we must terminate with ` = j and c > 0.

13.3 Misra-Gries Algorithm for Heavy Hitters
Now we generalize the MAJORITY problem to something much more useful.
k-FREQUENCY-ESTIMATION: Build a data structure S. For any j ∈ [n] we can return S(j) = f̂j such

that
fj −m/k ≤ f̂j ≤ fj .

From another view, a φ-heavy hitter is an element j ∈ [n] such that fj > φm. We want to build a data
structure for ε-approximate φ-heavy hitters so that it returns

• all fj such that fj > φm

• no fj such that fj < φm− εm
• (any fj such that φm− εm ≤ fj < φm can be returned, but might not be).

13.3.1 Misra-Gries Algorithm
[Misra+Gries 1982] Solves k-FREQUENCY-ESTIMATION in k(logm+ log n) space.

The trick is to run the MAJORITY algorithm, but with (k − 1) counters instead of 1. Let C be an array of
(k − 1) counters C[1], C[2], . . . , C[k − 1]. Let L be an array of (k − 1) locations L[1], L[2], . . . , L[k − 1].

• If we see a stream element that matches a label, we increment the associated counter.
• If not, and a counter is 0, we can reassign the associated label, and increment the counter.
• Finally, if all counters are non-zero, and no labels match, then we decrement all counters.

Psuedocode is provided in Algorithm 13.3.1.
Then on a query q ∈ [n] to C,L, if q ∈ L (specifically L[j] = q), then return f̂q = C[j]. Otherwise return

f̂q = 0.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 13.3.1 Misra-Gries(A)
Set all C[i] = 0 and all L[i] = ∅
for i = 1 to m do

if (ai = L[j]) then
C[j] = C[j] + 1

else
if (some C[j] = 0) then

Set L[j] = ai & C[j] = 1
else

for j ∈ [k − 1] do C[j] = C[j]− 1
return C, L

Analysis: Why is Algorithm 13.3.1 correct?

• A counter C[j] representing L[j] = q is only incremented if ai = q, so we always have

f̂q ≤ fq.

• If a counterC[j] representingL[j] = q is decremented, then k−2 other counters are also decremented,
and the current item’s count is not recorded. This happens at most m/k times: since each decrement
destroys the record of k objects, and since there are m objects total. Thus a counter C[j] representing
L[j] = q is decremented at most m/k times. Thus

fq −m/k ≤ f̂q.

We can now apply this to get an additive ε-approximate FREQUENCY-ESTIMATION by setting k = 1/ε.
We return f̂q such that

|fq − f̂q| ≤ εm.

Or we can set k = 2/ε and return C[j] + (m/k)/2 to make error on both sides.
Space is (1/ε)(logm+ log n), since there are (1/ε) counters and locations.

13.4 Count-Min Sketch
In contrast to the Misra-Gries algorithm, we describe a completely different way to solve the HEAVY-
HITTER problem. It is called the Count-Min Sketch [Cormode + Muthukrishnan 2005].

Start with t independent (random) hash functions {h1, . . . , ht} where each hh : [n]→ [k].
Now we store a 2d array of counters for t = log(1/δ) and k = 2/ε:

h1 C1,1 C1,2 . . . C1,k

h2 C2,1 C2,2 . . . C2,k

.
ht Ct,1 Ct,2 . . . Ct,k

After running Algorithm 13.4.1 on a stream A, then on a query q ∈ [n] we can return

f̂q = min
j∈[t]

Cj,hj(q).

This is why it is called a count-min sketch.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 13.4.1 Count-Min(A)
Set all Ci,j = 0
for i = 1 to m do

for j = 1 to t do
Cj,hj(ai) = Cj,hj(ai) + 1

Analysis: Clearly fq ≤ f̂q since each counter has everything for q, but may also have other stuff (on hash
collisions).

Next we claim that f̂q ≤ fq +W for some over count value W . So how large is W ?
Consider just one hash function hi. It adds to W when there is a collision hi(q) = hi(j). This happens

with probability 1/k.
So we can create a random variable Yi,j that represents the overcount caused on hi for q because of

element j ∈ [n]. That is, for each instance of j, it increments W by 1 with probability 1/k, and 0 otherwise.
Each instance of j has the same value hi(j), so we need to sum up all these counts. Thus

• Yi,j =

{
fj with probability 1/k

0 otherwise.

• E[Yi,j] = fj/k.

Then let Xi be another random variable defined

• Xi =
∑

j∈[n],j 6=q Yi,j , and

• E[Xi] = E[
∑

j 6=q Yi,j] =
∑

j 6=q fj/k = F1/k = εF1/2.

Now we recall the Markov Inequality. For a random variable X and a value α > 0, then Pr[|X| ≥ α] ≤
E[|X|]/α. Since Xi > 0, then |Xi| = Xi, and set α = εF1. And note E[|X|]/α = (εF1/2)/(εF1) = 1/2.
It follows that

Pr[Xi ≥ εF1] ≤ 1/2.

But this was for just one hash function hi. Now we extend this to t independent hash functions:

Pr[f̂q − fq ≥ εF1] = Pr[min
i
Xi ≥ εF1] = Pr[∀i∈[t](Xi ≥ εF1)]

=
∏
i∈[t]

Pr[Xi ≥ εF1] ≤ 1/2t = δ,

since t = log(1/δ).
So that gives us a PAC bound. The Count-Min Sketch for any q has

fq ≤ f̂q ≤ fq + εF1

where the first inequality always holds, and the second holds with probability at least 1− δ.

Space. Since there are kt counters, and each require logm space, then the total counter space is kt logm.
But we also need to store t hash functions, these can be made to take log n space each. Then since
t = log(1/δ) and k = 2/ε it follows the overall total space is t(k logm + log n) = ((2/ε) logm +
log n) log(1/δ).

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Turnstile Model: There is a variation of streaming algorithms where each element ai ∈ A can either add
one or subtract one from corpus (like a turnstile at the entrance of a football game), but each count must
remain positive. This Count-Min has the same guarantees in the turnstile model, but Misra-Gries does not.

13.5 Count Sketch
A predecessor of the Count-Min Sketch is the so-called Count Sketch [Charikar+Chen+Farach-Colton 02].
Its structure is very similar to the Count-Min Sketch, it again maintains a 2d array of counters, but now with
for t = log(2/δ) and k = 4/ε2:

h1 C1,1 C1,2 . . . C1,k

h2 C2,1 C2,2 . . . C2,k

.
ht Ct,1 Ct,2 . . . Ct,k

In addition to the t hash functions hj : [n] → [k] it maintains t sign hash functions sj : [n] → {−1,+1}.
Then each hashed-to counter is incremented by sj(ai). So it might add 1 or subtract 1.

Algorithm 13.5.1 Count-Min Sketch(A)
Set all Ci,j = 0
for i = 1 to m do

for j = 1 to t do
Cj,hj(ai) = Cj,hj(ai) + sj(ai)

To query this sketch, it takes the median of all values, instead of the minimum.

f̂q = medianj∈[t]{Cj,hj
(q) · sj(q)}.

Unlike the biased Count-Min Sketch, the other items hashed to the same counter as the query are unbiased.
Half the time the values are added, and half the time they are subtracted. So then the median of all rows
provides a better estimate. This insures the following bound with probability at least 1− δ for all q ∈ [n]:

|fq − f̂q| ≤ εF2.

Note this required k = O(1/ε2) instead of O(1/ε), but usually the bound based on F2 =
√∑

j f
2
j is

much smaller than F1 =
∑

j fj , especially for skewed distributions. We will discuss so-called heavy-tailed
distributions later in the class.

13.6 A-Priori Algorithm
We now describe the A-Priori Algorithm for finding frequent item sets [Agrawal + Srikant 94]. The key
idea is that any itemset that occurs frequently together must have each item (or any subset) occur at least as
frequently.

First Pass. We first make one pass on all tuples, and keep a count for all n items. A hash table can be
used. We set a threshold ε and only keep items that occur at least εm times (that is in at least ε percent of
the tuples). For any frequent itemset that occurs in at least 100ε% of the tuples, must have each item also
occur in at least 100ε% of the tuples.

A reasonable choice of ε might be 0.01, so we only care about itemsets that occur in 1% of the tuples.
Consider that there are only n1 items above this threshold. For instance if the maximum tuple size is kmax

then we know n1 ≤ kmax/ε. For kmax = 80, and ε = 0.01, then n1 ≤ 8000, easily small enough to fit in
memory. Note this is independent of the n or m.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Second Pass. We now make a second pass over all tuples. On this pass we search for frequent pairs of
items, specifically, those items which occur in at least an ε-fraction of all tuples. Both items must have
been found in the first pass. So we need to consider only

(
n1

2

)
≈ n21/2 pairs of counters for these pairs of

elements.
After the pass, again we can then discard all pairs which occur less than an ε-fraction of all tuples. This

remaining set is likely far less than n21/2.
These remaining pairs are already quite interesting! They record all pairs that co-occur in more than an

ε-fraction of purchases, and of course include those pairs which occur together even more frequently.

Further Passes. On the ith pass we can find sets of i items that occur together frequently (above an ε-
threshold). For instance, on the third pass we only need to consider triples were all sub-pairs occur at least
an ε-fraction of times themselves. These triples can be found as follows:

Sort all pairs (p, q) by their smaller indexed item (w.l.o.g. let this be p). Then for each smaller indexed
item p, consider all completions of this pair q (e.g. a triple (p, q, r)). We only need to consider triples with
(p, q, r) where p < q < r. Now for each pair (q, r), check if the pair (p, r) also remains. Only triples
(p, q, r) which pass all of these tests are given counters in the third pass.

This can be generalized to checking only k conditions in the kth pass, and the remaining triples form a
lattice.

13.6.1 Example
Consider the following dataset where I want to find all itemsets that occur in at least 1/3 of all tuples (at
least 4 times):

T1 = {1, 2, 3, 4, 5}
T2 = {2, 6, 7, 9}
T3 = {1, 3, 5, 6}
T4 = {2, 6, 9}
T5 = {7, 8}
T6 = {1, 2, 6}
T7 = {0, 3, 5, 6}
T8 = {0, 2, 4}
T9 = {2, 4}
T10 = {6, 7, 9}
T11 = {3, 6, 9}
T12 = {6, 7, 8}

After the first pass 1 have the following counters:

0 1 2 3 4 5 6 7 8 9

2 3 5 4 3 3 8 4 2 4

So only n1 = 5 items survive {2, 3, 6, 7, 9}.
In pass 2 we consider

(
n1

2

)
= 10 pairs: {(2, 3), (2, 6), (2, 7), (2, 9), (3, 6), (3, 7), (3, 9), (6, 7), (6, 9), (7, 9)}.

And we find the following counts:

(2, 3) (2, 6) (2, 7) (2, 9) (3, 6) (3, 7) (3, 9) (6, 7) (6,9) (7, 9)

1 3 1 2 3 0 1 3 4 2

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

We find that the only itemset pair that occurs in at least 1/3 of all baskets is (6, 9).
Thus there can be no itemset triple (or larger grouping) which occurs in all 1/3 of all tuples since then all

of its pairs would need to be in 1/3 of all baskets, but there is only one such pair that satisfies that property.
We can now examine the association rules. And see that the count of item 6 is quite large 8, and is much

bigger than that of item 9 which is only 4. Since there are 4 pairs (6, 9), then every time 9 occurs, 6 also
occurs.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

