
12 Streaming and Sampling

The data stream model is one of the most surprisingly persistent settings to study data analysis. It simulta-
neously captures several important concepts while modeling an important realistic setting.

• It models time series data capturing important sequential nature of observations; and how this can
affect analysis or how that affect can be avoided.

• It reveals the core challenges of summarizing data, and what is possible to compute using a very small
amount of space.

• It is one of the simplest setting that captures important aspects of big data; e.g., when data is too big
to fit on one machine.

• It models important settings on the internet such as on a router or very busy website where one is
trying to stay on top of trends.

12.1 Streaming
Streaming is a model of computation that emphasizes space over all else. The goal is to compute something
using as little storage space as possible. So much so that we cannot even store the input. Typically, you get
to read the data once, you can then store something about the data, and then let it go forever! Or sometimes,
less dramatically, you can make 2 or more passes on the data.

Formally, there is a stream A = 〈a1, a2, . . . , am〉 of m items where (for this lecture) each ai ∈ [n]. This
means, the size of each ai is about log n (to represent which element), and just to count how many items
you have seen requires space logm (although if you allow approximations you can reduce this). Unless
otherwise specified, log is used to represent log2 that is the base-2 logarithm. The goal is to compute a
summary SA using space that is only poly(log n, logm).

12.1.1 Warm Up
Can we maintain the sum of items in a stream Sm =

∑m
i=1 ai?

Yes, just a single counter Si =
∑m

j=1; each observation we just increment. This takes O(log(mn)) space.
How about the average of items in the stream Vm = 1

m

∑m
i=1 ai?

Yes, but now we need to maintain two objects: the sum Sm, and also a counter Cm = m. Then we can
reconstruct Vm = Sm/Cm.

12.2 Sampling
The most universal and natural summary of a large data set X is a random sample S. There are two main
forms of random samples:

• with replacement random sampling means that each s ∈ S is drawn iid from X . It allows for two
s, s′ ∈ S to be the same item x ∈ X; so we can draw the same item twice. But the samples are
independent which makes it easier to analyze.

• without replacement random sampling which means that S is a subset of X , so if all x, x′ ∈ X
are distinct, then all s, s′ ∈ S are also distinct. We do not get the independence of the iid property;
however, these samples are better representatives of the full data sets X .

1

12.2.1 Reservoir Sampling
The more famous way to draw a single random sample from a set X is called reservoir sampling. It
keeps a single item s ∈ X as the reservoir as it scans over X . Assume X is stored as a sequence
〈x1, x2, . . . , xi, . . . , xn〉. When we consider xi, we keep xi with probability 1/i; if so it replaces s ← xi;
otherwise we keep s as it was before. It then handles xi+1 and so on.

Algorithm 12.2.1 Reservoir Sampling(X)
s← x1
for i = 2 to n do

Generate u ∼ Unif(0, 1]
if (u ≤ 1/i) then
s← xi

return s

At any point in the stream Xi = 〈x1, x2, . . . , xi〉, the maintained s is a uniform random sample from X .
It does not depend on stream order.

The argument is inductive. The first point x1 is initially kept with probability 1/1 = 1, so always. This
is the base case. Then x2 is kept with probability 1/2, and at that point x1 is also kept with probability 1/2.
Now inductively, at the start of processing the ith point, each item has been kept with probability 1/(i− 1).
The new item xi is kept with the correct probability 1/i. And each other item is kept with probability
1
i−1

i−1
i = 1

i – also the correct probability.
To get a with replacement random sample of size k, we can just maintain k independent reservoir samplers

in parallel.

12.2.2 Reservoir Sampling Without Replacement
To maintain k samples without replacement we can also extend reservoir sampling. We keep the first k items
(put in the reservoir). And then for item xi (with i > k) we put it in the reservoir with probability k/i; in
this case it kicks out a random item.

Algorithm 12.2.2 Reservoir Sampling(X, k)
S ← {x1, x2, . . . , xk}
for i = k + 1 to n do

Generate u ∼ Unif(0, 1]
if (u ≤ k/i) then

remove random s′ from S
Put xi into S

return S

By roughly the same inductive argument we can show that the set S is a without replacement uniform
random sample from X of size k. The first k points are kept deterministically as the base case. For the
inductive step, item xi is kept correctly with probability k/i. And all other items were in the reservoir with
probability k

i−1 and are selected to be replaced with probability k
i
1
k = 1

i . Hence they are still in the reservoir
after the step with probability k

i−1(1−
1
i) =

k
i as desired.

12.2.3 Weighted Random Sampling
In another important setting, each item xi comes with a weight wi of how important it is. We want to keep
an item xi with probability wi/Wi where Wi =

∑i
i=1wi.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Reservoir sampling extends naturally for 1 item; we maintain the sum Wi and item xi is kept with proba-
bility wi/Wi. It extends to the k with replacement version by keeping k such samplers in parallel.

12.2.4 Bottom-k Sampling
Another approach to sampling without replacement is bottom-k sampling. We assign each xi a uniform
ui ∼ Unif(0, 1]. Then we maintain the item with smallest ui value for one sample. To get k uniform random
samples, we keep the items with smallest k ui values.

This approach extends to weighted without replacement sampling. We now maintain a priority ρi =
− 1
wi

ln(ui). This has the nice property that probability item i is the smallest probability is wi/Wi. And the
k smallest item are a perfect weighted without replacement random samples.

12.3 Quantiles
Another important but simple problem for streaming data is the quantiles problem. For this we consider the
ordering of the elements in [n] as important. In fact, its typically easier to think of each element being a real
value ai ∈ R so that they are continuously valued and we have a comparison operator <. Think of ai as
the number of milliseconds someone spent on a visit to a website before clicking a link. Or ai could be the
amount of money spent on a transaction. Or ai could be the amount of rainfall in a day.

Now instead of searching for frequently occurring items (since we may never see the same item twice)
it is better to treat these as draws from a continuous distribution over R. In this case, two very similar (but
perhaps not identical) values are essentially equivalent. The simplest well-defined interaction with such a
distribution is through the associated cumulative density function. That is, given any value v, we can ask
what fraction of items have value less than or equal to v. We can define the rank of v over a stream A as

rankA(v) = |{ai ∈ A | ai ≤ v}|.

Now an ε-approximate quantiles data structure QA returns a value QA(v) for all v such that

|QA(v)− rankA(v)/m| ≤ ε.

By combining two such queries, we can also ask what fraction of data falls between two values v1 and v2 as
QA(v2)−QA(v1).

Size bounds. If we are not concerned about streaming, we can easily construct a data structure of size
1/ε. We simply sort all values in A, and then select a subset B of size 1/ε elements, evenly spaced in that
sorted order. Then QA(v) = rankB(v)/|B|. This is the smallest possible in general.

If we maintain a random sample Q of size k = O((1/ε2) log(1/δ)), then it provides this ε-approximate
quantile structure with probability at least 1− δ.

Streaming algorithms are known of size O((1/ε) log log(1/ε)) (which is the smallest possible size).

Median. Additionally, such a summary also encodes properties like the approximate median. This is the
value for which rankA(v)/m = 0.5 (naively one may have to find this by binary search, if the structure is a
set B and QA(v) = rankB(v)/|B|, then we can also maintain this directly. In addition to a basic quantiles
sketch, we will describe a simpler “frugal” variant which can maintain values like the approximate median
(or any other quantile) approximately without maintaining all quantiles.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

12.3.1 Merging Quantiles
The key idea in efficient quantiles sketches are being able to merge two sketches without increasing the
error or the size. For quantiles, this works be a simple procedure describe below, where each of the QA data
structures is simply a set B which returns rankB(v)/|B|.

Now given two such sets B1 and B2, both of size s, representing sets A1 and A2 both of size t. To merge
the summaries, we let B = B1 ∪B2. Its not hard to see that if

|rankA1(v)/t− rankB1(v)/s| ≤ ε and |rankA2(v)/t− rankB2(v)/s| ≤ ε,

then by examining rankA(v) and (t/s)rankB(v),

|rankA(v)/t− rankB(v)/s| ≤ ε.

However, |B| = 2s, so the size has doubled. To reduce the size we do the following simple step. We sort B,
and let Be be all points in B with even indices, and let Bo be all points in B with odd indices. Then we let
the new sketch B′ be either Be or Bo, chosen at random.

With this sketch, we don’t expect (in the expected value sense) to over- or under-count any rank query.
But the process still seems like it should add some error. It turns out not too much is added, since the
previous levels induce far less additive error than the current ones. Moreover, if we increase the sketch size
s from 1/ε to kε = O((1/ε)

√
log(1/ε) log(δ)), then with probability at least 1− δ, the error is never more

than ε after any number of merges.
However, this requires that we only merge summaries B1 and B2 that represent exactly the same size

sets A1 and A2. To deal with this issue, each summary will actually store up to gε = O(log(mε)) sets,
where the jth set B(j) (if it exists) represents a set of size m/2j for some j ∈ [0, gε]. Then on a merge,
starting at the large-index layers, we merge pairwise (if there is more than one of some type), and push the
merged sketches on up the representation, potentially increasing the height of the structure gε by 1. Or in the
streaming setting, we can just add a single point to a buffer of size kε, then merge with the bottom (j = gε)
layer.

This takes overall space O((1/ε) log(εm)
√

log 1/ε log(1/δ)) to guarantee on a data set of size m, that
the normalized rank has at most ε error, with probability at least 1− δ. With some care to how the hierarchy
is managed, the size can be reduced to O((1/ε) log log(1/ε) log(1/δ)).

12.3.2 Frugal Median
The Frugal estimate of the median can be maintained easily as followed over an ordered set of integers. The
simplest version just maintains a single label ` ∈ [n]. Initially set ` = 0 (or any value). Then if ai > `, then
increment `. If ai < `, then decrement `. Psuedocode is in Algorithm 12.3.1.

Algorithm 12.3.1 Frugal Median(A)
Set ` = 0.
for i = 1 to m do

if (ai > `) then
`← `+ 1.

if (ai < `) then
`← `− 1.

return `.

This can be generalized to any quantile, say trying to find just the value v such that rankA(v)/m = 0.75.
Then we use a bit of randomization.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 12.3.2 Frugal Quantile(A, φ) e.g. φ = 0.75

Set ` = 0.
for i = 1 to m do
r = Unif(0, 1) (at random)
if (ai > ` and r > 1− φ) then
`← `+ 1.

if (ai < ` and r > φ) then
`← `− 1.

return `.

The bounds for this algorithm are not as absolutely strong as for the Misra-Gries algorithm, but it uses far
less space. For instance, for the median version let M be the integer value of the true median, and say we
are happy with any value v such that rankA(v)/m ∈ [1/2− ε, 1/2 + ε] for some small value ε ∈ (0, 1/2).
The with probability at least 1− δ after M log(1/δ)

ε steps, our estimate will be within the desired range.
The bounds are better if we start our estimate at a value closer to v∗ than 0. Also, if we are using an extra

small counter, then we can adaptively change the amount we increment or decrement the label, and decrease
the number of steps we need.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

