12 Streaming and Sampling

The data stream model is one of the most surprisingly persistent settings to study data analysis. It simulta-
neously captures several important concepts while modeling an important realistic setting.

o It models time series data capturing important sequential nature of observations; and how this can
affect analysis or how that affect can be avoided.

o Itreveals the core challenges of summarizing data, and what is possible to compute using a very small
amount of space.

e It is one of the simplest setting that captures important aspects of big data; e.g., when data is too big
to fit on one machine.

e [t models important settings on the internet such as on a router or very busy website where one is
trying to stay on top of trends.

12.1 Streaming

Streaming is a model of computation that emphasizes space over all else. The goal is to compute something
using as little storage space as possible. So much so that we cannot even store the input. Typically, you get
to read the data once, you can then store something about the data, and then let it go forever! Or sometimes,
less dramatically, you can make 2 or more passes on the data.

Formally, there is a stream A = (a1, ag, ..., an,) of m items where (for this lecture) each a; € [n]. This
means, the size of each a; is about logn (to represent which element), and just to count how many items
you have seen requires space logm (although if you allow approximations you can reduce this). Unless
otherwise specified, log is used to represent log, that is the base-2 logarithm. The goal is to compute a
summary S 4 using space that is only poly(log n,logm).

12.1.1 Warm Up

Can we maintain the sum of items in a stream S,,, = 2211 a;?

Yes, just a single counter S; = > 7" ;; each observation we just increment. This takes O(log(mn)) space.
How about the average of items in the stream V;,, = = 3" a;?

Yes, but now we need to maintain two objects: the sum S,,, and also a counter C;, = m. Then we can

reconstruct V,,, = Sy, /Chp.

12.2 Sampling

The most universal and natural summary of a large data set X is a random sample S. There are two main
forms of random samples:

¢ with replacement random sampling means that each s € S is drawn iid from X. It allows for two
5,8 € S to be the same item x € X; so we can draw the same item twice. But the samples are
independent which makes it easier to analyze.

e without replacement random sampling which means that S is a subset of X, so if all z,2’ € X
are distinct, then all s, s’ € S are also distinct. We do not get the independence of the iid property;
however, these samples are better representatives of the full data sets X.

12.2.1 Reservoir Sampling

The more famous way to draw a single random sample from a set X is called reservoir sampling. It
keeps a single item s € X as the reservoir as it scans over X. Assume X is stored as a sequence
(1,29, ..,Z4,...,2Tpn). When we consider x;, we keep x; with probability 1/i; if so it replaces s < x;;
otherwise we keep s as it was before. It then handles x;4; and so on.

Algorithm 12.2.1 Reservoir Sampling(X)
S < I
fori =2tondo
Generate u ~ Unif(0, 1]
if (u < 1/7) then
S < T;
return s

At any point in the stream X; = (z1, 2, ..., z;), the maintained s is a uniform random sample from X.
It does not depend on stream order.

The argument is inductive. The first point x; is initially kept with probability 1/1 = 1, so always. This
is the base case. Then x5 is kept with probability 1/2, and at that point x4 is also kept with probability 1/2.
Now inductively, at the start of processing the ith point, each item has been kept with probability 1/(i — 1).
The new item x; is kept with the correct probability 1/i. And each other item is kept with probability
% % = % — also the correct probability.

To get a with replacement random sample of size k£, we can just maintain k independent reservoir samplers
in parallel.

12.2.2 Reservoir Sampling Without Replacement

To maintain &k samples without replacement we can also extend reservoir sampling. We keep the first k items
(put in the reservoir). And then for item x; (with ¢ > k) we put it in the reservoir with probability & /i; in
this case it kicks out a random item.

Algorithm 12.2.2 Reservoir Sampling(X, k)
S {1’1,1}2,.. . ,mk}
fori=k+1tondo

Generate u ~ Unif (0, 1]
if (u < k/i) then
remove random s’ from S
Put z; into S
return S

By roughly the same inductive argument we can show that the set .S is a without replacement uniform
random sample from X of size k. The first k points are kept deterministically as the base case. For the
inductive step, item z; is kept correctly with probability k/i. And all other items were in the reservoir with

probability % and are selected to be replaced with probability %% = % Hence they are still in the reservoir

after the step with probability %(1 — L= % as desired.

2

12.2.3 Weighted Random Sampling

In another important setting, each item z; comes with a weight w; of how important it is. We want to keep
an item x; with probability w;/W; where W; = > .| w;.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Reservoir sampling extends naturally for 1 item; we maintain the sum W; and item z; is kept with proba-
bility w; /W;. It extends to the & with replacement version by keeping k such samplers in parallel.

12.2.4 Bottom-t Sampling

Another approach to sampling without replacement is bottom-k sampling. We assign each x; a uniform
u; ~ Unif(0, 1]. Then we maintain the item with smallest u; value for one sample. To get k£ uniform random
samples, we keep the items with smallest &k u; values.

This approach extends to weighted without replacement sampling. We now maintain a priority p; =
- w% In(u;). This has the nice property that probability item ¢ is the smallest probability is w;/W;. And the
k smallest item are a perfect weighted without replacement random samples.

12.3 Quantiles

Another important but simple problem for streaming data is the quantiles problem. For this we consider the
ordering of the elements in [n] as important. In fact, its typically easier to think of each element being a real
value a; € R so that they are continuously valued and we have a comparison operator <. Think of a; as
the number of milliseconds someone spent on a visit to a website before clicking a link. Or a; could be the
amount of money spent on a transaction. Or a; could be the amount of rainfall in a day.

Now instead of searching for frequently occurring items (since we may never see the same item twice)
it is better to treat these as draws from a continuous distribution over R. In this case, two very similar (but
perhaps not identical) values are essentially equivalent. The simplest well-defined interaction with such a
distribution is through the associated cumulative density function. That is, given any value v, we can ask
what fraction of items have value less than or equal to v. We can define the rank of v over a stream A as

ranka(v) = [{a; € A | a; < v}
Now an e-approximate quantiles data structure @ 4 returns a value @) 4 (v) for all v such that

|Qa(v) —rank4(v)/m| < e.

By combining two such queries, we can also ask what fraction of data falls between two values v; and vy as

Qa(v2) — Qal(v1).

Size bounds. If we are not concerned about streaming, we can easily construct a data structure of size
1/e. We simply sort all values in A, and then select a subset B of size 1/¢ elements, evenly spaced in that
sorted order. Then @ 4(v) = rankg(v)/|B|. This is the smallest possible in general.

If we maintain a random sample @ of size k = O((1/¢2)1og(1/d)), then it provides this e-approximate
quantile structure with probability at least 1 — 9.

Streaming algorithms are known of size O((1/¢) loglog(1/¢)) (which is the smallest possible size).

Median. Additionally, such a summary also encodes properties like the approximate median. This is the
value for which rank 4 (v)/m = 0.5 (naively one may have to find this by binary search, if the structure is a
set B and Q4(v) = rankp(v)/|B]|, then we can also maintain this directly. In addition to a basic quantiles
sketch, we will describe a simpler “frugal” variant which can maintain values like the approximate median
(or any other quantile) approximately without maintaining all quantiles.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

12.3.1 Merging Quantiles

The key idea in efficient quantiles sketches are being able to merge two sketches without increasing the
error or the size. For quantiles, this works be a simple procedure describe below, where each of the () 4 data
structures is simply a set B which returns rankz (v)/|B].

Now given two such sets By and Bo, both of size s, representing sets A1 and As both of size t. To merge
the summaries, we let B = By U Bs. Its not hard to see that if

[rank 4, (v)/t —rankp, (v)/s| <e and |ranka,(v)/t —rankp,(v)/s| < e,
then by examining rank 4 (v) and (¢/s)rankg(v),
[rank 4 (v)/t — rankg(v)/s| < e.

However, | B| = 2s, so the size has doubled. To reduce the size we do the following simple step. We sort B,
and let B, be all points in B with even indices, and let B, be all points in B with odd indices. Then we let
the new sketch B’ be either B, or B, chosen at random.

With this sketch, we don’t expect (in the expected value sense) to over- or under-count any rank query.
But the process still seems like it should add some error. It turns out not too much is added, since the
previous levels induce far less additive error than the current ones. Moreover, if we increase the sketch size
sfrom 1/eto k. = O((1/e)+/log(1/e)log(d)), then with probability at least 1 — d, the error is never more
than ¢ after any number of merges.

However, this requires that we only merge summaries B; and By that represent exactly the same size
sets A; and Ay. To deal with this issue, each summary will actually store up to g. = O(log(me)) sets,
where the jth set B(j) (if it exists) represents a set of size m /27 for some j € [0, g-]. Then on a merge,
starting at the large-index layers, we merge pairwise (if there is more than one of some type), and push the
merged sketches on up the representation, potentially increasing the height of the structure g. by 1. Or in the
streaming setting, we can just add a single point to a buffer of size k., then merge with the bottom (5 = g.)
layer.

This takes overall space O((1/¢) log(em)+/log 1/elog(1/0)) to guarantee on a data set of size m, that
the normalized rank has at most ¢ error, with probability at least 1 — §. With some care to how the hierarchy
is managed, the size can be reduced to O((1/¢) loglog(1/e)log(1/9)).

12.3.2 Frugal Median

The Frugal estimate of the median can be maintained easily as followed over an ordered set of integers. The
simplest version just maintains a single label ¢ € [n]. Initially set £ = 0 (or any value). Then if a; > ¢, then
increment 4. If a; < £, then decrement ¢. Psuedocode is in Algorithm 12.3.1.

Algorithm 12.3.1 Frugal Median(A)
Set / = 0.
for i =1tomdo
if (a; > /) then
L+ 0+1.
if (a; < ¢) then
0+ 0—1.
return /.

This can be generalized to any quantile, say trying to find just the value v such that rank 4 (v)/m = 0.75.
Then we use a bit of randomization.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

Algorithm 12.3.2 Frugal Quantile(A, ¢) e.g. ¢ =0.75
Set £ = 0.
for i =1tomdo
r = Unif(0, 1) (at random)
if (a; > fand r > 1 — ¢) then
L+ 0+1.
if (a; < ¢ and r > ¢) then
0+ 0—1.
return /.

The bounds for this algorithm are not as absolutely strong as for the Misra-Gries algorithm, but it uses far
less space. For instance, for the median version let M be the integer value of the true median, and say we
are happy with any value v such that rank 4 (v)/m € [1/2 — &,1/2 + €] for some small value € € (0,1/2).
The with probability at least 1 — J after w steps, our estimate will be within the desired range.

The bounds are better if we start our estimate at a value closer to v* than 0. Also, if we are using an extra
small counter, then we can adaptively change the amount we increment or decrement the label, and decrease
the number of steps we need.

CS 6/5140 / DS 4140 Data Mining Instructor: Jeff M. Phillips, U. of Utah

