L19: Linear Distance Metric Learning

Data Mining: Jeff M. Phillips
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Dimensionality Reduction for Visualization

Setting
» High-dimensional data X € R? with d large (e.g., d = 1000)

» Want best k = 2 representation, so can plot.

Common approaches:

» PCA - linear, minimizes squared error in projection

» t-SNE (and relatives) - non-linear, tries to preserve
fiearby-structure (perplexity)



Dimensionality Reduction for Visualization

Setting
» High-dimensional data X € R? with d large (e.g., d = 1000)

» Want best k = 2 representation, so can plot.

Common approaches:

» PCA - linear, minimizes squared error in projection

» t-SNE (and relatives) - non-linear, tries to preserve
nearby-structure (perplexity)

Supervised Dimensionality Reduction:

» Linear Discriminant Analysis (LDA) — “classic”

» Linear Distance Metric Learning — (JMLR 2024 w/ M.
Alishahi, A Little)
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My "beef” with t-SNE:  (#1) Non-Linearity

Linear methods (like PCA) do ensure:
> linear separators seen in projection — exist in high-d
» shapes in projection — can be separated by convex hulls in
high-d
> — can be fit to linear patterns in high-d
(may be deviations)



My "beef” with t-SNE:  (#1) Non-Linearity

Linear methods (like PCA) do ensure:
> linear separators seen in projection — exist in high-d
» shapes in projection — can be separated by convex hulls in
high-d
> — can be fit to linear patterns in high-d
(may be deviations)

Also, linear methods are generalizable to new data.
Its a linear rule which we can apply to data not yet seen.

X = XA
ceing
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(#2) UN-Supervised

%

© e
@Al @Vb®P) OVb(Pres) ‘OF @Vb(Pas) Q@Chr @Vb OM ONn
I |

0

5




My " beef’ with t-SNE:

(#2) UN-Supervised

%

@Ad @Vb(®PP) QOVb(Pres) "OF .V‘b(Past) QChar @Vb QM ONn
Sci: Cool! | did science.

5

N



My " beef’ with t-SNE:

(#2) UN-Supervised

c o

0

@Ad @Vb(®PP) QOVb(Pres) "OF .vL(Pas:) QChar @Vb QM ONn
Sci: Cool! | did science.

5

JP: How do you know its good?

N



My " beef’ with t-SNE

(#2) UN-Supervised

@Ad @ Vb (PP)

Sci
Sc

O Vb (Pres)
5

Cool! 1 did science
i: Oh,

*
OF @Vb(®Past) @Char @Vb OM ONn
0

5

| measured on data | know?

JP: How do you know its good?




My " beef’ with t-SNE:

(#2) UN-Supervised

c o

0

@Adi @Vb(®PP) OVb(Pres) OF .V‘b(Past) QChar @Vb OM ONn
Sci: Cool! | did science.

5

JP: How do you know its good?
Sci: Oh, | measured on data | know? JP: Wait, so you have labels,

did you use them to train?




My " beef’ with t-SNE:

(#2) UN-Supervised

c o

0

@Adi @Vb(®PP) OVb(Pres) OF .\)b(Pas:) QChar @Vb OM ONn
Sci: Cool! | did science.

5

JP: How do you know its good?
Sci: Oh, | measured on data | know? JP: Wait, so you have labels,
Sci: No. 777

did you use them to train?
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Sci: Oh, | measured on data | know? JP: Wait, so you have labels,
did you use them to train?
Sci: No. 777
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Sci: Cool! I did science. JP: How do you know its good?
Sci: Oh, | measured on data | know? JP: Wait, so you have labels,

did you use them to train?

Sci: No. 777 JP: Why not?
Sci: Huh? What do you mean?



Linear (Fisher) Discriminant Analysis

Data X € RY; each x; € X has y; € [K] (one of k classes)
Sj=A{xi € X|yi=j}

H1
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Linear (Fisher) Discriminant Analysis

Data X € RY; each x; € X has y; € [K] (one of k classes)
Sj=A{xi € X|yi=j}

M3

Hj = Zj |5j] erij mean of class j
Yj= |le| ersj(x - ,Uj)(X — ,uj)T covariance of j
within class covariance Xy = ﬁ Zj’le 1Si|%;
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Linear (Fisher) Discriminant Analysis

Data X € RY; has y; € [K]
S={xeX|yi=j}

1
within class covariance Xy = %' Zj-‘zl |S;|%;

)T

-
between class covariance Y g = ﬁ Zj-‘zl |Si| (e — ) (1)



Linear (Fisher) Discriminant Analysis

Data X € RY; has y; € [K]
S={xeX|yi=j}
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Linear (Fisher) Discriminant Analysis

Data X € RY; has y; € [K]
S={xeX|yi=j}

s . "
within class covariance Xy = ﬁ Zf:1 |S;|%;

between class covariance ¥ g = ﬁ Zj-‘zl 1S (kj — ) — )™

uTYgu

Find direction u maximizing Trou

Let V5 be top 2-eigenvectors of Z;VIZB
X < V,J X (points in 2d)
=




Embeddings by Word Type

Embed 70 words via GloVE in d = 100: 10 each of ... nouns,
verbs, adjectives, adverbs, conjunctions, prepositions, pronouns
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Embeddings by Word Type

Embed 70 words via GloVE in d = 100: 10 each of ... nouns,

verbs, adjectives, adverbs, conjunctions, prepositions, pronouns
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Embeddings by Word Type

Embed 70 words via GIoVE in d = 100: 10 each of ... nouns,
verbs, adjectives, adverbs, conjunctions, prepositions, pronouns
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Goal of Linear DML

Setting

» Data X € RY with an underlying metric de(x, p) = ||x — p||

» We do not trust de(x,y) =[x — y|l.

» Given pairs {(x1,x]), (x2,%5), ..., (xm, x},,)} each with label
vi €{ }

Goal:

» map the data into a metric space so that the distance
between points in the second space optimizes and
information provided within the data.

Many studies focused on non-linear (NN based) mappings. We
only consider linear mappings.



X = AX
Mahalanobis M‘ ATA_

distance duy(x,y) = \/(x — y)TM(x — y), where M is p.s.d matrix.

Euclidean Distance ﬁ Mahalanobis Distance
@ Point

@ FPointB
@ Foint C

***** & @‘A (M\

777777 Unit
ball {x € R? | dum(x, p) < 1} is ellipsoid.



Why Mahalanobis Distance for Linear Distance Metric
Learning?

» Captures Affine Transformations: Any linear
transformation x — Ax can be captured by the Mahalanobis
distance by M = AT A:

1A — Ayl = [Ix — ylla7 4



Why Mahalanobis Distance for Linear Distance Metric
Learning?

» Captures Affine Transformations: Any linear
transformation x — Ax can be captured by the Mahalanobis
distance by M = AT A:

1A — Ayl = [Ix — ylla7 4

e Scaling: Accounts for varying feature scales.

e Rotation: Captures dependencies between features
(non-axis-aligned metrics).

e Linear Structure: It preserves linear structure.



» Looking for M reflecting similarities and dissimilarities.



» Looking for M reflecting similarities and dissimilarities.

» But how can we appropriately formulate this problem?



DML-eig method (Ying and Li (2012))

(In mathfordata.github.io)
Maximizes the minimum distance between dissimilar pairs while
constraining sum of similarities within a bound.
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DML-eig method (Ying and Li (2012))

(In mathfordata.github.io)
Maximizes the minimum distance between dissimilar pairs while
constraining sum of similarities within a bound.

. 2
max min dy(x;, X;
M0 (x;,%,)€D m(xi> %)

s.t. Z diy(xi, x;) < 1.
(X,‘,XJ‘)GS

Properties:

» Reduced to eigenvalue optimization framework

» Subgradient ascent optimization approach avoids projection
but still requires an O(d®) eigendecomposition step.

» Outperforming other baselines in experimental evaluations.



Model Assumptions

» Data Setup:



Model Assumptions

» Data Setup:

e We are given N iid observations (x;, y;) € RY x RY and each
pair is given a label ¢; € {Far, Close}.
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Model Assumptions

» Data Setup:
e We are given N iid observations (x;, y;) € RY x RY and each
pair is given a label ¢; € {Far, Close}.
» Label Generation Assumptions:
e There are p.s.d. M* € RY%9 and a threshold 7* which
generates labels 7; € {Close, Far}. -
e The pair (x;,y;) is labeled Close if and only if

i — yillage +mi < 75, (Label Assumption)
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where 7; ~ Noise(n|0, s) is a noise term.
e Noise 7; is iid and follows a distribution Noise(n|0, s).



Model Assumptions

» Data Setup:
e We are given N iid observations (x;, y;) € RY x RY and each
pair is given a label ¢; € {Far, Close}.
» Label Generation Assumptions:

e There are p.s.d. M* € RY%9 and a threshold 7* which
generates labels ¢; € {Close, Far}.
e The pair (x;,y;) is labeled Close if and only if

i — yillage +mi < 75, (Label Assumption)

where 7; ~ Noise(n|0, s) is a noise term.
e Noise 7; is iid and follows a distribution Noise(n|0, s).

Note: The labeling is probabilistic due to the noise



Optimal Loss Functions
» Setup: ¢ = Far if and only if n > 7 — ||x — y|[3/,
» Labeling Distribution: for z = x — vy,

P(t=1|z;M,7) = Pr(n > 7 — ||2[|}).
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Optimal Loss Functions

» Setup: ¢ = Far if and only if n > 7 — ||x — y|[3/,
» Labeling Distribution: for z = x — vy,

Pl =1|z;M, 1) = (DNoise(”ZH%/l —7)

—— Noise Distribution
m P(n <zl -1

-== ey -T

Onoise(l1zI — 7)

Probability Density




Optimal Loss Functions

» Maximum Likelihood Estimation (MLE):

e Objective: Find a p.s.d. matrix M and threshold 7 that
minimize the empirical risk:

L , &-G’D
RN(M,T) = —N Z log PNoise (ei(”Zf”M - T)) :
s F s i=1

» True Risk Function:
R(M,7) = — Ebg Proise (U(]|217 — 7)) -
» Optimization problem:

i Ru(M, 7),



Approximation Guarantees

» Convex Optimisation:

e Both R(M.1) and Ry(M, ) are convex.
e R(M, ) is uniquely minimised at (M*,7*).

_onvergence fand Error Bounds:
onverges uniformly to R(M, ).
o If N> Ny(e,0) = O(%(log 3 + d?log 2)), then with
probability at least 1=47— —

sup |Ry(M, 1) — R(M,7)| < e.

(M,T) —

e The minimizer (M, #) € argmin Ry(M, 7) satisfies:

0 < R(M,#)— R(M*,7%) < &

—



Recovery Guarantees

» Parameter Recovery:
e Under some constraints:

IM* = Ml + 7" — F| < e

e Holds for sufficiently large N > N(i—jﬁ).
» Low-Rank Model: (First Provable Guarantee)
e Our method supports truncating the learned M to a low-rank
matrix while preserving accuracy in loss and parameters.
» Empirical Success:
e Achieves high accuracy (over 99%) and precise parameter
recovery (multiplicative error < 1.01) on noiseless, noisy,
synthetic, and real data.

e Robust to mislabeled data (e.g., accurately recovers true
parameters with 45% mislabeled data).



Different noise options

07

06

05

04

03

02

01

00

Comparing Simple Noises
(mean =0 and variance = 1)

—— Normal pdf
—— Logistic pdf
-~ Laplace pdf
——— Hypsecant pdf

Logistic Distribution as the Noise

Closed form for

1

Poise(t) = o(t) = 1+ et




EXPERIMENTAL RESULTS



Data Generation Process

» Randomly generate ¥ 4«4 as the covariance matrix.

» Independently sample 2N points (x;, y;) from N(0,X).

» Generate N pairs (x;,y;), i=1,...,N.

» Randomly construct M* as a p.s.d. matrix of rank k < d.

» Randomly select 7* > 0 (close the value making balanced
labeling)

Noisy Labeling Scenarios

» Random noise 7; ~ Noise(0,s) (e.g., Gaussian) with scale s

>

¢; = Far if and only if Ix;i — yillags +ni > 7



Logistic model with different noises: accuracy VS epochs

d = 10, and the noise results in a misclassification rate of 10%.

Test and Train accuracy vs epochs
Logsstic model)

Test and Train accuracy vs epochs
(Laplace Noise Logistic model)

st and Train accuracy vs epochs
(Logistic Noise Logistic model)
10
09
.08
g —
§ {15 oo Logti madet
go7 “’
06 — train_accuracy_with_noise .
—— train_accuracy_without_noise | §
—— ftest_accuracy_with_noise §o7
05 — test_accuracy_without_noise o
0 200 400 600 800 000
epoch
Noise type: Logistic Gaussian Laplace HS Noisy Labeling
train acc. w/ noise 89.93% (0.22) 89.51% (0.20) 87.35% (0.28) 85.48% (0.30) 85.73% (0.34)
train acc. w/o noise 98.80% (0.10) 98.79% (0.19) 98.61% (0.13) 08.53% (0.14) 04.68% (0.32)
test acc. w/ noise 80.76% (0.40) 80.34% (0.32) 87.27% (0.51) 85.28% (0.47) 85.57% (0.65)
test acc. w/o noise 08.83% (0.21) 08.82% (0.18) 098.52% (0.21) 98.47% (0.23) 94.51% (0.60)

Table: Logistic model average accuracy (std) with different noise types (average over 20 trails) with 10%

misclassifications labels.



Model Performance Summary with 10% noisy labeling

v

The Logistic model accurately learns the labeling function:
» Noisy Labels: ~ 90% accuracy (maximum possible with 10%
noisy misclassification).
» Ground Truth Labels: ~ 99% accuracy.

v

Consistent performance on training and test data indicates no
overfitting.

v

Accuracy declines as noise deviates from the Logistic model
(Gaussian, Laplace, Hyperbolic Secant, Noisy Labeling).

v

The largest accuracy drop (~ 5%) occurs in the “noisy
labeling” (change the true labeling directly) setting.



How Much Noise Can Break the Model?

» Theoretical Insight: Ground truth labeling recovery even
with noisy labels.

» Experimental Evidence: Robustness with 10% mislabeling.

> Procedure: Training set size = 15,000 and d = 10.
Gradually increase the misclassification rate and log accuracy.

Logistic Models, accuracy vs noise

accuracy
o
@

=]
~

=
o

05

= train accuracy no noise (Logistic noise)
= test accuracy no noise (Logistic noise)
= train accuracy noisy (Logistic noise)
— test accuracy noisy (Logistic noise)

050 01 02 03 0‘4 0‘5
noise



How Much Noise Can Break the Model?

» Observations:
> Noisy Labels:
> Accuracy aligns with y = 1 — x line (as expected).

» Ground Truth Labels:

Robustness persists even with high noise.

40% mislabeling yields 95% accuracy on unseen data.
Model starts to collapse when 45% labels are disturbed.
At 50% mislabeling, model still achieves 65% accuracy
(train/test).

» Conclusion:

v

vvyy

» Despite high noise, extreme examples provide enough signal for
the model to perform better than random guessing.



Sample Complexity in High Noise Setting

» Impact of Noise Scale:

» Accuracy drops as noise increases, but theory predicts recovery
with sufficient samples.

» At 50% mislabeling with 15,000 training samples, test
accuracy drops to 65%

» Theory: Each model can recover ground truth labeling
regardless of noise level, given enough samples.

accuracy vs sample complexity (45% of noise)
(Logistic Noise Logistic model)

accuracy vs sample complexity (45% of noise)
(Laplace Noise Laplace model)

accuracy vs sample complexity (45% of noise)
(HS Noise HS model

— train_accuracy (noisy)
— train_accuracy (no noise)
— test_accuracy(noisy)

— test_accuracy (no noise)

— train_accuracy (noisy)
— train_accuracy (no noise)
— test_accuracy(noisy)

— test_accuracy (no noise)

— train_accuracy (noisy)
— train_accuracy (no noise)
— test_accuracy(noisy)

— test_accuracy (no noise)

==

N

0 25000 50000 75000 100000125000150000175000200000
# samples.

0 25000 50000 75000 100000125000150000175000200000

0 25000 50000 75000 100000125000150000175000200000

Figure: Accuracy VS Sample complexity with 45% noise when loss and
noise are compatible.



Sample Complexity in High Noise Setting

» Focus: Examining sample complexity when loss and noise are
compatible:
» Logistic model for Logistic noise.
» Laplace model for Laplace noise.
» Hyperbolic Secant (HS) model for HS noise.

» Experimental Evidence:

» At 50% mislabeling with 15,000 training samples, test
accuracy drops to 65%.

» Increasing training samples to 2 x 10° improves accuracy

» With 45% mislabeling, accuracy approaches 97%

» Conclusion:

» Results validate theoretical predictions: Larger datasets
mitigate noise effects and allow recovery of ground truth
labeling.



Comparing to DML-eig
» DML-eig Framework:
» DML-eig (Ying and Li (2012)) learns a Mahalanobis metric by
optimizing eigenvalues.
» Objective: Maximize minimal squared distances for dissimilar
pairs, keeping similar pairs’ squared distances bounded.
» Comparison Setup:
» Use synthetic data with 0% and 10% noise.
» Evaluate test accuracy on noisy and ground truth labels.

Accuracy vs Sample size

Accuracy vs Sample size
(0% Noise) (10% Noise)
100 \/\v—\__\ 100
035 035
00 00
4 4
08s 08s
i == eig_DML model Train acc (noisy)
080 oso] I == eig_DML model Test acc (noisy)
— eig_DML model Train acc i — eig_DML model Test acc (no noise)
— eig_DML model Test acc 1 ~= Logistic model Train acc (noisy)
— Logistic model Train acc 1 = Logistic model Test acc (noisy)
075 — Logistic model Test acc ors] 1 — Logistic model Test acc (no noise)
i
[ S0 1000 1500 2000 2500 3000 3500 [ S0 100 1500 2000 2500 3000 3500
Sample size Sample size

Figure: Performance of DML-eig with/without noise vs sample

~omnlevity



Comparing to DML-eig

» Accuracy Results:
» LDML:
» Achieves near 100% accuracy with sufficient data.

> Robust to noise: Matches noisy training data and recovers
ground truth labeling.

» DML-eig:
> Peaks at 90% accuracy in the noiseless setting.

> Under noisy settings, achieves 85% test accuracy for noisy
labels.

» Scalability Results:
» LDML: Processes up to 10,000 samples in 17 seconds,
reaching 99% test accuracy.
» DML-eig: Requires over 3 hours for 10,000 samples,
achieving only 85% — 90% accuracy.
» Conclusion:
» LDML outperforms DML-eig in accuracy and scalability.
» DML-eig struggles with noise and becomes computationally
intractable with large sample sizes.



Unbalanced Labeling

» Objective: Study model robustness on unbalanced datasets.
» Setup: Gradually increase 7" (30 values) to increase the Far
label ratio.
» Total pairs: 60,000 (with 20,000 for testing).
> Results:
» Overall accuracy remains high, regardless of label imbalance.
» Accuracy for Far pairs drops to 93% at worst.
» Accuracy for Close pairs drops to 78% at worst.
» When Close pairs are 10% — 98%, over 90% accuracy on all

Train accuracy (no noise) vs close pairs portion Test accuracy (no noise) vs close pairs portion
(Logistic Noise Logistic Model) (Logistic Noise Logistic Model)
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070 070
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close point% close point%

Figure: Performance of Logistic noise Logistic model on unbalanced data.
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label ratio.
» Total pairs: 60,000 (with 20,000 for testing).
> Results:
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Unbalanced Labeling

» Objective: Study model robustness on unbalanced datasets.
» Setup: Gradually increase 7" (30 values) to increase the Far
label ratio.
» Total pairs: 60,000 (with 20,000 for testing).
> Results:
» Overall accuracy remains high, regardless of label imbalance.
» Accuracy for Far pairs drops to 93% at worst.
» Accuracy for Close pairs drops to 78% at worst.
» When Close pairs are 10% — 98%, over 90% accuracy on all
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Figure: Performance of Logistic noise Logistic model on unbalanced data.
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