
The Hunting of the Bump: On Maximizing Statistical Discrepancy

Deepak Agarwal∗ Jeff M. Phillips† Suresh Venkatasubramanian‡

1 Introduction

Anomaly detection has important applications in bio-
surveilance and environmental monitoring. When com-
paring measured data to data drawn from a baseline dis-
tribution, merely finding clusters in the measured data
may not actually represent true anomalies. These clus-
ters may likely be the clusters of the baseline distribu-
tion. Hence, a discrepancy function is often used to ex-
amine how different measured data is to baseline data
within a region. An anomalous region is thus defined to
be one with high discrepancy.

Consider the cardinalityn point setP where each
pointp ∈ P is applied to abaseline functionb : P → R
(what we expect to observe) and to ameasurement func-
tion m : P → R (what we actually observe). For any
rangeR in set of rangesR we can define adiscrep-
ancy functiondR : (m, b) → R, which measures how
different the observed measurementsmR are from the
expected measurementsbR within the rangeR. We pro-
vide efficient approximation algorithms, both additive
and relative, to solve the following problem:

Problem 1.1. Given a point setP with baseline and
measurement functionsm and b, a range spaceX =
(P,R) whereR describes all axis-aligned rectangles,
and a convex discrepancy functiond, find the range
R ∈ R that maximizesd.

2 Prior Work

Much of the early focus has been on devising effi-
cient statistical tests to detect presence of clustering at a
global level without emphasis on identifying the actual
clusters (see [2, Chapter 8]). The spatial scan statistic,
an important example of a convex discrepancy function
dK(bR,mR) = mR log mR

bR
+ (1−mR) log 1−mR

1−bR
, in-

troduced by Kulldorff [6] provides an elegant solution
for detection and evaluation of spatial clusters. The
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technique has found wide applicability in public health,
biosurveillance, environmental monitoringetc.

A brute force technique can solve Problem 1.1
for points in the plane, for any discrepancy function
in O(n4). A linear discrepancy functionis defined
∆R(m, b) = c1

∑
m(p) + c2

∑
b(p) + c3. Dobkin,

Maass and Gunopoulos [3] solve Problem 1.1 for the
specific linear discrepancy function known ascombina-
torial discrepancywherec1 = 1, c2 = −1 andc3 = 0,
in O(n2 log n) time for points in the plane.

Other related algorithmic work is heuristic and
makes no guarantee on the quality of the solution, such
as work by Iyengar [5], and Friedman and Fisher [4],
or is conservative in that it provides an exact solution
which in practice runs fast but reverts to brute force in
the worst case, such as work by Neill and Moore [8, 7]

3 Our Contribution

Our main result, see [1] for a full version, is a structural
theorem that reduces the problem of maximizing any
convex discrepancy function over a class of shapes to
maximizing a simple linear discrepancy function over
the same class of shapes. We show that the Dobkinet.
al. algorithm can be extended to work with general lin-
ear discrepancy functions. This result, combined with
our general theorem, allows us to approximateanycon-
vex discrepancy function over the class of axis-parallel
rectangles. We summarize our results in Table 1 for
points in the plane; as an example, we present an ad-
ditive approximation algorithm for the Kulldorff scan
statistic that runs in timeO(1

ε n
2 log2 n), whereas an

exact, brute force approach runs inO(n4) time.
Essentially, the reduction we use allows us to de-

couple the measure of discrepancy (which can be com-
plex) from the shape class it is maximized over. Using
our approach, if you want to maximize a general dis-
crepancy function over a general shape class, you need
only consider linear discrepancy over this class. As a
demonstration of the generality of our method, we also
present algorithms for approximately maximizing dis-
crepancy measures that derive from different underly-



Our results Prior work
OPT−ε OPT/(1 + ε) Exact

Poisson (Kulldorff)/Bernoulli/Gamma O(1
ε n

2 log2 n) O(1
ε n

2 log2 n) O(n4)
Gaussian O(1

ε n
3 log n log log n) O(1

ε n
2 log2 n) O(n4)

Table 1: Our results. For higher dimensionsd, multiply by n2d−4.

ing distributions. In fact, we provide general expres-
sions for the one-parameter exponential family of dis-
tributions which includes Poisson, Bernoulli, Gaussian
and Gamma distributions. For the Gaussian distribu-
tion, the measure of discrepancy we use is novel, to the
best of our knowledge. It is derived from maximum
likelihood considerations, has a natural interpretation
as aχ2 distance, and may be of independent interest.

4 Convex Approximation

We present a general approximation theorem for max-
imizing a convex discrepancy functiond. First we
rephrase problem 1.1 to the following equivalent prob-
lem.

Problem 4.1. Maximize convex discrepancy functiond
over all pointsr = (mR, bR), R ∈ R.

Using this formulation we can describe how to ap-
proximate a convex discrepancy function with a fam-
ily of linear discrepancy functions. Let̀(x, y) =
c1x + c2y + c3 denote a linear function inx and y.
Define anε-approximate familyof d to be a collection
of linear functions̀ 1, `2, . . . , `t such thatlU (x, y) =
maxi≤t `i(x, y), the upper envelopeof the `i, has the
property thatlU (x, y) ≤ d(x, y) ≤ lU (x, y) + ε

Next we link the approximation error to the Hessian
of the discrepancy function.

Lemma 4.1. Let f : [0, 1]2 → R be a convex smooth
function. Let f̃ : [0, 1]2 → R be the linear ap-
proximation tof represented by the hyperplane tan-
gent tof at p ∈ [0, 1]2. Then f̃(p) ≤ f(p), and
f(p) − f̃(q) ≤ ‖p − q‖2λ∗, whereλ∗ is the max-
imum value of the largest eigenvalue ofH(f), maxi-
mized along the line joiningp andq.

Let λ∗ = supp∈Sn
λmax(H(f)(p)). Let εp(q) =

‖p− q‖2λ∗. In the approximation we need to consider
all possible(mR, bR) ∈ Sn = [C/n, 1 − C/n]2, for
constantC. This restriction requires that each range
contains some minimum level of support.

Lemma 4.2. Let C ⊂ Sn be a set oft points such
that for all q ∈ Sn,minp∈C εp(q) ≤ ε. Then thet
tangent planes at the pointsf(p),p ∈ C, form anε-
approximate family forf .

Finally, our main theorem uses a stratified grid de-
composition to utilize the dependence on the approxi-
mation error on the Hessian.

Theorem 4.1. Let f : [0, 1]2 → R be a convex smooth
function, and fixε > 0. Let λ(n) = λ∗(Sn). Let
F (n, ε) be the size of anε-approximate family forf .
Letλ(n) = O(nc). Then,

F (n, ε) =


O(1/ε) c = 0
O(1

ε log 1
c
log n) 0 < c < 1

O(1
ε log n) c = 1

O(1
ε n

c−1 logc log n) c > 1

The maximum discrepancy pointr = (mR, bR) over
all linear discrepancy functions is anε-approximation
for the convex discrepancy function. A relative approx-
imation theorem is similar.
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