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1 Introduction technique has found wide applicability in public health,
biosurveillance, environmental monitorietc
Anomaly detection has important applications in bio- A brute force technique can solve Problem 1.1
surveilance and environmental monitoring. When com- for points in the plane, for any discrepancy function
paring measured data to data drawn from a baseline disin O(n*). A linear discrepancy functioris defined
tribution, merely finding clusters in the measured data Ar(m,b) = ¢1 Y. m(p) + c2 3 b(p) + c3. Dobkin,
may not actually represent true anomalies. These clus{iviaass and Gunopoulos [3] solve Problem 1.1 for the
ters may likely be the clusters of the baseline distribu- specific linear discrepancy function knownasnbina-
tion. Hence, a discrepancy function is often used to ex- torial discrepancywherec; = 1, ¢, = —1 andcs = 0,
amine how different measured data is to baseline datajn O(n?logn) time for points in the plane.
within a region. An anomalous region is thus definedto  Other related algorithmic work is heuristic and
be one with high discrepancy. makes no guarantee on the quality of the solution, such
Consider the cardinality. point setP where each as work by lyengar [5], and Friedman and Fisher [4],
pointp € P is applied to éaseline function : P — R or is conservative in that it provides an exact solution
(what we expect to observe) and tmaasurement func-  which in practice runs fast but reverts to brute force in
tionm : P — R (what we actually observe). For any the worst case, such as work by Neill and Moore [8, 7]
rangeR in set of rangesk we can define aiscrep-
ancy functiondy : (m,b) — R, which measures how
different the observed measurementg are fromthe 3  Qur Contribution
expected measuremenmswithin the rangeR. We pro-
vide efficient approximation algorithms, both additive Our main result, see [1] for a full version, is a structural
and relative, to solve the following problem: theorem that reduces the problem of maximizing any
convex discrepancy function over a class of shapes to
Problem 1.1. Given a point set” with baseline and  maximizing a simple linear discrepancy function over
measurement functions andb, a range spaceX’ =  the same class of shapes. We show that the Daikin
(P,R) whereR describes all axis-aligned rectangles, 3. algorithm can be extended to work with general lin-
and a convex discrepancy functiah find the range  ear discrepancy functions. This result, combined with
R € R that maximizes. our general theorem, allows us to approxineatgcon-
vex discrepancy function over the class of axis-parallel
. rectangles. We summarize our results in Table 1 for
2 Prior Work points in the plane; as an example, we present an ad-

o ditive approximation algorithm for the Kulldorff scan
Much of the early focus has been on devising effi- ¢iatistic that runs in tim&(Ln2log? n), whereas an
cient statistical tests to detect presence of clustering at xact, brute force approacheruns(hﬁn"‘) time.
global level without emphasis on identifying the actual
clusters (see [2, Chapter 8]). The spatial scan statistic
an important example of a convex discrepancy function
di(br,mp) = mplog 32 + (1 — mp) log 42, in-
troduced by Kulldorff [6] provides an elegant solution
for detection and evaluation of spatial clusters. The

Essentially, the reduction we use allows us to de-
'couple the measure of discrepancy (which can be com-
plex) from the shape class it is maximized over. Using
our approach, if you want to maximize a general dis-
crepancy function over a general shape class, you need
only consider linear discrepancy over this class. As a
“AT&T Labs — Researcdagarwal@research.att.com demonstratior_1 of the generality of our methoql,_we a_lso
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Our results Prior work
OPT —¢ OPT/(1+¢) Exact
Poisson (Kulldorff)/Bernoull/Gamma  O(1n%log®n) O(Ln%log’n) | O(n%)
Gaussian O(Ln3lognloglogn) | O(tn*log” n) O(n?)

Table 1: Our results. For higher dimensiahsnultiply by n2?—4.

ing distributions. In fact, we provide general expres-
sions for the one-parameter exponential family of dis-
tributions which includes Poisson, Bernoulli, Gaussian
and Gamma distributions. For the Gaussian distribu-

tion, the measure of discrepancy we use is novel, to the

best of our knowledge. It is derived from maximum
likelihood considerations, has a natural interpretation
as ay? distance, and may be of independent interest.

4 Convex Approximation

We present a general approximation theorem for max-
imizing a convex discrepancy functioth First we
rephrase problem 1.1 to the following equivalent prob-
lem.

Problem 4.1. Maximize convex discrepancy functién
over all pointsr = (mp,br), R € R.

Using this formulation we can describe how to ap-
proximate a convex discrepancy function with a fam-
ily of linear discrepancy functions. Let(z,y)
c1x + coy + c3 denote a linear function im andy.
Define ane-approximate familyof d to be a collection
of linear functionsty, (s, ..., ¢; such thatV(z,y) =
max;<¢ £;(z,y), theupper envelopef the ¢;, has the
property thatV (z, ) < d(z,y) < 1Y(z,y) + ¢

Next we link the approximation error to the Hessian
of the discrepancy function.

Lemma 4.1. Let f : [0,1]> — R be a convex smooth
function. Letf : [0,1]> — R be the linear ap-
proximation to f represented by the hyperplane tan-
genttof atp € [0,12. Thenf(p) < f(p), and
f(p) — f(@) < |lp — al|*A*, where\* is the max-
imum value of the largest eigenvalue Bf /), maxi-
mized along the line joining andq.

Let \* = SUPpes, )\max(H(f)(p))' Let €p (Q)
lp — q||?A*. In the approximation we need to consider

all possible(mg,br) € S, = [C/n,1 — C/n)?, for
constantC. This restriction requires that each range
contains some minimum level of support.

Lemma 4.2. LetC C S, be a set oft points such
that for all q € S, minpecep(q) < €. Then thet
tangent planes at the point§p),p € C, form ane-
approximate family forf.

Finally, our main theorem uses a stratified grid de-
composition to utilize the dependence on the approxi-
mation error on the Hessian.

Theorem 4.1. Let f : [0,1]> — R be a convex smooth
function, and fixe > 0. Let A(n) = A\*(S,). Let
F(n,€) be the size of am-approximate family forf.
LetA(n) = O(n). Then,

O(1/e) c=0
Fln.o) O(Llogilogn) 0<ex1
n,€) = c
O(Llogn) c=1

O(tn“tlog,logn) c¢>1

The maximum discrepancy point= (mg, br) over
all linear discrepancy functions is arapproximation
for the convex discrepancy function. A relative approx-
imation theorem is similar.
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