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ABSTRACT
In this paper, we propose a unified algorithmic framework for
solving many known variants of MDS. Our algorithm is a simple
iterative scheme with guaranteed convergence, and is modular;
by changing the internals of a single subroutine in the algorithm,
we can switch cost functions and target spaces easily. In addi-
tion to the formal guarantees of convergence, our algorithms are
accurate; in most cases, they converge to better quality solutions
than existing methods in comparable time. Moreover, they have
a small memory footprint and scale effectively for large data
sets. We expect that this framework will be useful for a number
of MDS variants that have not yet been studied.

Our framework extends to embedding high-dimensional points
lying on a sphere to points on a lower dimensional sphere, pre-
serving geodesic distances. As a complement to this result, we
also extend the Johnson-Lindenstrauss Lemma to this spherical
setting, by showing that projecting to a random O((1/ε2) log n)-
dimensional sphere causes only an ε-distortion in the geodesic
distances.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining; F.2.2 [Non-numerical
algorithms and problems]: Geometrical algorithms

Keywords
Multi-dimensional scaling, dimensionality reduction.

1. INTRODUCTION
Multidimensional scaling (MDS) [26, 11, 3] is a widely used

method for embedding a general distance matrix into a low di-
mensional Euclidean space, used both as a preprocessing step
for many problems, as well as a visualization tool in its own
right. MDS has been studied and used in psychology since the
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1930s [39, 36, 25] to help visualize and analyze data sets where
the only input is a distance matrix. More recently MDS has be-
come a standard dimensionality reduction and embedding tech-
nique to manage the complexity of dealing with large high di-
mensional data sets [9, 10, 34, 7].

In general, the problem of embedding an arbitrary distance
matrix into a fixed dimensional Euclidean space with minimum
error is nonconvex (because of the dimensionality constraint).
Thus, in addition to the standard formulation [13], many vari-
ants of MDS have been proposed, based on changing the under-
lying error function [39, 9]. There are also applications where
the target space, rather than being a Euclidean space, is a man-
ifold (e.g. a low dimensional sphere), and various heuristics for
MDS in this setting have also been proposed [14, 7].

Each such variant is typically addressed by a different heuris-
tic, including majorization, the singular value decomposition,
semidefinite programming, subgradient methods, and standard
Lagrange-multipler-based methods (in both primal and dual set-
tings). Some of these heuristics are efficient, and others are not;
in general, every new variant of MDS seems to require different
ideas for efficient heuristics.

1.1 Our Work
In this paper, we present a unified algorithmic framework for

solving many variants of MDS. Our approach is based on an it-
erative local improvement method, and can be summarized as
follows: “Pick a point and move it so that the cost function is
locally optimal. Repeat this process until convergence.” The im-
provement step reduces to a well-studied and efficient family of
iterative minimization techniques, where the specific algorithm
depends on the variant of MDS.

A central result of this paper is a single general convergence
result for all variants of MDS that we examine. This single re-
sult is a direct consequence of the way in which we break down
the general problem into an iterative algorithm combined with
a point-wise optimization scheme. Our approach is generic, ef-
ficient, and simple. The high level framework can be written in
10-12 lines of MATLAB code, with individual function-specific
subroutines needing only a few more lines each. Further, our
approach compares well with the best methods for all the vari-
ants of MDS. In each case our method is consistently either the
best performer or is close to the best, regardless of the data pro-
file or cost function used, while other approaches have much
more variable performance. A useful feature of our method is
that it is parameter-free, requiring no tuning parameters or La-
grange multipliers in order to perform at its best. Finally, our
method has a small memory footprint, allowing it to scale well
for large data sets.
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Spherical MDS.
An important application of our approach is the problem of

performing spherical MDS. Spherical MDS is the problem of em-
bedding a matrix of distances onto a (low-dimensional) sphere.
Spherical MDS has applications in texture mapping and image
analysis [7], and is a generalization of the spherical dimension-
ality reduction problem, where the goal is to map points from a
high dimensional sphere onto a low-dimensional sphere. This
latter problem is closely related to dimensionality reduction for
finite dimensional distributions. A well-known isometric em-
bedding takes a distribution represented as a point on the d-
dimensional simplex to the d-dimensional sphere while preserv-
ing the Hellinger distance between distributions. A spherical di-
mensionality reduction result is an important step to represent-
ing high dimensional distributions in a lower-dimensional space
of distributions, and will have considerable impact in domains
that represent data natively as histograms or distributions, such
as in document processing [32, 21, 2], image analysis [28, 12]
and speech recognition [19].

Our above framework applies directly to this setting, where
for the local improvement step we adapt a technique first devel-
oped by Karcher for finding geodesic means on a manifold. In
addition, we prove a Johnson-Lindenstrauss-type result for the
sphere; namely, that n points lying on a d-dimensional sphere
can be embedded on a O((1/ε2) log n)-dimensional sphere while
approximately preserving the geodesic distances between pairs
of points, that is, no distance changes by more than a relative
(1+ ε)-factor. This latter result can be seen as complementary
to the local improvement scheme; the formal embedding result
guarantees the error while being forced to use log n dimensions,
while the local improvement strategy generates a mapping into
any k dimensional hypersphere but provides no formal guaran-
tees on the error.

Summary of contributions.
The main contributions of this paper can be summarized as

follows:

• In Section 4 we present our iterative framework, illustrate
how it is applied to specific MDS variants and prove a con-
vergence result.

• In Section 5 we present a comprehensive experimental
study that compares our approach to the prior best known
methods for different MDS variants.

• In Section 6 we prove a formal dimensionality reduction
result that embeds a set of n points on a high-dimensional
sphere into a sphere of dimension O(log n/ε2) while pre-
serving all distances to within relative error of (1+ ε) for
any ε > 0.

2. BACKGROUND AND EXISTING METH-
ODS

Multidimensional scaling is a family of methods for embed-
ding a distance matrix into a low-dimensional Euclidean space.
There is a general taxonomy of MDS methods [11]; in this paper
we will focus primarily the metric and generalized MDS prob-
lems.

The traditional formulation of MDS [26] assumes that the dis-
tance matrix D arises from points in some d-dimensional Eu-
clidean space. Under this assumption, a simple transforma-
tion takes D to a matrix of similarities S, where si j = 〈x i , x j〉.

These similarities also arise from many psychology data sets di-
rectly [36, 39]. The problem then reduces to finding a set of
points X in k-dimensional space such that X X T approximates S.
This can be done optimally using the top k singular values and
vectors from the singular value decomposition of S.

A more general approach called SMACOF that drops the Eu-
clidean assumption uses a technique known as stress majoriza-
tion [30, 13, 14]. It has been adapted to many other MDS vari-
ants as well including restrictions of data to lie on quadratic
surfaces and specifically spheres [14].

Since the sum-of-squares error metric is sensitive to outliers,
Cayton and Dasgupta [9] proposed a robust variant based on
an `1 error metric. They separate the rank and cost constraints,
solving the latter using either semidefinite programming or a
subgradient heuristic, followed by a singular value decomposi-
tion to enforce the rank constraints.

Many techniques have been proposed for performing spher-
ical MDS. Among them are majorization methods ([33] and
SMACOF-Q [14]), a multiresolution approach due to Elad, Keller
and Kimmel [16] and an approach based on computing the clas-
sical MDS and renormalizing [34].

Embeddings that guarantee bounded error.
A complementary line of work in dimensionality reduction

fixes an error bound for every pair of distances (rather than
computing an average error), and asks for the minimum dimen-
sion a data set can be embedded in while maintaining this er-
ror. The Johnson-Lindenstrauss Lemma [22] states that any col-
lection of n points in a Euclidean space can be embedded in a
O((1/ε2) log n) dimensional Euclidean space that preserves all
distances within a relative error of ε. If the points instead de-
fine an abstract metric space, then the best possible result is an
embedding into O(log n)-dimensional Euclidean space that pre-
serves distances up to a factor of O(log n). An exhaustive survey
of the different methods for dimensionality reduction is beyond
the scope of this paper - the reader is directed to the survey by
Indyk and Matousek for more information [20].

The Johnson-Lindenstrauss lemma can be extended to data
lying on manifolds. Any manifold M with “linearization dimen-
sion” k (a measure of its complexity) can be embedded into a
O((1/ε2)k log(kn)) dimensional space so that all pairwise Eu-
clidean distances between points on M are distorted by at most
a relative (1+ ε)-factor [1, 35, 29]. A k-dimensional sphere has
linearization dimension O(k), so this bound applies directly for
preserving the chordal (i.e Euclidean) distance between points
on a sphere. The geodesic distance between points on a sphere
can be interpreted as the angle between the points in radians,
and a result by Magen [29] show that O((1/ε2) log n) dimen-
sions preserve angles to within a relative factor of 1+

p
ε (which

is weaker than our result preserving the geodesic distance to
within a relative factor of 1+ ε).

3. DEFINITIONS
Let D = (di j) be an n × n matrix representing distances be-

tween all pairs of points in a set Y = {y1, . . . yn}. In general, we
assume that D is symmetric (i.e di j = d ji), although our method
does not formally require this. The multidimensional scaling
problem takes as input Y , D and k, and asks for a mapping
µ : Y → X from Y to a set of points X in a k-dimensional space
T such that the difference between the original and resulting
distances is minimized.

There are many different ways to measure the difference be-
tween the sets of distances, and these can be captured by the



following general function:

C(X , D) =
∑

i

∑

j

Err( f (x i , x j)− di j)

where Err measures the discrepancy between the source and tar-
get distances, and f denotes the function that measures distance
in the target space.

• T = Rk, Err(δ) = δ2, f (x , x ′) = ‖x−x ′‖2: This is a general
form of the MDS problem, which we refer to as fMDS.

• T = Rk, Err(δ) = |δ|, f (x , x ′) = ‖x − x ′‖2: This is a robust
variant of MDS called rMDS, first suggested by Cayton and
Dasgupta [9].

• T = Sk, Err(δ) = |δ| or δ2, f (x , x ′) is either chordal(c)
or geodesic distance (g) on Sk. We refer to this family of
problems as {c,g}-{1,2}-sMDS.

It will be convenient to split the expression into component
terms. We define

Ci(X , D, x i) =
∑

j

Err( f (x i , x j)− di j)

which allows us to write C(X , D) =
∑

i Ci(X , D, x i).

Notes.
The actual measure studied by Cayton and Dasgupta[9] is not

rMDS. It is a variant which takes the absolute difference of the
squared distance matrices. We call this measure r2MDS. Also,
classical MDS does not appear in this list since it tries to min-
imize the error between similarities rather than distances. We
refer to this measure as cMDS.

4. ALGORITHM
We now present our algorithm PLACECENTER(X , D) that finds

a mapping Y → X minimizing C(X , D). For now we assume that
we are given an initial embedding X1 ∈ Rk to seed our algo-
rithm. Our experiments indicate the SVD-based approach [39]
is almost always the optimal way to seed the algorithm, and we
use it unless specifically indicated otherwise.

Algorithm 1 PLACECENTER (D)
Run any MDS strategy to obtain initial seed X .
repeat
ε← C(X , D).
for i = 1 to n do

x i ← PLACEi(X , D). {this updates x i ∈ X }
end for

until (ε− C(X , D)< t) {for a fixed threshold t}
Return X .

The algorithm operates by employing a technique from the
block-relaxation class of heuristics. The cost function can be
expressed as a sum of costs for each point x i , and so in each
step of the inner loop we find the best placement for x i while
keeping all other points fixed, using the algorithm PLACEi(X , D).
A key insight driving our approach is that PLACEi(X , D) can be
implemented either iteratively or exactly for a wide class of dis-
tance functions. The process terminates when over all i, invok-
ing PLACEi(X , D) does not reduce the cost C(X , D) by more than
a threshold t. The algorithm takes O(n2) for each iteration, since
PLACEi(X , D) will take O(n) time and computing C(X , D) takes
O(n2) time.
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Figure 1: A geometric interpretation of the error term.

4.1 A Geometric Perspective on PLACEi(X , D)
The routine PLACEi(X , D) is the heart of our algorithm. This

routine finds the optimal placement of a fixed point x i with re-
spect to the cost function Ci(X , D, x i) =

∑

j Err( f (x i , x j)− di j).
Set r j = di j . Then the optimal placement of x i is given by the
point x∗ minimizing the function

g(x) =
∑

j

Err( f (x , x j)− r j).

Note that the terms f (x , x i) and ri = dii are zero, so we can
ignore their presence in the summation for ease of notation.

There is a natural geometric interpretation of g(x), illustrated
in Figure 1. Consider a sphere around the point x j of radius r j .
Let x̂ j be the point on this sphere that intersects the ray from x j
towards x . Then the distance f (x , x̂ j) = | f (x , x j)− r j |. Thus,
we can rewrite g(x) as

g(x) =
∑

j

Err( f (x , x̂ j)).

This function is well-known in combinatorial optimization as
the min-sum problem. For Err(δ) = δ2, g(x) finds the point
minimizing the sum-of-squared distances from a collection of
fixed points (the 1-mean), which is the centroid x∗ = 1

n

∑

j x̂ j .
For Err(δ) = |δ|, g(x) finds the 1-median: the point minimizing
the sum of distances from a collection of fixed points. Although
there is no closed form expression for the 1-median, there are
numerous algorithms for solving this problem both exactly [38]
and approximately [4]. Methods that converge to the global
optimum exist for any Err(δ) = |δ|p, p ≤ 2; it is known that if p
is sufficiently larger than 2, then convergent methods may not
exist [6].

While g(x) can be minimized optimally for error functions Err
of interest, the location of the points x̂ j depends on the location
of the solution x∗, which is itself unknown! This motivates an
alternating optimization procedure, where the current iterate x
is used to compute x̂ j , and then these x̂ j are used as input to the
min-sum problem to solve for the next value of x .

4.2 Implementing RECENTER

Up to this point, the description of PLACECENTER and PLACE

has been generic, requiring no specification of Err and f . In fact,
all the domain-specificity of the method appears in RECENTER,
which solves the min-sum problem. We now demonstrate how
different implementations of RECENTER allow us to solve the dif-
ferent variants of MDS discussed above.



Algorithm 2 PLACEi(X , D)
repeat
ε← g(x i)
for j = 1 to n do

x̂ j ← intersection of sphere of radius r j around x j with
ray from x j towards x i .

end for
x i ← RECENTER({ x̂1, x̂2, . . . , x̂n}).

until (ε− g(x i)< t) {for a fixed threshold t}
Return x i .

4.2.1 The original MDS: fMDS
Recall from Section 3 that the fMDS problem is defined by

Err(δ) = δ2 and f (x , x ′) = ‖x − x ′‖2. Thus, g(x) =
∑

j ‖x −
x̂ j‖2. As mentioned earlier, the minimum of this function is at-
tained at x∗ = (1/n)

∑

j x̂ j . Thus, RECENTER({ x̂1, x̂2, . . . , x̂n})
merely outputs (1/n)

∑

j x̂ j , and takes O(n) time per invocation.

4.2.2 Robust MDS: rMDS
The robust MDS problem rMDS is defined by Err(δ) = |δ|

and f (x , x ′) = ‖x − x ′‖2. Minimizing the resulting function
g(x) yields the famous Fermat-Weber problem, or the 1-median
problem as it is commonly known. An exact iterative algorithm
for solving this problem was given by Weiszfeld [38], and works
as follows. At each step of PLACEi the value x i is updated by

x i ←
∑

j

x̂ j

‖x i − x̂ j‖

,

∑

j

1

‖x i − x̂ j‖
.

This algorithm is guaranteed to converge to the optimal solu-
tion [27, 31], and in most settings converges quadratically [24].

Other Norms and Distances.
If Err(δ) = |δ|p, 1 < p < 2, then an iterative algorithm along

the same lines as the Weiszfeld algorithm can be used to mini-
mize g(x) optimally [6]. In practice, this is the most interesting
range of values for p. It is also known that for p sufficiently
larger than 2, this iterative scheme may not converge.

We also can tune PLACECENTER to the r2MDS problem (using
squared distances) by setting r j = d2

i j . Although the convergence
proofs (below) do not hold in this case, the algorithm works well
in practice.

4.2.3 Spherical MDS
Spherical MDS poses special challenges for the implementa-

tion of RECENTER. Firstly, it is no longer obvious what the def-
inition of x̂ j should be, since the “spheres” surrounding points
must also lie on the sphere. Secondly, consider the case where
Err(δ) = δ2, and f (x , x ′) is given by geodesic distance on the
sphere. Unlike in the case of Rk, we no longer can solve for the
minimizer of g(x) by computing the centroid of the given points,
because this centroid will not in general lie on the sphere, and
even computing the centroid followed by a projection onto the
sphere will not guarantee optimality.

The first problem can be solved easily. Rather than draw
spheres around each x j , we draw geodesic spheres, which are the
set of points at a fixed geodesic distance from x j . On the sphere,
this set of points can be easily described as the intersection of
an appropriately chosen halfplane with the sphere. Next, in-
stead of computing the intersection of this geodesic sphere with

the ray from x j towards the current estimate of x i , we compute
the intersection with a geodesic ray from x j towards x i .

The second problem can be addressed by prior work on com-
puting min-sums on manifolds. Karcher [23] proposed an it-
erative scheme for the geodesic sum-of-squares problem that
always converges as long as the points do not span the entire
sphere. His work extends (for the same functions Err, f ) to
points defined on more general Riemannian manifolds satisfying
certain technical conditions. It runs in O(n) time per iteration.

For the robust case (Err(δ) = |δ|), the Karcher scheme no
longer works. For this case, we make use of a Weiszfeld-like
adaption [18] that again works on general Riemannian mani-
folds, and on the sphere in particular. Like the Weiszfeld scheme,
this approach takes O(n) time per iteration.

4.3 Convergence Proofs
Here we prove that each step of PLACECENTER converges as

long as the recursively called procedures reduce the relevant
cost functions. Convergence is defined with respect to a cost
function κ, so that an algorithm converges if at each step κ de-
creases until the algorithm terminates.

Theorem 4.1. If each call to x̃ i ← PLACEi(X , D) decreases the
cost Ci(X , D, x i), then PLACECENTER(D) converges with respect to
C(·, D).

Proof. Let X̃ ← PLACEi(X , D) result from running an iteration of
PLACEi(X , D). Let X̃ = {x1, . . . , x i−1, x̃ i , x i+1, . . . , xn}. Then we
can argue

C(X , D)− C(X̃ , D)

= 2
∑

j=1

Err( f (x i , x j)− di, j)− 2
∑

j=1

Err( f ( x̃ i , x j)− di, j)

= 2Ci(X , D, x i)− 2Ci(X̃ , D, x̃ i)> 0.

The last line follows because X and X̃ only differ at x i versus x̃ i ,
and by assumption on PLACEi(X , D), this sub-cost function must
otherwise decrease.

Theorem 4.2. If each call x i ← RECENTER(X̂ ) reduces
∑n

j=1 f (x i , x̂ j)p,
then PLACEi(X , D, x i) converges with respect to Ci(X , D, ·).

Proof. First we can rewrite

Ci(X , D, x i) =
n
∑

j=1

Err( f (x i , x j)− di, j)

=
n
∑

j=1

Err(( f (x i , x̂ j) + di, j)− di, j)

=
n
∑

j=1

Err( f (x i , x̂ j)).

Since Err( f (x i , x̂ j))measures the distance to the sphere ◦ j . Then
choosing x ′i to minimize (or decrease)

∑n
j=1 Err( f (x ′i , x̂ j)), must

decrease the sum of distances to each point x̂ j on each sphere ◦ j .
Now let x̂ ′j be the closest point to x ′i on ◦ j . Hence Err( f (x ′i , x̂ ′j))≤
Err( f (x ′i , x̂ j)) and thus

Ci(X , D, x ′i) =
n
∑

j=1

Err( f (x ′i , x̂ ′j))≤
n
∑

j=1

Err( f (x ′i , x̂ j))

≤
n
∑

j=1

Err( f (x i , x̂ j)) = Ci(X , D, x i)



where equality only holds if x i = x ′i , in which case the algorithm
terminates.

4.4 Working Space Usage
PLACECENTER(D) takes an n× n distance matrix as input, but

each invocation of PLACEi(X , D) only operates on a single point.
This means that although the input complexity is O(n2), the
working memory footprint of the algorithm is only O(n). This
is a significant advantage of PLACECENTER(D) over many exist-
ing MDS methods that require the entire matrix D to be stored
in memory. In Section 5 we will see that this small memory
footprint enables us to run PLACECENTER(D) for values of n well
beyond the point where other methods start to fail.

5. EXPERIMENTS
In this section we evaluate the performance of PLACECENTER

(PC). Since PC generalizes to many different cost functions, we
compare it with the best known algorithm for each cost func-
tion, if one exists. For the fMDS problem the leading algorithm
is SMACOF [14]; for the r2MDS problem the leading algorithm
is by Cayton and Dasgupta (CD) [9]. We know of no previous
scalable algorithm designed for rMDS. We note that the Cayton-
Dasgupta algorithm REE does not exactly solve the r2MDS prob-
lem. Instead, it takes a non-Euclidean distance matrix and finds
a Euclidean distance matrix that minimizes the error without
any rank restrictions. Thus, as suggested by the authors [9], to
properly compare the algorithms, we let CD refer to running REE
and then projecting the result to a k-dimensional subspace us-
ing the SVD technique [39] (our plots show this projection after
each step). With regards to each of these Euclidean measures we
compare our algorithm with SMACOF and CD. We also compare
with the popular SVD-based method [39], which solves the re-
lated cMDS problem based on similarities, by seeding all three it-
erative techniques with the results of the closed-form SVD-based
solution.

Then we consider the family of spherical MDS problems {c,g}-
{1,2}-sMDS. We compare against a version of SMACOF-Q [14]
that is designed for data restricted to a low dimensional sphere,
specifically for the c-2-SMDS measure. We compare this algo-
rithm to ours under the c-2-SMDS measure (for a fair compari-
son with SMACOF-Q) and under the g-1-SMDS measure which
is the most robust to noise.

The subsections that follow focus on individual cost measures.
We then discuss the overall behavior of our algorithm in Sec-
tion 5.6.

Data sets, code, and setup.
Test inputs for the algorithms are generated as follows. We

start with input consisting of a random point set with n = 300
points in Rd for d = 200, with the target space T = Rk with
k = 10. Many data sets in practice have much larger param-
eters n and d, but we limit ourselves to this range for most
of the experiments because for larger values CD becomes pro-
hibitively slow, and both SMACOF and CD run into memory
problems. In Section 5.5 we explore the performance of our
algorithm on larger data sets (up to 50,000 points). The data
is generated to first lie on a k-dimensional subspace, and then
(full-dimensional) Poisson noise is applied to all points up to a
magnitude of 30% of the variation in any dimension. Finally, we
construct the Euclidean distance matrix D which is provided as
input to the algorithms.

These data sets are Euclidean, but “close” to k-dimensional.
To examine the behavior of the algorithms on distance matri-
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Figure 2: rMDS: A typical behavior of the PC, CD and SMA-
COF for rMDS problem.

ces that are non-Euclidean, we generate data as before in a k-
dimensional subspace and generate the resulting distance ma-
trix D. Then we perturb a fraction of the elements of D (rather
than perturbing the points) with Poisson noise. The fraction per-
turbed varies in the set (2%, 10%,30%, 90%).

All algorithms were implemented in MATLAB. For SMACOF,
we used the implementation provided by Bronstein [8], and
built our own implementation of SMACOF-Q around it. For
all other algorithms, we used our own implementation1. In all
cases, we compare performance in terms of the error function
Err as a function of clock time.

5.1 The rMDS Problem
Figure 2 shows the cost function Err associated with rMDS

plotted with respect to runtime. PLACECENTER always reaches
the best local minimum, partially because only PLACECENTER can
be adjusted for the rMDS problem. We also observe that the
runtime is comparable to SMACOF and much faster than CD in
order to get to the same Err value. Although SMACOF initially
reaches a smaller cost that PC, it later converges to a larger cost
because it optimizes a different cost function (fMDS).

We repeat this experiment in Figure 3 for different values of
k (equal to {2,20, 50,150}) to analyze the performance as a
function of k. Note that PC performs even better for lower k
in relation to CD. This is likely as a result of CD’s reliance on
the SVD technique to reduce the dimension. At smaller k, the
SVD technique has a tougher job to do, and optimizes the wrong
metric. Also for k = 150 note that CD oscillates in its cost; this
is again because the REE part finds a nearby Euclidean distance
matrix which may be inherently very high dimensional and the
SVD projection is very susceptible to changes in this matrix for
such large k. We observe that SMACOF is the fastest method to
reach a low cost, but does not converge to the lowest cost value.
The reason it achieves a cost close to that of PC is that for this
type of data the rMDS and fMDS cost functions are fairly similar.

In Figure 4 we evaluate the effect of changing the amount of
noise added to the input distance matrix D, as described above.
We consider two variants of the CD algorithm, one where it
is seeded with an SVD-based seed (marked CD+SVD) and one

1All of our code may be found at http://www.cs.utah.edu/
~suresh/papers/smds/smds.html.

http://www.cs.utah.edu/~suresh/papers/smds/smds.html
http://www.cs.utah.edu/~suresh/papers/smds/smds.html
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Figure 3: rMDS: Variation with k = 2,20, 50,150.

where it is seeded with a random projection to a k-dimensional
subspace (marked CD+rand). In both cases the plots show the
results of the REE algorithm after SVD-type projections back to
a k-dimensional space.

The CD+SVD technique consistently behaves poorly and does
not improve with further iterations. This probably is because
the REE component finds the closest Euclidean distance ma-
trix which may correspond to points in a much high dimen-
sional space, after which it is difficult for the SVD to help. The
CD+rand approach does much better, likely because the ran-
dom projection initializes the procedure in a reasonably low
dimensional space so REE can find a relatively low dimension
Euclidean distance matrix that is nearby. SMACOF is again the
fastest algorithm, but with more noise, the difference between
fMDS and rMDS is larger, and thus SMACOF converges to a con-
figuration with much higher cost than PC. We reiterate that PC
consistently converges to the lowest cost solution among the dif-
ferent methods, and consistently is either the fastest or is com-
parable to the fastest algorithm. We will see this trend repeated
with other cost measures as well.

5.2 The fMDS Problem
We next evaluate the algorithms PC, SMACOF, and CD under

the fMDS distance measure. The results are very similar to the
rMDS case except now both SMACOF and PC optimizing the cor-
rect distance measure and converge to the same local minimum.
SMACOF is still slightly faster that PC, but since they both run
very fast, the difference is of the order of less than a second even
in the very worst part of the cost/time tradeoff curve shown in
Figure 5. Note that CD performs poorly under this cost function
here except when k = 50. For smaller values of k, the SVD step
does not optimize the correct distance and for larger k the REE
part is likely finding an inherently very high dimensional Eu-
clidean distance matrix, making the SVD projection very noisy.

For the fMDS measure, SMACOF and PC perform very simi-
larly under different levels of noise, both converging to similar
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Figure 4: rMDS: Variation with noise= 2, 10,30, 90.
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Figure 5: fMDS: Variation with k = 2,20, 50,150

cost functions with SMACOF running a bit faster, as seen in Fig-
ure 6. CD consistently runs slower and converges to a higher
cost solution.

5.3 The r2MDS Problem
In this setting we would expect CD to perform consistently

as well as PC because both minimize the same cost function.
However, this is not always the case because CD requires the
SVD step to generate a point set in Rk. As seen in Figure 7 this
becomes a problem when k is small (k = 2,10). For medium
values of k, CD converges slightly faster than PC and sometimes
to a slightly lower cost solution, but again for large k (= 150),
the REE part has trouble handling the amount of error and the
solution cost oscillates. SMACOF is again consistently the fastest
to converge, but unless k is very large (i.e. k = 150) then it
converges to a significantly worse solution because the fMDS
and r2MDS error functions are different.

5.4 The Spherical MDS Problem



0 10 20 30

10
4

Time in sec

C
os

t f
un

ct
io

n
n=300 d=200 k=10 Noise=2%

 

 

0 10 20 30

10
4

Time in sec

C
os

t f
un

ct
io

n

n=300 d=200 k=10 Noise=10%

 

 

0 20 40 60
10

4

10
5

Time in sec

C
os

t f
un

ct
io

n

n=300 d=200 k=10 Noise=30%

 

 

0 10 20 30

10
5

Time in sec

C
os

t f
un

ct
io

n

n=300 d=200 k=10 Noise=90%

 

 
CD−rand

PC−SVD

SMACOF−SVD

Figure 6: fMDS: Variation with noise= 2, 10,30, 90.

For the spherical MDS problem we compare PC against SMACOF-
Q, an adaptation of SMACOF to restrict data points to a low-
dimensional sphere, and a technique of Elad, Keller and Kim-
mel [16]. It turns out that the Elad et.al. approach consistently
performs poorly compared to both other techniques, and so we
do not display it in our reported results. SMACOF-Q basically
runs SMACOF on the original data set, but also adds one ad-
ditional point p0 at the center of the sphere. The distance d0,i
between any other point pi and p0 is set to be 1 thus encour-
aging all other points to be on a sphere, and this constraint is
controlled by a weight factor κ, a larger κ implying a stronger
emphasis on satisfying this constraint. Since the solution pro-
duced via this procedure may not lie on the sphere, we normal-
ize all points to the sphere after each step for a fair comparison.

Here we compare PC against SMACOF-Q in the g-1-SMDS
(Figure 8) and the c-2-SMDS (Figure 9) problem. For g-1-SMDS,
PC does not converge as quickly as SMACOF-Q with small κ, but
it reaches a better cost value. However, when SMACOF-Q is run
with a larger κ, then PC runs faster and reaches nearly the same
cost value. For our input data, the solution has similar g-1-MDS
and c-1-MDS cost. When we compare SMACOF-Q with PC under
c-2-MDS (Figure 9) then for an optimal choice of κ in SMACOF-
Q, both PC and SMACOF-Q perform very similarly, converging
to the same cost function and in about the same time. But for
larger choices of κ SMACOF-Q does much worse than PC.

In both cases, it is possible to find a value of κ that allows
SMACOF-Q to match PC. However, this value is different for dif-
ferent settings, and varies from input to input. The key obser-
vation here is that since PC is parameter-free, it can be run re-
gardless of the choice of input or cost function, and consistently
performs well.

5.5 Processing Large Data Sets
As mentioned in Section 4, the memory footprint of PC is lin-

ear in the number of points. We ran PC for fMDS and compared
it to SMACOF and CD (Figure 10). Both SMACOF and CD fail to
run after n = 5000 because they run out of memory, while the
performance of PC scales fairly smoothly even up to 50, 0000
points. Before n = 5000, SMACOF performs quite well, but the
performance of CD starts deteriorating rapidly.
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Figure 7: r2MDS: Variation with k = 2,20, 50,150

We avoid storing the full O(n2)-sized distance matrix D, by re-
computing each distance di, j as needed. Thus we only store the
original point set, which has size O(nd). This approach works
for any dataset where distances di, j can be quickly recomputed,
not just Euclidean data in Rd for moderate d. Alternatively, we
could have read distances from disk for the point currently being
processed instead of recomputing them on the fly. Note, we also
seed all algorithms with a random projection instead of cMDS
since cMDS also has a memory bottleneck of around n= 5000.

These preliminary results indicate that our method can be ef-
fective on larger data sets. In ongoing work, we are comparing
PC to scalable MDS methods like FastMap[17], Metric Map[37],
Landmark MDS[15] and Pivot-MDS[5] that sacrifice quality (by
reducing the number of “pivot” or “landmark” points supplied to
the MDS routine) for speed. Preliminary experiments indicate
that our method is comparable to these approaches in speed,
while delivering significantly better quality. We note that these
methods are limited in general to cMDS, unlike PC.

5.6 Summary of Results
In summary, here are the main conclusions that can be drawn

from this experimental study. Firstly, PC is consistently among
the top performing methods, regardless of the choice of cost
function, the nature of the input, or the level of noise in the
problem. Occasionally, other methods will converge faster, but
will not in general return a better quality answer, and differ-
ent methods have much more variable behavior with changing
inputs and noise levels.

6. A JL LEMMA FOR SPHERICAL DATA
In this section we present a Johnson-Lindenstrauss-style bound

for mapping data from a high dimensional sphere to a low-
dimensional sphere while preserving the distances to within a
multiplicative error of (1+ ε).

Consider a set Y ⊂ Sd ⊂ Rd+1 of n points, defining a distance
matrix D where the element di, j represents the geodesic distance
between yi and y j on Sk. We seek an embedding of Y into Sd

that preserves pairwise distances as much as possible. For a set
Y ∈ Sd and a projection π(Y ) = X ⊂ Sk we say the X has γ-
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Figure 8: g-1-SMDS: Comparing PC with SMACOF-Q for dif-
ferent values of penalty parameter κ.

distortion from Y if these exists a constant c such that for all
x i , x j ∈ X

(1− γ) f (yi , y j)≤ c f (x i , x j)≤ (1+ γ) f (yi , y j).

For a subspace H = Rk, let πH(Y ) be the projection of Y ∈ Rd

onto H and then scaled by d/k. For X ∈ Rk, let S(X ) be the
projection to Sk−1, that is for all x ∈ X , the corresponding point
in S(X ) is x/||x ||.

When f (yi , y j) = ||yi − y j ||, and Y ∈ Rd , then the Johnson-
Lindenstrauss (JL) Lemma [22] says that if H ⊂ Rd is a random
k-dimensional linear subspace with k = O((1/ε2) log(n/δ)), then
X = πH(Y ) has ε-distortion from Y with probability at least
1−δ.

We now present the main result of this section. We note that
recent results [1] have shown similar results for point on a vari-
ety of manifolds (including spheres) where projections preserve
Euclidean distances. We reiterate that our results extend this
to geodesic distances on spheres which can be seen as angle
∠x ,y between the vectors to points x , y ∈ Sk. Another recent
result [29] shows that k = O((1/ε2) log(n/δ)) dimensions pre-
serves

p
ε-distortion in angles, which is weaker than the follow-

ing result.

Theorem 6.1. Let Y ⊂ Sd ⊂ Rd+1, and let H = Rk+1 be a random
subspace of Rd with k = O((1/ε2) log(n/δ)) with ε ∈ (0, 1/4].
Let f (yi , y j) measure the geodesic distance on Sd (or Sk as appro-
priate). Then S(πH(Y )) has ε-distortion from Y with probability
at least 1−δ.

This implies that if we project n data points that lie on any
high-dimensional sphere to a low-dimensional sphere Sk with
k ∼ log n, then the pairwise distances are each individually pre-
served. Before we proceed with the proof, we require a key
technical lemma.

Lemma 6.1. For ε ∈ [0,0.5] and x ∈ [0,0.7],

(1) sin((1− 2ε)x)≤ (1− ε) sin(x), and

(2) sin((1+ 2ε)x)≥ (1+ ε)sin(x).
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Figure 9: c-2-SMDS: Comparing PC with SMACOF-Q for dif-
ferent values of penalty parameter κ

Proof. Let gε(x) = (1− ε) sin x − sin((1− 2ε)x). We will show
that for x ∈ [0,1] and ε ∈ [0,0.5], gε(x) is concave. This im-
plies that it achieves its minimum value at the boundary. Now
gε(0) = 0 for all ε, and it can be easily shown that gε(0.7) ≥ 0
for ε ∈ [0,0.5]. This will therefore imply that gε(x) ≥ 0 in the
specified range.

It remains to show that gε(x) is concave in [0,0.7].

g ′′
ε
(x) = (1− 2ε)2 sin((1− 2ε)x)− (1− ε) sin x

≤ (1− ε)(sin((1− 2ε)x)− sin x)

which is always negative for ε ∈ [0, 0.5] and since sin x is in-
creasing in the range [0,0.7].

This proves the first part of the lemma. For the second part,
observe that hε(x) = sin((1+2ε)x)−(1+ε)sin(x) can be rewrit-
ten as hε(x) = g−ε(−x). The rest of the argument follows along
the same lines, by showing that hε(x) is concave in the desired
range using that h′′

ε
(x) = g ′′−ε(−x).

While the upper bound of 0.7 on x is not tight, it is close. The
actual bound (evaluated by direct calculation) is slightly over
0.72.

Proof of Theorem 6.1. Let X = πH(Y ). We consider two cases,
(Short Case) when ‖yi − y j‖ ≤ 1/2 and (Long Case) when ‖yi −
y j‖ ∈ (1/2, 2].

Short Case: First consider points yi , y j ∈ Sd such that ||yi −
y j || ≤ 1/2. Note that ||yi − y j || = 2 sin(∠yi ,y j

/2), since ||yi || =
||y j || = 1. By JL, we know that there exists a constant c such
that

(1− ε/8)||yi − y j || ≤ c||x i − x j || ≤ (1+ ε/8)||yi − y j ||.

We need to compare the angle ∠xi ,x j
with that of ∠yi ,y j

. The
largest ∠xi ,x j

can be is when c||x i || = c||x j || = (1 − ε/8) is as
small as possible, and so ||cx i − cx j || = (1+ ε/8)||yi − y j || is as
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Figure 10: The behavior of PC, SMACOF and CD for large val-
ues of n. The curves for CD and SMACOF terminate around
n= 5000 because of memory limitations.

large as possible. See Figure 11. In this case, we have

(||cx i ||+ ||cx j ||) sin(∠xi ,x j
/2) ≤ ||cx i − cx j ||

2(1− ε/8) sin(∠xi ,x j
/2) ≤ (1+ ε/8)||yi − y j ||

2(1− ε/8) sin(∠xi ,x j
/2) ≤ (1+ ε/8)2sin(∠yi ,y j

/2)

sin(∠xi ,x j
/2) ≤

1+ ε/8
1− ε/8

sin(∠yi ,y j
/2),

which for ε < 4 implies

sin(∠xi ,x j
/2)≤ (1+ ε/2) sin(∠yi ,y j

/2).

Similarly, we can show when ∠xi ,x j
is as small as possible (when

c||x i || = c||x j || = (1+ ε) and ||cx i − cx j || = (1− ε)||yi − y j ||),
then

(1− ε/2) sin(∠yi ,y j
/2)≤ sin(∠xi ,x j

/2).

We can also show (via Lemma 6.1) that since ||yi− y j || ≤ 1/2
implies ∠yi ,y j

< 0.7 we have

sin((1− ε)∠yi ,y j
)≤ (1− ε/2) sin(∠yi ,y j

)

and

(1+ ε/2) sin(∠yi ,y j
)≤ sin((1+ ε)∠yi ,y j

).

Thus, we have

sin((1− ε)∠yi ,y j
/2) ≤ sin(∠xi ,x j

/2) ≤ sin((1+ ε)∠yi ,y j
/2)

(1− ε)∠yi ,y j
/2 ≤ ∠xi ,x j

/2 ≤ (1+ ε)∠yi ,y j
/2

(1− ε)∠yi ,y j
≤ ∠xi ,x j

≤ (1+ ε)∠yi ,y j
.

Long Case: For ||yi− y j || ∈ (1/2, 2], we consider 6 additional

points y (h)i, j ∈ S
d+1 (for h ∈ [1 : 6]) equally spaced between yi

and y j on the shortest great circle connecting them. Let Ŷ be the

set Y plus all added points {y (h)i, j }h=[1:6]. Note that |Ŷ | = O(n2),
so by JL we have that

(1− ε/8)||yi − ŷi, j || ≤ c||x i − x̂ i, j || ≤ (1+ ε/8)||yi − ŷi, j ||.

origin

yi yj

xmax
i xmax

j

xmin
jxmin

i

Figure 11: Illustration of the bounds on ∠xi ,x j
when

||yi − y j || ≤ 1/2. The angle ∠xmax
i ,xmax

j
is the largest when

||xmax
i || = ||xmax

i || is as small as possible (lies on inner circle)
and ||xmax

i − xmax
j || is as large as possible (on the outer edges

of the disks of diameter ε/8 shifted down from dashed line
of length ||yi − y j ||. Bounds for xmin

i and xmin
j are derived

symmetrically.

For notational convenience let yi = y (0)i, j and y j = y (7)i, j . Since for

‖yi − y j‖ ∈ (1/2, 2] then ‖y (h)i, j − y (h+1)
i, j ‖ ≤ 1/2, for h ∈ [0 : 6].

This follows since the geodesic length of the great circular arc
through yi and y j is at most π, and π/7< 1/2. Then the chordal

distance for each pair ‖y (h)i, j − y (h+1)
i, j ‖ is upper bounded by the

geodesic distance. Furthermore, by invoking the short case, for
any pair

(1− ε)∠y(h)i, j ,y(h+1)
i, j
≤ ∠x(h)i, j ,x(h+1)

i, j
≤ (1+ ε)∠y(h)i, j ,y(h)i, j

.

Then since projections preserve coplanarity (specifically, the points
0 and y (h)i, j for h ∈ [0 : 7] are coplanar, hence 0 and x (h)i, j for
h ∈ [0 : 7] are coplanar), we can add together the bounds on
angles which all lie on a single great circle.

(1− ε)∠yi ,y j
≤ (1− ε)

6
∑

h=0

∠y(h)i, j ,y(h+1)
i, j

≤
6
∑

h=0

∠x(h)i, j ,x(h+1)
i, j

≤ (1+ ε)
6
∑

h=0

∠y(h)i, j ,y(h+1)
i, j

≤min{π, (1+ ε)∠yi ,y j
}

and thus by ∠xi ,x j
=
∑6

h=0∠x(h)i, j ,x(h+1)
i, j

implies

(1− ε)∠yi ,y j
≤ ∠xi ,x j

≤min{π, (1+ ε)∠yi ,y j
}.
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