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ABSTRACT
Thanks to the wide adoption of GPS-equipped devices, the volume

of collected spatial data is exploding. To achieve interactive ex-

ploration and analysis over big spatial data, people are willing to

trade off accuracy for performance through approximation. As a

foundation in many approximate algorithms, data sampling now

requires more flexibility and better performance. In this paper, we

study the spatial independent range sampling (SIRS) problem aim-

ing at retrieving random samples with independence over points

residing in a query region. Specifically, we have designed concise

index structures with careful data layout based on various space de-

composition strategies. Moreover, we propose novel algorithms for

both uniform and weighted SIRS queries with low theoretical cost

and complexity as well as excellent practical performance. Last but

not least, we demonstrate how to support data updates and trade-

offs between different sampling methods in practice. According to

comprehensive evaluations conducted on real-world datasets, our

methods achieve orders of magnitude performance improvement

against baselines derived by existing works.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; • Information systems→ Multidimensional range search.
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1 INTRODUCTION
The wide presence of smart phones and various sensing devices

has created an explosion of spatial data. In particular, such data are

critical to location-based services (LBSs) like Uber or Google Maps,

and also play important roles in other applications such as site

recommendations, traffic optimization, and other IoT applications.
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Figure 1: Online Aggregation with Sampling.

How to query and analyze such large spatial data in high perfor-

mance stands as a fundamental challenge. Fortunately, users often

do not need exact results for their queries. Instead, they are happy

with approximation, especially if it comes with quality guarantees.

This opens up the possibility to trade off between query time and

accuracy on the fly, hence further enabling interactive exploration
and analysis [6].

Given the popularity of online map services, spatial data are

particularly suited for interactive exploration. For example, a man-

ager in finance may want to get sales aggregation across different

regions and time periods with zoom in/out capability on the map

so as to understand the data in different granularity. In such case,

the user may only need an approximation before moving to other

regions. In order to achieve such interactive analysis experience on

big spatial data, retrieving independent random samples efficiently

from arbitrary query regions serves as a fundamental operation.

Such operations not only benefit approximation algorithms as

described above, but also facilitate data visualization on a map

when there are too many points covered by a requested region [32].

Moreover, spatial statistics analysis (e.g., spatial scan statistics [18],

Moran’s I [19], or kriging [21]) is also an important application

where many spatial regions are checked for anomalies, many pairs

of ranges are checked for association, and complex models are built

in each spatial zone. In each case, millions of range queries need to

be issued either fully accurately or independently sampled so as to

ensure accuracy and prevent false correlations. Another prominent

application is machine learning, which implicitly assumes inde-

pendence of samples for use in model bounds, cross-validation, or

stochastic gradient descent. Non-independence will break each of

the formulations and can lead to incorrect models or conclusions.

For instance, the prevalent empirical risk minimization [29] essen-

tially forms a model using a (carefully chosen weighted) average

of iid sampled data instances. Thus, to enable interactive and/or

spatio-temporally constrained machine learning, independent sam-

ples are necessary to make it scalable and reliable. When assigning

points with weights, weighted random sampling is also paramount

for real-time site recommendations, reducing variance in estimates,

and spatially-refined machine learning.

Despite its importance, samples are usually given as input in

applications rather than generated during the algorithm procedure.
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Hence, existing systems typically rely on sampling directly over

a full query (which can be very slow), or querying over pre-built

samples (which can harbor bias and may be too small). Take online

aggregation [15] as an example, where we estimate an aggregated

value (e.g., sum, average, etc.) over attributes of points covered by

a user query. Previous work [31] does not guarantee reported sam-

ples across multiple queries are independent to each other, which

can cause serious bias in our aggregation example. Fig. 1 shows

the estimated average weight over time of points in a query range

produced by our approach, the current state of the art [31] (some

pre-built samples and exhibits bias), and the only other existing

method [23] that produces independent samples without bias. Our

method converges efficiently to the actual average, whereas previ-

ous work [31] converges to a significantly biased value (20% off)

and the other method [23] converges much more slower to the

actual average. There are other challenges in using pre-built [6]

or partially pre-built samples [31]. When conducting distribution

analysis (like kernel density estimation [27]) over two overlapping

regions, samples will always be dependent, thus introduces bias.

Further on progressively-improved queries, improvement either

stops with unfixable bias due to sample dependence, or cached

samples need to be rebuilt, reverting to intractable sampling from

a full query.

Independent range sampling (IRS), which formalizes the problem

of retrieving independent random samples from a query range, is

both an old and a new problem. In the late 1980s, Olken [23] devised

a variety of techniques leveraging hierarchies to solve the problem.

However, as each sample used the hierarchy independently, it is

too slow for modern data set sizes. Using prebuilt samples (c.f.,

BlinkDB [6]) allowed systems to scale to modern sizes by relaxing

independence across samples. Since then theoretical works [4, 5, 16]

showed that true independent samples could be generated without

traversing a hierarchy for each sample (as did Olken), but were

very intricate and only for limited cases in one-dimension or halfs-

paces in low-dimensions. Inspired by the earlier of these theoretical

approaches [16] and Olken’s original ideas [23], state-of-the-art

practical solutions [31] work for minimum bounding rectangles

(MBRs), but still does not provide independence across queries or

in progressive queries (as observed in Fig. 1).

In this paper, we study how to support spatial independent ran-

dom sampling (SIRS) queries over MBRs for low-dimensional data

efficiently. Specifically, given an axis-aligned rectangle 𝑅 and an

integer 𝑘 , a SIRS query over data set 𝑃 will return 𝑘 independent

samples from points in 𝑅 ∩ 𝑃 . For each of the 𝑘 samples, the proba-

bility for each point in 𝑅∩𝑃 to be sampled is equal in uniform SIRS,

or proportional to its relative weight among points in the query

region for weighted SIRS. We choose MBRs as our query range

type since they are the most commonly-used regions (longitude

and latitude aligned boxes) in geo-spatial applications. Note that

the independence is required not only for samples returned from the
same query, but also hold for samples returned from different queries.

The central idea is, for each query, to efficiently build a tem-

porary data structure, so that all requested samples can be drawn

over the query range completely independent to each other. Specif-

ically, we reduce the general case of SIRS queries to a series of

one-dimensional problems where we develop very practical algo-

rithms with guarantees. Several technical challenges are identified

and addressed to make our solution rigorously understood as well

as practical in terms of space and query efficiency. As a result, we

are able to support both uniform and weighted IRS queries with

low space cost and query latency, achieving orders of magnitude of

empirical performance gain comparing to the state of art.

The key contributions of our work are:

• Our indexes have linear storage cost, guarantee independence of

each sample, and perform uniform/weighted SIRS queries orders

of magnitude faster than any previous work. The performance

of our sampling methods do not depend on the number of data

points covered by the query region or its height/width ratio.

• Our sampling indexes are extended to support data updates.

• We carefully study the bottlenecks and trade-offs of different

sampling methods.

• We conduct comprehensive evaluations to show the cost of our

index structures and sampling methods comparing with baselines

derived by existing works.

The remainder of this paper is structured as follows: In Sec. 2,

we will formally define SIRS problem and provide essential back-

grounds of this paper. Next, we propose a general framework with

two instantiations to solve uniform SIRS problem in Sec. 3. Sec. 4

will extend our uniform method to support weighted SIRS queries.

Then, we will discuss the bottlenecks of different methods, trade-

offs between them and a potential hybrid method in Sec. 5. We will

describe how to extend our method to support updates in Sec. 5. To

verify the efficiency of our methods, we conduct comprehensive

empirical evaluation on real world data sets in Sec. 6. Finally, we

provide more detailed connection to related works in Sec. 7 and

conclude the paper in Sec. 8.

2 BACKGROUND
In this section, we formalize the uniform and weighted version

of spatial independent range sampling (SIRS) problem. Then, we

will cover the essential building blocks of our proposed methods.

Finally, we will highlight the importance and applications of SIRS

queries with several existing baseline solutions.

Problem Formulation. Over a data set of points 𝑃 ∈ R𝑑 , the goal
of SIRS query is to retrieve independent samples from points of 𝑃

residing in a query region 𝑅. Generally, the query region can be

derived from any geometric shape. In this paper, we focus on axis-

aligned minimum bounding rectangles (MBRs) for their common

presence in real world applications. Formally, we define the uniform

SIRS problem as below:

Definition 1 (Uniform SIRS). Given a data set 𝑃 ⊂ R𝑑 , a query
MBR 𝑅 and an integer 𝑘 , a uniform SIRS query will return 𝑘 inde-
pendent random samples from 𝑅 ∩ 𝑃 with each data point 𝑝 ∈ 𝑅 ∩ 𝑃

having a probability of 1

|𝑅∩𝑃 | to represent each of the 𝑘 samples.

In more general cases, there could be a function 𝑤 : 𝑃 → R
assigning each point 𝑝 ∈ 𝑃 a weight𝑤 (𝑝). Based on such function,

we can define weighted SIRS problem as:

Definition 2 (Weighted SIRS). Given a data set 𝑃 ⊂ R𝑑 with
a weight function 𝑤 : 𝑃 → R+, a query MBR 𝑅 and an integer 𝑘 ,
a weighted SIRS query will return 𝑘 independent random samples
from 𝑅 ∩ 𝑃 with each data point 𝑝 ∈ 𝑅 ∩ 𝑃 having a probability of

𝑤 (𝑝)∑
𝑞∈𝑅∩𝑃 𝑤 (𝑞) to represent each of the 𝑘 samples.



Without the loss of generality, we fix 𝑑 = 2 in this paper to

demonstrate our index structure and sampling algorithm.We expect

our method will work with any low dimension cases where 𝑑 < 10;

see Sec 3.4 and evaluation up to 𝑑 = 7 in Sec. 6.

Spatial Indexes and Space Filling Curves. Many have studied

spatial index structures such as grid file [20], quad-tree [13], KD-

Tree [7], R-Tree [14], R+-Tree [28], etc. The central idea of these

index structures is to partition the underlying data points based on

spatial locality that one could leverage in pruning irrelevant data

during the query process. There is another popular approach which

maps multi-dimensional data to a single sorted order by via space

filling curves like z-order curve and Hilbert curve. Such space filling

curves recursively divide a 2- (or higher-) dimensional square into

cells, and order those cells, inducing a partial ordering on all points

contained in them. This recursion turns the partial order into a

single total order, which maintains locality through the recursive

cell decomposition. As a result, we can utilize well implemented one-

dimensional index structures like B+-Tree in traditional databases

to index spatial data. Existing solutions adopting this approach

includes linear quad-tree and Hilbert R-tree.

Walker’s Alias Method. Given a set of items with weights as-

signed {𝑤1,𝑤2, · · · ,𝑤𝑛}, the goal of weighted sampling problem is

to build a data structure such that a query extracts an index 𝑖 with

probability 𝑝𝑖 = 𝑤𝑖/
∑𝑛

𝑗=1𝑤 𝑗 . The indices returned by different

queries should be independent. The classic solution of this problem

is Walker’s alias method [30] that has 𝑂 (1) query cost and 𝑂 (𝑛)
preprocessing time. It redistributes the weight of items into 𝑛 cells,

where each cell is partitioned by a pre-calculated weight into at

most two items. The weight assigned to each item in the input is

maintained as the sum of its weight across all cells. A query selects

one cell uniformly at random, then chooses one of the two items in

the cell by weight; hence selects items proportional to their weights

in 𝑂 (1) time. The structure is built to support weighted sampling

in this method is usually referred as an alias structure.

Baselines. Olken et al. proposed the classic method [23] of sam-

pling on top of a B+-Tree. The main idea is to traverse the tree

down a random path in the tree while applying rejection when it is

not possible to get a valid sample residing in the query range. Intu-

itively, this method can be easily generalized into any tree-based

index structure, hence we implement it on top of KD-trees as one

of our baselines. It is an effective method when the query range is

not very selective and the number of requested samples is small.

However, it is slow in the general cases due to involving potentially

too many random number generations and rejections.

Wang et at. [31] proposed a uniform sampling method on spatial

data over MBRs. It leverages pre-built sample buffers on R-tree

nodes and maintaining a frontier of tree nodes for each query to

accelerate Olken’s method. However, it does not guarantee inde-

pendence across queries, because the sample buffers are fixed. More

specifically, reported samples in the sampling buffer is guaranteed

to be returned again in the further queries over the same region,

thus breaks the independence rule.

Finally, we implement a brute force baseline which retrieves all

points in the query range and then samples from that set.

Baseline enhancements. We found a very simple optimization

for Olken’s method that can accelerate it up to 12x, which we call

the LCA optimization. Specifically, we find the deepest node that

can cover all range query result candidates. In other word, it is the

least common ancestor (LCA) of all leaf nodes which intersect the

query region. With such a node found, we can start the random tra-

verse from the LCA rather than the tree root. This optimization will

reduce rejection rate, and hence the total random number genera-

tions. In Sec. 6.3, we will show the effectiveness of this optimization

on both uniform and weighted SIRS problem.

Tomake a fair comparison against our method, we adjustWang’s

method [31] by adding a valid sample offset on all tree nodes (so

that we can mark samples as invalid after they have been reported)

and rebuilding a sample buffer when it is running out of valid

samples in order to enforce independence. This is only feasible to

implement for uniform SIRS queries but not for weighted SIRS. We

implement this method over R-Trees and KD-trees as baselines.

3 UNIFORM SIRS
Our general framework consists of an index structure design and

sampling algorithm to support uniform SIRS queries. We will pro-

vide details along with essential theoretical analysis.

3.1 Sampling Framework
We start from a simple observation: uniform IRS for intervals over

static one-dimensional data sets is simple to solve. On a data set𝐷 =

{𝑥1, 𝑥2, · · · , 𝑥𝑚} where 𝑥𝑖 ∈ R, a uniform IRS over interval [𝑎, 𝑏]
and integer 𝑘 will return 𝑘 independent uniform random samples

from {𝑥 | 𝑥 ∈ [𝑎, 𝑏], 𝑥 ∈ 𝐷}. After sorting 𝐷 to get (𝑥1, 𝑥2, · · · , 𝑥𝑚),
for each query, we do a binary search for 𝑎 and 𝑏 to get the index

range [𝑠, 𝑡] such that {𝑥 | 𝑥 ∈ [𝑎, 𝑏], 𝑥 ∈ 𝐷} = {𝑥𝑠 , · · · , 𝑥𝑡 }. To
get a random sample in range [𝑎, 𝑏], we simply generate a random

number between [𝑠, 𝑡] and return the corresponding element in the

sorted sequence. Hence, one-dimensional uniform IRS for intervals

can be solved with 𝑂 (𝑛) space cost, 𝑂 (𝑛 log𝑛) preprocessing cost,

and 𝑂 (log𝑛 + 𝑘) query cost.

Based on this observation, our central focus for the SIRS problem

is to separate the query structure (built in sublinear time)
from drawing samples (retrieved in 𝑂 (1) time each). We do

this by reducing SIRS queries to a set of one-dimensional IRS queries,

connected with an alias structure.

First, we layout the data in a sequence (𝑝1, 𝑝2, · · · , 𝑝𝑛) based on

some space decomposition method so spatially close data points are

also close to each other in the linear sequences. Then, for arbitrary

query MBR, we can decompose it into a set of continuous index
ranges {[𝑠1, 𝑡1], [𝑠2, 𝑡2], · · · , [𝑠𝑚, 𝑡𝑚]} whose corresponding data

cover all possible sample candidates.

Second, we then build an alias structure over these index ranges

with [𝑠𝑖 , 𝑡𝑖 ] having weight |𝑡𝑖−𝑠𝑖 +1|. Recall that the cost of building
the alias structure is 𝑂 (𝑛) on 𝑛 weighted items. As a result, it only

takes 𝑂 (𝑚) time for each query to construct its top-level alias

structure, which turns out not to be a dominating cost.

Finally, we can retrieve an independent uniform random sample

of the query range by leveraging Walker’s alias method to get a

random index range [𝑠 ′, 𝑡 ′] first, and then report a random data

point from {𝑝𝑠′, · · · , 𝑝𝑡 ′}.
Lemma 1. If we can map a query MBR 𝑅 to 𝐼 (𝑛, 𝑅) continuous

index ranges in 𝑀 (𝑛, 𝑅) time, our sampling framework retrieves 𝑘
independent uniform samples from 𝑅 in𝑂 (𝑀 (𝑛, 𝑅) + 𝐼 (𝑛, 𝑅) +𝑘) time.
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Proof. The runtime follows from the above discussion since it

takes𝑂 (𝑀 (𝑛, 𝑅) + 𝐼 (𝑛, 𝑅)) time to build the top-level alias structure,

and 𝑂 (1) time to generate each query. The independence of each

sample also follows directly since each is generated with indepen-

dent randomness (in two steps: to select a index range through the

alias structure, and then to select a point in that index range).

What remains is to argue each point is selected with the correct

probability. Let 𝑛𝑖 = 𝑡𝑖 − 𝑠𝑖 + 1 be the number of points in interval

[𝑠𝑖 , 𝑡𝑖 ]. And let 𝑛𝑅 =
∑𝑚
𝑖=1 𝑛𝑖 be the total number of points in query

range 𝑅. A point is selected when two events are true: (1) its interval

[𝑠𝑖 , 𝑡𝑖 ] is selected (with probability 𝑛𝑖/𝑛𝑅 ), and (2) it is selected from
that interval (with probability 1/𝑛𝑖 ). Since these steps are done

independently, the overall probability for any point is
𝑛𝑖
𝑛𝑅

· 1

𝑛𝑖
= 1

𝑛𝑅
,

as desired. □

There are many ways to map multi-dimensional data to one

dimension while preserving spatial locality. In the following sub-

sections, we will show two instances of the sampling framework

based on two different space decomposition and indexing strategies.

3.2 Z-Value Sampling Method
Space filling curves naturally fit in our sampling framework – they

are commonly adopted to map spatial data to one dimension so

that traditional RDBMS indexes like B+-tree can be reused. Z-order

curves form a natural hierarchical quad decomposition of under-

lying space. We use it since it is cheap to calculate and parameter

free, but others like Hilbert curves could be used.

To construct z-order curve representation, we first need to dis-

cretized the space into unit cells so that each point can assign to a

cell represented by integer coordinates. Denoting the coordinate of

a cell as (𝑥,𝑦), the z-value of such cell would be interleaving the

binary representation of 𝑥 and 𝑦. Fig. 2 show an example of the

z-order curve based space decomposition. In particular the z-value

of 𝑝3 residing in cell (3, 2) is (001110)2 = 14 by interleaving (011)2
and (010)2. It provides a natural quad decomposition, essentially a

quad-tree, and all points lying in a quad-tree cell have consecutive

z-values. As a result, each query MBR can be decomposed into a set

of continuous z-value ranges derived from its composing quadrants.

To make Z-order SIRS concrete, we first sort all data points based

on their z-values and build a quad-tree on top of it. While building

the index, we mark the index ranges each quad-tree node covers on

the sorted data. As a query MBR is issued, we follow the quad-tree

to find the minimum set of disjoint quadrants to cover it. Note that

when we found a quadrant fully covered by the query MBR, we

can stop traversing its children. Since each quad-tree node has a

corresponding index range on the sorted data, all points covered

by the query range will be narrowed down to a set of continuous

ranges. Finally, we construct an alias structure on top of these

ranges so that we can start retrieving samples.

Fig 2 provides a running example of the z-value samplingmethod.

Aswe can see, all data points are sorted based on their z-value laying

out on the axis below. Consider an IRS query on MBR from (2, 2)
to (4, 5). According to the z-order curve decomposition, we can

break it into 6 continuous z-value ranges. Note that we do not need

to further break the quadrants (2, 2) → (3, 3) and (2, 4) → (3, 5)
as they are already fully covered by the query. Then, we check

to see how many points are covered by each range and build an

alias structure on top of it. In this case, we have an alias structure

built on top of distribution {2, 1, 1} mapping to continuous ranges

on data 𝑝3 − 𝑝4, 𝑝9 and 𝑝11. Now, for each requested sample, we

leverage the alias structure to choose a random range. For instance,

we end up with range 𝑝3 − 𝑝4. Then, we generate a random integer

from [3, 4] to decide either 𝑝3 or 𝑝4 will be returned as a sample.

Let the total number of continuous intervals by decomposing

query MBR 𝑅 is 𝑂 (𝑐 (𝑅)) where 𝑐 (𝑅) represents the number of

data points covered by 𝑅. Similarly, the time cost for doing such

decomposition is also𝑂 (𝑐 (𝑅)). By applying it to Lemma 1, we ended

up with a full solution with 𝑂 (𝑛) space cost and the query cost

bounded by the following corollary:

Corollary 1. For any query range𝑅, the z-value samplingmethod
can retrieve 𝑘 independent uniform random samples from a query
MBR 𝑅 in 𝑂 (𝑐 (𝑅) + 𝑘) expected time.

Note that 𝑐 (𝑅) can be 𝑂 (𝑛) in the worst case. Thus, query cost

of this method can be as bad as𝑂 (𝑛 +𝑘). However, in most realistic

cases, 𝑐 (𝑅) is reasonable, making the z-value sampling method a

viable solution. Also note that the query time𝑂 (𝑐 (𝑅)+𝑘) is expected
due to rejection sampling at leaf nodes. We can also achieve worst

case 𝑂 (𝑐 (𝑅) + 𝑘) query time by scanning all points residing in

boundary leaf nodes which is not fully covered by the query range.

3.3 KD-Tree Sampling Method
Although Z-value sampling method provides a decent solution for

SIRS problem, there are adversarial cases where its query cost can

be as high as Ω(𝑛 +𝑘). To address this issues, we introduce the KD-
Tree sampling method which guarantees a theoretical query cost

bound of 𝑂 (
√
𝑛 + 𝑘) and achieves a better practical performance.

As the name of ourmethod suggests, the basic tool we are using is

KD-tree, which is a space-partitioning data structure for organizing

points in a 𝑘-dimensional space. In particular, KD-tree is a binary

tree in which each leaf node contains a subset of data points and

each non-leaf node corresponds with a splitting hyperplane that

divides the space into two parts. Each level of a KD-tree splits all

children along a specific dimension at the median with a hyperplane

perpendicular to the corresponding axis. At the root, all children

will be split based on the first dimension. If the first dimension

coordinate of a point is less than the median, it will be in the

left subtree. Otherwise, it will be in the right subtree. Each level

down in the tree divides on the next dimension, returning to the
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Figure 3: KD-Tree Based Space Decomposition

first dimension once all others have been exhausted. We do this

recursively until each node has fewer points than a given threshold.

Similar to the 𝑍 -value method, we can define a linear ordering of

points using the hierarchy defined by the KD-tree such that:

• Each tree node𝑢 is corresponded to a continuous interval [𝑠𝑢 , 𝑡𝑢 ]
on data storage.

• If node 𝑢 is a descendant of node 𝑣 , the interval of node 𝑢 is

covered by that of node 𝑣 , i.e. 𝑠𝑣 ≤ 𝑠𝑢 ≤ 𝑡𝑢 ≤ 𝑡𝑣 .

With these properties, we can combine a KD-Tree and this data lay-

out to fit in our sampling framework. Starting from the full dataset

𝐴, we partition it around the splitting hyperplane. We will find

how many data points 𝑥 lay on one side of the splitting hyperplane,

while all the data points on that side are located in index range

[0, 𝑥] on the array and others are located in range [𝑥 +1, |𝐴|]. Then,
we can mark [0, |𝐴|] on the root of our KD-Tree, [0, 𝑥] on its left

child, and [𝑥 + 1, |𝐴|] on its right child. We do this recursively un-

til we finish building the tree structure. Fig. 3 shows an example

KD-Tree with these index range tags. During tree construction, the

storage array will be rearranged to guarantee these properties.

Similar to Z-value sampling method, we can decompose a query

MBR into a set of tree nodes in the labeled KD-Tree, which can be

further mapped to continuous intervals on the storage. For example,

as illustrated in Fig. 3, the query region can be mapped to 6 tree

nodes {1, 𝑗, 7, 8, 9, 11}. First each leaf node ismapped to a continuous

block on the storage, all sample candidates would be contained in six

intervals {[𝑠1, 𝑡1], [𝑠4, 𝑡5], [𝑠7, 𝑡7], [𝑠8, 𝑡8], [𝑠9, 𝑡9], [𝑠11, 𝑡11]}. Second,
we build an alias structure on the length of all these intervals. Finally,

we can draw each sample by retrieving a random interval from the

alias structure first and then generating a random integer from

the selected index range. Note that there may be some data points

residing in the intervals we consider, but not in the query region.

In this case, we simply reject the sample and try again.

Theoretically, the maximum number of nodes that any query

region is mapped to can be bounded by 𝑂 (
√
𝑛) [12]. In addition,

the labeled KD-Tree itself has space cost of 𝑂 (𝑛) and construction

cost of𝑂 (𝑛 log𝑛). Hence, invoking Lemma 1, we can solve uniform

SIRS problem with KD-tree sampling method in 𝑂 (𝑛) space cost,
𝑂 (𝑛 log𝑛) preprocessing cost, and the query cost as below:

Corollary 2. For any query range 𝑅, the KD-Tree sampling
method can retrieve 𝑘 independent uniform random samples from a
query 𝑅 in 𝑂 (

√
𝑛 + 𝑘) expected time.

Similar to z-value sampling method, we can get worst-case query

time guarantee by scanning all points in the boundary nodes. Note

that the query cost is not related to 𝑐 (𝑅), which promises a reason-

able performance even in the worst case.

3.4 Generalization to Other Indexes
Inspired by the KD-Tree sampling method, we can generalize our

approach to almost all hierarchical spatial indexes that support

range queries such as R-trees [14] and R+-Trees [28]. Furthermore,

spatial indexes for higher dimensions or even metric trees for other

shaped ranges can be applied to our sampling framework as well.

The simplest property sufficient for the framework to be applicable

is that each data point is stored in exactly one leaf node. Then at

each level of a hierarchy, we can define an ordering among the

children and designate that each data point in the earlier child is

ordered before that of the data points in the later child. This defines

a total ordering (of leaf nodes). If leaf nodes contains single points

it is a total order, if not (as we recommend) rejection sampling can

be used at the leaf node level. A simple way to layout the data

according to such total ordering is to do a depth-first search (DFS)

on the tree and concatenate the points of each leaf node to tail of

data array when it is visited.

Then on a query 𝑅, the space decomposition hierarchy can be

used to decompose the range into a set to sequences: in processing

each node, if a child is completely contained in 𝑅, its entire interval

is used; if entirely not in 𝑅, it is ignored; and if it is partially in

𝑅, then recurse. Given a bound on the preprocessing time, and

number of intervals in the decomposition, Lemma 1 can be invoked

to bound space and IRS query complexity.

Note that the KD-Tree SIRS has tangible benefits compared to

the R-Tree (which dominates in spatial databases) as the binary

splits directly provide a logical sub-ordering, whereas R-Tree needs

a second pass. Further, most R-Tree spatial decomposition (like

STR packing [17]) does not have worst case bounds and thus is not

immune to pathological cases. We implemented R-Tree SIRS in our

sampling framework and compared it against others in Sec. 6.6.

4 WEIGHTED SIRS
Wenext extend out approach to support weighted SIRS query. Recall

our uniform SIRS method decomposes the query region into a set

of continuous ranges on a linear data layout. The weighted SIRS

uses the same idea, but more structure is required.

We use the same spatial index and linear data layout (𝑥1, 𝑥2, · · · ,
𝑥𝑚) described in Sec. 3.2 and Sec. 3.3; this can decompose a query

region into continuous index ranges {[𝑠1, 𝑡1], [𝑠2, 𝑡2], · · · , [𝑠𝑚, 𝑡𝑚]}
on the linear data layout. Second, we build an alias structure on

these ranges where each range is assigned to the summed weight of

all points it covers. Slightly different from the uniform SIRS solution,

we build an alias structure over these index ranges with [𝑠𝑖 , 𝑡𝑖 ]
having weight

∑𝑡𝑖
𝑘=𝑠𝑖

𝑤 (𝑥𝑘 ). At this point, we have distributed the

total weight properly onto all ranges, thus can leverage Walker’s

alias method to get a random index range [𝑠 ′, 𝑡 ′] and do a weighted
sampling on that range to retrieve a weighted SIRS sample.

In the final stage of our method described above, we have to sup-

port retrieving a weighted independent range sample from a given

range on top of a sequence, which is essentially the one-dimensional

weighted IRS problem. This problem has not yet been thoroughly

investigated from a practical perspective. The best solution dis-

cussed in theory [5] has 𝑂 (𝑛) space cost and 𝑂 (log∗ 𝑛) query cost.
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This structure involves building a𝑂 (𝑛′ log2 𝑛′) sized structure over
𝑛′ = 𝑛/(log2 𝑛) grouped points and then recursively applying the

structure onto each𝑂 (log2 𝑛) sized group. This method has a large

constant factor in the size of the structure and construction time

as it requires building multiple large alias tables at every node and

cumulative sums over groups of elements and individual elements.

As a result of this constant factor the structure must be recursively

applied many times on grouped points to decrease the size, but

this recursive nesting in practice is not shallow enough to provide

savings in runtime over much simpler methods. Our initial tests

indicate that this method is not practical for the data scales we

considered.

Another approach to this one-dimensional weighted IRS problem

is to build an alias structure on each node of the binary tree over

the data. Since each continuous range [𝑠𝑖 , 𝑡𝑖 ] corresponds with one

(or a small number) of such ranges, we can then issues each sample

in 𝑂 (1) time. However, this would require Θ(𝑛 log𝑛) space, which
is too large for massive 𝑛.

To address this challenge, we propose a new method without

any rejection to answer one-dimensional weighted IRS, which has

linear space and is fast enough for practical use. Specifically, we

build a dyadic tree attached to the sequence such that any arbitrary

query interval [𝑠, 𝑡] can be decomposed into𝑂 (log𝑛) sub-intervals
which map to tree nodes. Then on a query, we build a top-level alias

structure on all returned sub-intervals with their corresponding

weights. Finally, we can retrieve samples by picking a random sub-

interval from the alias structure and conduct weighted sampling

on it. As mentioned, pre-building an alias structure for each of

these tree nodes would require 𝑂 (𝑛 log𝑛) space. Rather, to select a

weighted point from each sub-interval we traverse down its corre-

sponding subtree in 𝑂 (log𝑛) time. Even though this method gives

us a 𝑂 (𝑘 log𝑛) query cost for retrieving 𝑘 samples in the query

interval, it does not involve any rejection at internal nodes, and

hence is not influenced by query selectivity.

Dual-Tree Solution. By combining the space decomposition idea

with the solution for one-dimensional IRS described above, we

propose a dual-tree solution for solving weighted SIRS problem.

Fig. 4 shows its dual-tree structure and corresponding sampling

process. We still start from laying out our data while constructing a

space decomposition structure. Then, in addition, we build a dyadic

tree to support one-dimensional weighted IRS queries on the data

layout generated from the last step. Now, we can decompose the

query MBR in the first data structure and build the top-level alias

structure to pick a continuous data range randomly, then retrieve
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the weighted sample by issuing an IRS query to the second one.

Since both structures have space cost linear to the data size, we have

𝑂 (𝑛) total space cost. For each query, we can retrieve 𝑘 samples in

𝑂 (
√
𝑛 + 𝑘 log𝑛) time if we use KD-Tree as our first data structure.

We remark that the solution for one-dimensional IRS problem is

not restricted to our method described above. If we take the best

theoretical result in the literature [5], we can solve the weighted

SIRS problem in 𝑂 (
√
𝑛 + 𝑘) query cost.

Combined Tree Solution. Remarkably, the query ranges we issue

to the second structure in the dual-tree solution is limited to the

boundaries of tree nodes in the first data structure. Thus, we can

merge the two supporting data structure and reduce the constant

factor of both space and query cost.

We still construct the top-level alias structure by decomposing

the query MBR into continuous ranges with the help of our space

decomposition structure. Fig. 5 shows our combined data structure

and sampling procedure for weighted SIRS problem. After selecting

a random range with Walker’s alias method, the sample space is

reduced to that subtree’s range. Then we can randomly traverse

that subtree. On a query, we build a constant-size alias structure

over the children of each internal node and data points of each leaf

node, and recurse until we reach a leaf.

In this optimization, we not only save the space cost for the

dyadic tree but also avoid constructing the second-level alias struc-

ture used in answering the one-dimensional weighted IRS query.

5 DISCUSSIONS AND EXTENSIONS
In this section, we will discuss how to extend our methods to sup-

port updates, the trade-offs in real world implementation and a

potential hybrid method for fitting different circumstances.

Cost of Rejection Sampling. A major lesson we learned from

solving the SIRS problem is that rejection sampling can be very

expensive in practice and should be avoided as much as possible.

According to our empirical evaluation, around 90% of CPU time

is wasted because of rejection sampling in Olken’s method (even

with our LCA optimization) when the query region selects 0.1% of

our default data set. This is because Olken’s method can reject in

any level on the tree and requires the algorithm restarting from the

root every time when a rejection occurs. In contrast, our methods

effectively reduce the sample rejection rate since the index ranges

returned by our space decomposition has a much tighter coverage

on query MBRs. More specifically, we only reject samples on the

leaf nodes that are not fully covered by the query range. As a result,

our methods spend less than 7% of the CPU time for processing

query on rejection under the same settings.
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We also found that random number generation (RNG) is a very

expensive operation. The fastest pseudo-random number generator

we used in our implementation (which is Pcg64Mcg [26]) can only

generate around 13 billion random real numbers between [0, 1)
per second. If we want to get better quality random numbers, the

default cryptography-safe random number generator in Rust has a

much lower throughput at around 61 million operations per second

(213x slower than Pcg64Mcg). This makes random number gener-

ation a major bottleneck of SIRS algorithms. Hence, reducing the

number of RNGs and avoiding rejections (which wastes CPU cycles

on expensive RNG operations) sits in the center of designing an

efficient solution for SIRS.

We also considered completely eliminating rejection. In particu-

lar, we can scan all points in leaf nodes which intersect but are not

fully covered by the query region so as to find the points in those

nodes that are actually covered by the query. Then, instead of re-

garding such nodes as candidates in the top-level alias structure, we

construct a spare alias structure over the points we found from the

scanning step. With the help of that, we can directly sample in the

spare alias structure to avoid rejection sampling. While this does

not affect theoretical asymptotic (leaf nodes are constant size), it is

only effective when many points in these boundary regions are not

covered, and the number of samples 𝑘 is large. Note that avoiding

rejections in weighted SIRS could be much more important than

uniform SIRS as the point weights could heavily bias towards the

uncovered points in boundary nodes.

Trade-offs and Hybrid Solution. In some narrow cases, Olken’s

method is preferred to our solution: when the query region covers

a large portion of the data and a small number of samples are

requested. To get the best of both worlds, we can build a dynamic

trade-off between different methods based on query selectivity and

number of samples requested with prior knowledge. However, in

most cases, it is hard (and slow) to infer query selectivity in prior.

To make such trade-off easier, we can build a hybrid solution.

As illustrated in Fig. 6, we start Olken’s method and our SIRS solu-

tions at the same time on two different threads and report samples

from Olken’s method at the beginning, and switch to our solution

when the top-level alias-structure is built on the other side. Our

solution can always retrieve samples much faster than Olken’s

method once the top-level alias structure is constructed since our

solution requires less random number generation for each sample

and has lower rejection rate. We can even build a third level in our

hybrid solution which leverages another thread to scan points in
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the boundary tree node as described in the last part of this section

so that we can switch to a method without rejection to achieve

higher throughput in SIRS sample generation.

Update Support. When data is constantly changing, we cannot

afford to rebuild supporting data structures upon every single up-

date. To solve this problem, we integrate the idea of log structured

merge (LSM) tree [24] into our methods.

There are two major operations, namely, insertion and deletion,

we have to support. Deletion can be supported with rejection sam-

pling: every time when an element is removed, we lazily marked it

as invalid and reject it if sampled. For insertions, we can manage it

in a LSM-tree manner: new elements are appended on the top level

and periodically merged into lower levels. In this case, each level of

our LSM-tree except for the top level is an individual data structure

that supports SIRS query. The top level of our LSM-Tree is orga-

nized as either a general spatial index (like R-Tree) that supports

fast insertions and range reporting queries or a simple array. During

the compaction, we simply gather data points from all participating

levels and build a new SIRS supporting index on top of it. As we

have to build a new index in every compaction, the type of index

structure hosted in all levels is orthogonal to the compaction proce-

dure. Hence, this approach works for both uniform and weighted

SIRS sampling indexes. Note that compaction is much faster for

ZV-Tree based sampling indexes than KD-Tree based ones since we

can leverage sorted list merging on the data layout of participating

levels in building the new SIRS indexes. In contrast, KD-Tree based

sampling index requires reordering data points from scratch.

For each incoming SIRS query, we issue the same query region

and collect all the candidate ranges at all levels except for the top

level of the LSM tree. On the top level, we simply issue a range query

to retrieve all points covered by the query region. Then, we build a

top level alias structure on the candidate data ranges from lower

levels and query results on the top level. Finally, to retrieve each

sample, we use the alias structure built above to pick a candidate

range (or the top level query results) and draw samples from it with

its interval sampling structure.

With a simple level compaction strategy and no bloom filter

optimization, we can achieve 𝑂 (log𝑛) amortized update cost with

𝑂 (𝑐 (𝑅) +𝑘) query cost when combing ZV-tree and LSM-tree. As for

the KD-tree based one, it is slightly slower on update with𝑂 (log2 𝑛)
amortized cost, and better query cost at 𝑂 (

√
𝑛 + 𝑘).

As a general data structure, LSM-tree has a large design space

for performance trade-offs [8–11]. In principle, our method is or-

thogonal to the LSM tree design space and optimizations.



Range Sampling on Disk. By now, we have been discussing how

to solve SIRS problem under an in-memory environment. It corre-

sponds with the scenario where all data can be hosted in a server

with enough memory so as to support interactive analysis and

exploration. When the data size is larger than memory, we can

conduct the same solution on disk that still outperforms Olken’s

method. Note that the cost for each query will be dominated by

I/Os rather than CPU. As a result, R-Tree instantiation is preferred

over the KD-Tree one since it has high fan-out in internal nodes

thus lower tree depth. We can further lower the cost by retrieving

samples in batches to remove duplicated random I/Os. If the user

only issues one fixed-size query, so does require sample indepen-

dence (which is essential for many data analysis applications, as

stated in Sec. 1), the original RS-Tree with sampling buffers [31]

can be used to further reduce I/Os. Nevertheless, if almost all data

blocks are touched at least once, then there is a simpler IO-efficient

approach. We can retrieve all query-intersected data blocks and

stream them into a reservoir sampler.

From another perspective, to support sampling on large data

sets that cannot fit in a single machine’s memory, we can extend

our method into a distributed setting. Essentially, we can either

partition our data based on spatial locality and issue corresponding

SIRS query to one of the machines, or issue the same query to all

machines and retrieve samples across them by constructing another

level of alias structure to distribute sample weights.

6 EVALUATION
In this section, we evaluate our sampling methods extensively

against the baselines to show its efficiency and effectiveness.

Setup. All experiments are conduct on a Ubuntu 18.04.3 LTS server

with an 8-core Intel Xeon E5-2609 2.4GHz and 256GB of DRAM.

We implemented all evaluated methods under a unified evaluation

platform in Rust stable 1.39.0. Specifically, for uniform SIRS problem,

we have the following methods:

• QTS: Retrieving all points in the query range by issuing a range

query to the KD-Tree and sample on top of range query results.

• KD-Olken: Olken’s method atop of KD-Tree as described in Sec. 2

with our LCA optimization. The version without our LCA opti-

mization is about 12× slower, as discussed in Section 6.3.

• KD-Buffer: Sampling buffer method with modification to ensure

independence as described in Sec. 2.

• ZVS: Z-Value sampling method as described in Sec. 3.2.

• KDS: KD-Tree sampling method as described in Sec. 3.3.

The methods below are also implemented for weighted SIRS:

• QTS: Retrieving all points in the query range with KD-Tree, build

an alias structure on top of range query results, then retrieve

samples with it.

• KD-Olken: Olken’s method atop of KD-Tree as described in Sec. 2

with weighted sampling on each level and our LCA optimization.

• KD-Tree Dual and ZV-Tree Dual: Dual tree weighted sampling

methods atop of KD-Tree and ZV-Tree.

• KD-Tree Combined and ZV-Tree Combined: Combined tree

weighted sampling methods atop of KD-Tree and ZV-Tree.

Datasets and Query Generation.We evaluate all methods on the

following three real-world datasets:

• USA: All nodes with coordinates in USA road network from 9th

DIMCAS Challenge [1] (around 24 million points in total) where

each node is assigned to a weight that sums up the length of its

connecting road segments.

• Twitter: Around 240 million tweets with spatial coordinates col-

lected in three months from Twitter streaming API. Each tweet

has weight of the follower count of the corresponding user.

• OSM: Points of interest (POIs) collected by OpenStreetMap [3]

with semantics tags, which contains around 2.68 billion records.

We take the number of tags as the weight of each POI.

Note that we keep only point coordinates and weights in all

datasets as they are the only useful information in our evaluation.

Query ranges are generated based on its selectivity over the

dataset. Specifically, we generate query ranges that covers a par-

ticular percentage (from 0.01% to 1%) of all data points on average

with 10% standard deviation. Note that the shape of query range

(fatness in our case of rectangles) may influence query performance.

We also generate query ranges with different length-width ratios

spanning from 1 : 1 to 1 : 64. For each pair of selectivity and fat-

ness, we generate 1000 query ranges and report the average query

latency for that setting.

Default Parameters.Without specified, all experiments are con-

ducted on square (i.e., width-length ratio 1 : 1) query ranges that

covers 0.1% of the data points over full data sets. Default value for

the number of samples retrieved 𝑘 is 1000; the value where most

simple statistics begin to exhibit reliable convergence properties.

The size of leaf nodes in KD-Trees and ZV-Tree is set to 256. The

size of sampling buffers in KD-Buffer Tree is set to 128.

6.1 Comparison on Different Datasets
In this section, we compare all methods generally on different data

sets under default settings.

Fig. 8(a) compares index construction time of different methods

for uniform SIRS problem. Note that we use the same KD-Tree

for QTS, KD-Olken, and KDS. Hence, we only show one KD-Tree

indexing cost for these three methods. As we can see, ZV-Tree

takes the least time to build since it only involves a single sort over

all z-values while KD-Tree requires finding a median at all levels.

On the other hand, KD-Buffer Tree has the same tree structure as

KD-Tree, but each internal node is attached to a sampling buffer.

As a result, it takes 9%-17% additional time to build such sampling

buffers comparing with vanilla KD-Tree. Fig. 8(b) compares the

index size of different methods for uniform SIRS against raw data

size (denoted as RAW in the figures). Similarly, ZV-Tree is the most

concise index (2% overhead on auxiliary structures) as it has a

fanout of 4 on each level while KD-Tree (4% overhead) is binary.

KD-Buffer Tree introduces a further 50%-73% additional storage

overhead comparing with original KD-Tree for attaching sampling

buffer to each node.

For weighted SIRS sampling index structures, we compare their

construction time in Fig. 9(a). Similar to the results for uniform

above, ZV-Tree variants are faster to build compared to the corre-

sponding KD-Tree variants. The combined tree optimization elim-

inates the cost of building another dyadic tree (which makes up

to 20% of the index construction time), accelerating KD-Tree and

ZV-Tree based sampling index construction by 8.8%-19%. Combined

trees also reduce storage cost significantly as shown in Fig. 9(b). On
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Figure 8: Indexing Cost for Uniform SIRS.
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Figure 9: Indexing Cost for Weighted SIRS.

all datasets, the storage cost of combined trees are only 45%-50%

of dual trees. Generally, combined trees only add a 35%-69% stor-

age overhead against raw data (which includes around 4% on tree

structures and 30%-60% on the alias structures built on leaf nodes),

while dual trees are of 2.7x-3.7x raw data size (where the dyadic

tree is of 1.5-2x size of raw data size). As debated in Sec. 5, SIRS

queries make the most sense for in-memory environment, where

combined tree optimization saves significant memory resources.

As to query latency, we compare different methods for uni-

form SIRS in Fig. 10(a). As we observed in the results, KDS has

the best query performance on all three datasets, while ZVS has

slightly worse performance. KD-Olken is the slowest method (30x-

70x slower than KDS), even with our LCA optimization, on USA and

Twitter datasets due to too many rejections. Note that KD-Olken
can be even worse than QTS by a factor up to 32x; in these cases

(e.g., the USA data set) it would be better to just issue a range query

than a SIRS query in practice. Furthermore, we found the possibly

counter-intuitive fact that KD-Buffer is consistently much slower

(3.25x - 13x) than KDS. This is because we need to keep replenishing
sample buffers attached to internal tree nodes to ensure sample inde-

pendence. Fig. 10(b) shows the query latency for different weighted

SIRS methods. According to the results, the combined tree opti-

mization speeds up both KD-Tree and ZV-Tree variant by 2x-6x.

ZV-Tree Combined and KD-Tree Combined vary in which has the

best latency on different dataset because KD-Tree usually has less

candidates in top-level alias structure while ZV-Tree is shallower

than KD-Tree. KD-Olken is constantly worse than the combined

tree methods due to excessive rejections.

6.2 Effect of Various Parameters
In this section, we will look into how different parameters effects

the performance of indexing and SIRS queries.

Scalability. Fig. 11 shows the effect of data size on indexing cost of

different uniform SIRS methods. Both indexing time and size grows

linearly to the data size. ZVS has both the lowest space and time cost

because it is cheaper to construct and has shallower tree structure.

KD-Buffer Tree is slower to construct and bigger in size due to
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Figure 10: Query Latency on Different Datasets.
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Figure 11: Effect of data size on Uniform SIRS Indexing.
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Figure 12: Effect of data size on Weighted SIRS Indexing.
additional complexity introduced by sampling buffers. Except for

KD-Buffer Tree, all other sampling structures only introduce a

negligible space overhead comparing to raw data.

Fig. 12 shows how data size effects indexing cost on weighted

SIRS structures. Similarly, all methods grows linearly on both index

construction time and index size. Comparing to KD-Tree variants,

ZV-Tree based structures are more concise and faster to build. Fur-

thermore, combined tree optimization constantly reduces memory

footprint significantly (more than 50%) and makes index construc-

tion slightly faster (around 10%) as well.

Effect of 𝑘 . Fig. 13(a) shows how query latency is influenced by

number of samples 𝑘 requested on different uniform SIRS methods.

As expected, QTS is not influenced much by 𝑘 since answering

range query is the dominating cost, while all other methods grow

linearly to𝑘 . With all 𝑘 values except for 1, KDS is the fastest method.

KD-Olken returns the first result faster than any other methods as

KDS and ZVS requires constructing top-level alias structure. But,

KD-Olken’s latency grows much faster than other methods due

to excessive rejections, and finally exceeds the cost of QTS. ZVS
can be up to 2x slower than KDS as KDS generally has a tighter

decomposition. As explained in Sec. 6.1, KD-Buffer is slower than

KDS due to the cost of refilling the sampling buffer and the gap

grows bigger as 𝑘 increases.

For weighted SIRS methods Fig. 13(b) shows how 𝑘 influences

their performance. KD-Olken, using our LCA optimization, is able

to return the first 10 samples faster than any other methods, yet
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Figure 13: Effect of 𝑘 .
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Figure 14: Effect of Selectivity.
its performance deteriorates the fastest and finally worse than QTS.
Query latency of the dual tree methods grow slower than KD-Olken
but it has worse performance than KD-Olken until 𝑘 > 1000. After

𝑘 = 100, KD-Tree Combined becomes the fastest method (up to 33%

faster than ZV-Tree Combined, 9x faster than KD-Olken, and 22x

times faster than QTS). Last but not least, we observed the combined

tree optimization will always provide 2x-6x performance gain.

Answering a range query and its corresponding SIRS query are

orthogonal. When given an SIRS query, users usually do not have

any idea how many points the query range will cover. As a result,

answering SIRS query can be slower than issuing range query di-

rectly when 𝑘 gets close to actual point count in the range. On

uniform SIRS problem, one can make a trade-off based on estimated

query range count. However, to estimate it accurately with guar-

antees, we usually have to rely on methods structurally similar to

building the sampling index. For weighted SIRS cases, even simple

query count estimation cannot save us since the trade-off between

range and IRS queries also relies on the distribution of the weights.

Effect of Selectivity. The selectivity of query range (i.e., how

many points are covered by the query range) is an important factor

influencing query performance. Even though it is usually hard to

estimate, it is worth verifying how different methods are affected.

Fig. 14(a) demonstrates such effects on uniform SIRS methods. As

expected, QTS grows linearly to query range selectivity as it re-

quires answering the full range query. In contrary, KD-Olken’s
performance gets better when the query range covers more points

as samples have less chance to be rejected. KDS and ZVS are influ-
enced much less by this factor. This is because the performance

of constructing top-level alias structure is pretty stable at 𝑂 (
√
𝑛)

or 𝑂 (log 𝑐 (𝑅)) level for square ranges, while the actual sampling

procedure is not influenced by selectivity at all. KD-Buffer is also

not affected much by selectivity as its dominating costs are refilling

sample buffers and reconstructing query frontier.

For weighted SIRS methods, we show the effect of selectivity

in Fig. 14(b). Again QTS increases linearly with range selectivity,

and KD-Olken becomes faster. Both combined tree and dual tree
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Figure 15: Effect of Range Fatness.
methods are slightly influenced by query selectivity. Combined tree

methods constantly achieve 3x-7x performance gain against dual

tree methods. Note that the major performance gain of KD-Tree
Combined and ZV-Tree Combined comes only from fewer rejec-

tions, but not lower cost on each sample as in the uniform case. This

is because these methods will traverse a subtree for each sample in

the sampling stage. Hence, the performance gap between KD-Olken
and our methods is close when selectivity is high. Since there is a

high weight bias on the twitter dataset, the effect of selectivity in

weighted SIRS cases is not as stable as that in uniform ones.

Effect of Range Fatness. In this set of evaluation, we look into

how query shape effects performance of different methods. In par-

ticular, we fix the selectivity of the query range and change the

length-width ratio of the query MBR. Fig. 15(a) shows how such

a factor influences different uniform SIRS methods. QTS is not in-
fluenced at all, the dominating cost of the range query is 𝑂 (𝑐 (𝑅)).
KDS and ZVS grows slightly by query fatness. The main influence

of range fatness to such methods are from rejections in boundary

nodes, the total number of which grows slightly as the range be-

comes fatter. KD-Olken is effected by query fatness more since each

rejection in KD-Olken involves more RNG calls (each a factor equal

to the depth of the subtree) than the case of KDS (which is 2). The

effect of range fatness on KD-Buffer is also mild since query fron-

tier in KD-Buffer is narrow for a limited number of samples (1000

in this case). Thus, it will not involve much more replenishment of

the sampling buffer as the length-width ratio grows.

Fig. 15(b) shows the weighted SIRS methods. Similarly, QTS is

not influenced by query fatness, while KD-Olken’s performance

degrades when the query range grows fatter. KD-Olken becomes

slower when more rejection is involved. All other methods are

influenced by this factor mainly because of the combined effect of

weight bias and the number of partially covered boundary nodes.

But overall, they are fairly stable against the change of range fatness.

6.3 CPU Breakdown
We identify different methods’ CPU cost breakdown. This will not

only help us understand their bottlenecks, but also guide the trade-

off between these methods. We measure CPU time of different

component in KD-Tree based sampling methods but omit those

for ZV-Tree as they are similar. Fig. 16(a) shows the breakdown of

uniform SIRS methods. In QTS, more than 98% of its query time is

for answering the range query and all RNG calls are effective since

no rejection is occurred. On the other hand, KD-Olken spends most

of its CPU cycles in rejecting samples out of the query range. When

our LCA optimization is not applied all random paths need to start

from tree root. This optimization reduces the query latency by 92%

and only incurs a negligible cost – hence all other comparisons



Method
Tot Latency

( )

CPU Breakdown ( / %)

Effective RNGs Wasted RNGs Other Major Components

QTS 1892.64 11.20 (0.60%) 0.00 (0.00%) Query Time: 1881.44 (99.41%)

KD-Olken w/o LCA 62078.03 642.03 (1.03%) 61435.55 (98.97%) -

KD-Olken w/ LCA 4981.30 477.31 (9.58%) 4411.35 (88.56%) LCA Optimization: 2.64 (0.05%); 

KD-Buffer 798.56 8.69 (1.09%) 2.97 (0.37%) Buffer Replenish: 270.53 (57.95%); 

KDS w/ Rejection 140.26 99.45 (70.90%) 6.73 (4.80%) Alias Construction: 23.80 (16.96%); 

KDS w/o Rejection 396.30 98.24 (24.79%) 0.00 (0.00%) Alias Construction: 289.79 (73.12%); 

(a) Uniform

Method
Tot Latency

( )

CPU Breakdown ( / %)

Effective RNGs Wasted RNGs Other Major Components

QTS 11128.86 112.41 (1.10%) 0.00 (0.00%) Query Time: 11006.45 (98.90%)

KD-Olken w/o LCA 70328.76 483.38 (0.69%) 69844.77 (99.32%) -

KD-Olken w/ LCA 5770.88 355.40 (6.16%) 5412.44 (93.79%) LCA Optimization: 3.04 (0.05%)

KD-Tree Dual w/ Rej 2491.19 2293.56 (92.07%) 115.31 (4.62%) Alias Construction: 79.80 (3.20%)

KD-Tree Dual w/o Rej 3143.37 2242.30 (71.33%) 0.00 (0.00%) Alias Construction: 896.03 (28.51%)

KD-Tree Combined w/ Rej 1245.58 1137.30 (91.31%) 36.29 (2.91%) Alias Construction: 70.56 (5.66%)

KD-Tree Combined w/o Rej 1356.54 491.69 (36.24%) 0.00 (0.00%) Alias Construction: 863.08 (63.62%) 

(b) Weighted

Figure 16: CPU Breakdown.
use it. It reduces not only the number of rejections, but also cuts

the cost of effective RNGs since random paths only need to start

from the root of a subtree. KD-Buffer spends less time in acquiring

the samples as they already exist in the sampling buffer. However,

the major cost comes from maintaining query frontier which takes

40% of query time and replenishing the sample buffer so as to

ensure independence. KDS has a moderate cost in building the alias

structure and also a fairly low rate of rejection. In particular, only

6.3% of generated samples are rejected (4.8% of CPU time). We can

eliminate all rejections by scanning all points that resides in leaf

nodes partially covered by the query range. Such an optimization

bumps up the cost of the alias structure construction by 10 times

but eliminate rejected RNGs. Nevertheless, it slows down the SIRS

query asking for 1000 samples by 2.8x.

Fig. 16(b) shows the CPU breakdown for weighted SIRS methods.

The pattern is similar for QTS and KD-Olken. Comparing to KD-Tree
Combined, KD-Tree Dual requires an additional alias structure

construction on the dyadic tree level and also involves more RNGs.

Even with the same rejection rate, the overall cost of KD-Tree
Dual is 2x higher than KD-Tree Combined. Finally, scanning on

all boundary nodes to eliminate rejection is also not a good idea

for 1000 samples in the weighted case; in particular, in KD-Tree
Combined it is the dominating cost.

6.4 Hybrid Method
We implement a hybrid method (see Section 5) which automati-

cally transitions from KD-Olken to KDS to KDS without rejection as

more samples are delivered. We compare it with different methods

and report how many samples they can return at key time points,

such as the finishing of the construction of top-level alias structure

and scanning boundary nodes, to report total number of samples.

Fig. 17(a) shows the performance of KD-Olken, KDS, and KDS w/o
rejection hybrid. As we can see, our hybrid method is able to start

reporting a decent number of samples before KDS finishes construct-
ing the top-level alias structure. Although hybrid method reported

less samples from 90 𝜇s to 1000 𝜇s, our hybrid method is able to

report samples the fastest and has the highest overall throughput at

the end. The main reason why it has not dominated all other meth-

ods in all time is that context switches between different method is

not free, and scanning boundary nodes while generating samples

degrades CPU cache performance.

Method
# Samples Retrieved by Timeline ( )

74 91 443 461 1000 3000 5000

Olken 86 106 517 538 1166 3498 5830

KDS w/ Rej 0 287 6237 6541 15651 49454 83257

KDS w/o Rej 0 0 0 364 11263 51706 92149

Hybrid 82 101 882 922 11877 52524 93172

(a) Uniform

Method
# Samples Retrieved by Timeline ( )

109 127 1570 1974 3000 5000 10000

Olken 222 243 2542 3045 4477 7962 14923

Comp w/ Rej 0 72 5855 7474 11585 19600 39636

Comp w/o Rej 0 0 0 1774 6279 15060 37014

Hybrid 216 252 3622 4566 9078 17875 39866

(b) Weighted

Figure 17: Effectiveness of Hybrid Method.
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Figure 18: Update Support with LSM Tree.

Fig. 17(b) shows the case of weighted SIRS hybrid method. Sim-

ilarly, it is able to report the first few samples fast, a bit less in a

short period than KDS, and eventually dominate all other methods.

6.5 Update Support
In Sec. 5, we described how to support updates in our sampling

structure with LSM trees. To verify such an idea is viable in practice,

we implement simple versions of it on top of KD-Tree and ZV-Tree,

denoted as KD-Tree LSM and ZV-Tree LSM respectively. Fig. 18

shows how they perform on different workloads. In particular, we

first populate 100 million points in each workload and issue 100000

operations with different insertion-query ratio.

As shown in Fig. 18(a), insertions in ZV-Tree LSM is 7x-9x faster
than those in KD-Tree LSM. This is because insertions of ZV-Tree
LSM only involves merging sorted sequences. In contrast, KD-Tree
LSM requires a full KD-Tree construction because its data cannot

be described by a simple mergeable full order. On the other hand,

ZV-Tree LSM is up 50% slower than KD-Tree LSM, which has better

query complexity. Note, these methods provide a proof of concept.

In particular, we did not implement deletion operations in these

methods due to the complexity of managing rejection rate after

lazy deletions. Besides, there is a large design space for LSM trees

on aspects like bloom filter optimization and internal passes within

levels. We did not incorporate these optimizations, but identify

them as good directions of future work.

6.6 Method Generalization
To show the generality of our framework, we extend our methods

to other index structures (namely R-Trees) and higher dimensions.

Generalize to R-Tree.We follow Sec. 3.4 on R-Trees (dubbed as

RTS). We use 256 points in leaf nodes and a fan-out of 25 in internal

nodes. Fig. 19 shows the query latency of R-Tree variants comparing
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Figure 19: Comparing R-Tree Instantiations with KD-Tree.
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Figure 20: SIRS Extension to Higher Dimensions.
to KD-Tree ones over uniform and weighted SIRS queries. As men-

tioned in Sec. 3.4, KD-Tree variants are preferred under in-memory

settings as they are immune to pathological cases, and are easier in

building indexes since they do not require the second ordering pass.

R-Tree variants occasionally provide better performance (see Fig. 19

and 20) due to lower tree height and potential better alignment

between the query region and internal R-Tree nodes. The R-Tree

implementation for previous state of the art [31] with independence

(dubbed as RTree-Buffer) is faster than KD-Buffer as the tree is
shallower in depth thus takes less time to replenished sampling

buffers. Olken sampling over R-Tree (dubbed as RTree-Olken) is
slower than that on KD-Tree because of more rejections. The index-

ing cost of the R-Tree variants is similar to KD-Tree. It is slightly

slower to build R-Trees since they involve an extra pass of reor-

ganizing the data layout, while the index size of R-Tree is slightly

smaller due to higher internal node fan-out.

Higher Dimensions. We also extend our method to work on

higher-dimensional data sets. Specifically, we run the extended

methods over GDELT dataset [2] which has 80 million records with

six spatial dimensions and one timestamp. We take pairs of spatial

dimensions when dimensionality 𝑑 is even, and add the timestamp

dimension when 𝑑 is odd. As shown in Fig. 20, our methods (KD-

Tree and R-Tree variants) achieve much better performance than

baselines by 4x-200x. The indexing cost is growing linearly with 𝑑 ,

and shows similar trends as with 2D data, thus omitted.

7 RELATEDWORKS
Range sampling is a classic problem in databases rooted from the

query sampling goal of returning a random sample set of element

in a range. The usefulness of such a sample set has long been

recognized even in the non-big-data era [22]. More than three

decades ago, Olken et. al published the classic solution to sample

data from B+-tree indexes by random tree traversal [23] and was

recognized as the correct way to do query sampling.

Recently, the theory community has provided better query com-

plexity bounds. Hu. et al [16] proposed methods for uniform in-

dependent range sampling for one-dimensional data over value

range intervals. In particular, they described a new structure of

𝑂 (𝑛) space that answers a query in 𝑂 (log𝑛 + 𝑘) expected time

and supports an update in 𝑂 (log𝑛) time. Later, Afshani et. al. [5]

proposed the solution for weighted independent range sampling for

one-dimensional data that uses 𝑂 (𝑛) space and answers a query in

𝑂 (𝑃𝑟𝑒𝑑 (𝑈 ,𝑤,𝑛) + 𝑘) time. Specifically, 𝑃𝑟𝑒𝑑 (𝑈 ,𝑤,𝑛) is the query
time of a predecessor search data structure that use 𝑂 (𝑛) space on
an input of size 𝑛 from the universe [𝑈 ] and on a machine with

𝑤-bit integers [25]. In the same paper, the authors obtain an optimal

data structure for 3D halfspace ranges for uniform independent

range sampling problem. Given a query half space ℎ, it can extract

𝑘 independent uniform random samples from ℎ in 𝑂 (log𝑛 + 𝑘)
expected time using a 𝑂 (𝑛) space structure. This method further

implies optimal data structure for two-sided and three-dimensional

dominance queries. More recently, Afshani et. al. [4] revisited again

the independent range sampling problem on halfspaces and obtain

a solution for weighted input for 3D halfspace queries that has

𝑂 (𝑛 log𝑛) space cost and𝑂 (log2 𝑛 +𝑘) expected query time. When

the ratio of weights is 𝑛𝑂 (1)
, the space complexity of proposing

structure can be reduced to 𝑂 (𝑛). The authors also provide further

tradeoffs if allowing approximation of sample probabilities. Note

that all above works do not study the SIRS problem we covered in

this paper specifically. Furthermore, no known implementations

have been made for these complex methods.

A recent work [31] is published to solve uniform spatial range

sampling problem on minimum bounding rectangles(MBRs). The

authors started from adapting Olken’s method [23] to R+-Trees [28],

and then optimized Olken’s method by attaching pre-built sam-

pling buffers to each internal tree nodes (we call this the RS-Tree).

Despite achieving superior performance against its baseline, RS-

Tree does not provide sample independence. When asked the same

query twice, RS-Tree will likely return the exact same samples. It is

possible to enforce sample independence by invalidating reported

samples while constantly replenishing depleted sampling buffers.

However, we have shown it expensive in our evaluation results.

8 CONCLUSION
We studied the uniform and weighted spatial independent range

sampling (SIRS) problem aiming at retrieving random samples with

independence over points residing in minimum bounding rectan-

gles (MBRs). We designed concise index structures with careful

data layout based on various space decomposition strategies, and

proposed novel algorithms for both uniform and weighted SIRS

queries with low theoretical complexity and excellent practical per-

formance, showing orders of magnitude improvement over existing

baselines. Overall, we propose using KDS, which better handles dy-

namic updates and avoids adversarial cases. In future work though,

we will explore in more details on various choices of tree struc-

tures, space decomposition strategies and fanout, as well as how

to adapt the combined sampling LSM trees to different workloads

with updates.

Acknowledgment. Dong Xie was supported by a Microsoft Re-

search Ph.D Fellowship. JeffM. Phillips thanks his support fromNSF

CCF-1350888, CNS-1514520, IIS-1619287, IIS-1816149, CNS-1564287,

CFS-1953350, and an award from Visa Research. Feifei Li thanks

his support from NSF CNS-1514520, IIS-1619287, IIS-1801446, and

IIS-1816149.



REFERENCES
[1] 9-th dimacs implementation challenge: Shorted paths.

http://users.diag.uniroma1.it/challenge9/download.shtml.

[2] The gdelt project. https://www.gdeltproject.org/.

[3] Openstreepmap. https://planet.openstreetmap.org/.

[4] P. Afshani and J. M. Phillips. Independent range sampling, revisited again. In

SoCG, pages 4:1–4:13, 2019.
[5] P. Afshani and Z. Wei. Independent range sampling, revisited. In ESA, pages

3:1–3:14, 2017.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:

Queries with bounded errors and bounded response times on very large data. In

EuroSys, 2013.
[7] J. L. Bentley. Multidimensional binary search trees in database applications. IEEE

Trans. Software Eng., 5(4):333–340, 1979.
[8] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable key-value

store. In SIGMOD, pages 79–94, 2017.
[9] N. Dayan, M. Athanassoulis, and S. Idreos. Optimal bloom filters and adaptive

merging for lsm-trees. TODS, 43(4):16:1–16:48, 2018.
[10] N. Dayan and S. Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree

based key-value stores via adaptive removal of superfluous merging. In SIGMOD,
pages 505–520, 2018.

[11] N. Dayan and S. Idreos. The log-structured merge-bush & the wacky continuum.

In SIGMOD, pages 449–466, 2019.
[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Cheong. Computational Geom-

etry: Algorithms and Applications. Springer, 2nd edition, 2000.

[13] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite

keys. Acta Informatica, 4(1), 1974.
[14] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD,

1984.

[15] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD,
pages 171–182, 1997.

[16] X. Hu, M. Qiao, and Y. Tao. Independent range sampling. In PODS, pages 246–255,
2014.

[17] S. T. Leutenegger, M. Lopez, J. Edgington, et al. STR: A simple and efficient

algorithm for R-tree packing. In ICDE, 1997.
[18] M. Matheny, R. Singh, L. Zhang, K. Wang, and J. M. Phillips. Scalable spatial scan

statistics through sampling. In SIGSPATIAL, 2016.
[19] P. A. P. Moran. Notes on continuous stochastic phenomena. Biometrika,

37(1/2):17–23, 1950.

[20] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable,

symmetric multikey file structure. TODS, 9(1):38–71, 1984.
[21] M. A. Oliver and R. Webster. Kriging: a method of interpolation for geographical

information systems. International Journal of Geographical Information Systems,
4(3):313–332, 1990.

[22] F. Olken. Random sampling from databases. PhD thesis, University of California,

Berkeley, 1993.

[23] F. Olken and D. Rotem. Random sampling from B+ trees. In VLDB, pages 269–277,
1989.

[24] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree

(lsm-tree). Acta Inf., 33(4):351–385, 1996.
[25] M. Pătraşcu and M. Thorup. Time-space trade-offs for predecessor search. In

STOC, pages 232–240, 2006.
[26] W. H. Payne, J. R. Rabung, and T. P. Bogyo. Coding the lehmer pseudo-random

number generator. CACM, 12(2):85–86, 1969.

[27] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley Series in Probability and Statistics. Wiley, 1992.

[28] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for

multi-dimensional objects. In VLDB, pages 507–518, 1987.
[29] V. Vapnik. Principles of risk minimization for learning theory. In J. E. Moody,

S. J. Hanson, and R. Lippmann, editors, NIPS, pages 831–838. Morgan Kaufmann,

1991.

[30] A. J. Walker. New fast method for generating discrete random numbers with

arbitrary frequency distributions. Electronics Letters, 10(8):127–128, 1974.
[31] L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and aggregation.

PVLDB, 9(3):84–95, 2015.
[32] Y. Zheng, Y. Ou, A. Lex, and J. M. Phillips. Visualization of big spatial data using

coresets for kernel density estimates. In Visual Data Science, 2017.


	Abstract
	1 Introduction
	2 Background
	3 Uniform SIRS
	3.1 Sampling Framework
	3.2 Z-Value Sampling Method
	3.3 KD-Tree Sampling Method
	3.4 Generalization to Other Indexes

	4 Weighted SIRS
	5 Discussions and Extensions
	6 Evaluation
	6.1 Comparison on Different Datasets
	6.2 Effect of Various Parameters
	6.3 CPU Breakdown
	6.4 Hybrid Method
	6.5 Update Support
	6.6 Method Generalization

	7 Related Works
	8 Conclusion
	References

