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Abstract

We describe a variation of the iterative closest point (I&gprithm for aligning two point sets under a set of
transformations. Our algorithm is superior to previousathms because (1) in determining the optimal align-
ment, it identifies and discards likely outliers in a statety robust manner, and (2) it is guaranteed to converge
to a locally optimal solution. To this end, we formalize a neéistance measure, fractional root mean squared
distance ErRMSD), which incorporates the fraction of inliers into the dista function. We lay out a specific im-
plementation, but our framework can easily incorporatetrtemhniques and heuristics from modern registration
algorithms. We experimentally validate our algorithm agaprevious techniques on 2 and 3 dimensional data
exposed to a variety of outlier types.

1 Introduction

Aligning an input data set to a model data set is fundameataddany important problems such as scanned model
reconstruction[[16], structural biochemistfy [25], anddieal imaging [12]. The input data and the model data are
typically given as a set of points. A point set may arise fraselr scans of a 3D or 2D model, coordinates of atoms
in a protein, positions of a lesions from a medical patiensame other sparse representation of data. However, the
relative positions of these point sets is not known, makivegtask of registering them nontrivial.

A popular approach to solving this problem is known as theiiee closest point (ICP) algorithral[L} 3] which
alternates between finding the optimal correspondencedestyoints, and finding the optimal transformation of one
point set onto the other. As both steps reduce the distarteesbr the point sets, this process converges, but only
to a local minimum. The effectiveness, simplicity, and gafigy of this algorithm has led to many variations[26,
20,[19,[4] 5[ 10, 18, 25]. For instance, the set of legal tmansitions can be just translations, all rigid motions,
or all affine transformations. Other versions replace thava correspondence between points by aligning each
data point to the closest point on an implicit surface of treet data[[B8]. Or the traditional squared distance can
be replaced with a more efficient and stable approximatiohecsquared distance functidn_[15]. A now slightly
outdated, but excellent survely [20] evaluates many of tted®iques.

Yet, because ICP only converges to a local minimum, therdobar considerable work on expanding and stabi-
lizing the funnel of convergence—the set of initial posisdor which ICP converges to the correct local minimum.
Others have attempted to solve the global registrationlenoiil4,[11], where for any initial alignment they attempt
to find the optimal alignment between two point sets. Thisfisrodone in two steps. First find a rough global
alignment by corresponding certain distinguishable fegpwints. Second refine the alignment with ICP.

However, all of these algorithms are vulnerable to poirg séth outliers. Outliers may result from:

measurement error,

spurious data that was ignored or missed in the model,

partial matches because the point sets represent overtgnit not identical pieces of the same object,

interesting changes in the underlying object between tigssor among comparable objects.

In short, outliers are unavoidable. Because ICP will findegpondences for all points, and then find the optimal
transformation for the entire point set, the outliers wilkw the alignment. Many heuristics have been suggested [5,
4] including only aligning points within a set threshold [Z&]], but most of these techniques are not guaranteed



to converge, and thus can possibly go into an infinite loopequire an expensive check to prevent this. If the
fraction f of points which are outliers is known, then Trimmed ICP [4h &8 used to find the optimal alignment of
the most relevant fractiori of points. This algorithm is explained in detail in Sectladl.3However, this fraction

is rarely known a priori. If an alignment is given then RANSA®e methods[]9.12] can be used to determine a
good threshold for determining these outliers. There ae mlany ad hoc solutions to this problem. However, if the
outliers are excluded from the data set in a particular aligmt, then the alignment is no longer optimal, since those
outliers which were removed influenced how the points weitaily aligned.

1.1 OQOur Contributions

Our solution to these problems is to incorporate the fractibpoints which are outliers into the problem statement
and into the function being optimized. To this end, this papakes the following contributions:

e We formalize a new distance measure between point sets whadunts for outlierssrRMsD. This definition
extends the standarisD to account for outliers (Sectidn 2).

e We provide an algorithm, Fractional ICP, to optimizemsD (Sectionz3.R) which we prove to converge to a
local optimum in the correspondence, transformation, amctibn of outliers (Sectiol 4).

e We give mathematical intuition for whyrMSD aligns data points which are more likely to be inliers than
outliers (Sectiofl5 and Sectibh 6).

¢ Finally, we empirically demonstrate that Fractional ICPEritifies the correct alignment while simultaneously
determining the outliers on several data sets (SeEtion 7).

2 Fractional RMS Distance

Consider two point set®, M € R%. The goal of this paper is to align an input data Beto a model data set/
under some class of transformatiofis, These may include rotations, translations, scaling, l@fihe transforms.

We assume that these point sets are quite similar and thists exstrong correspondence between most points in
the data. There may, however, be outliers, points in eiteewhkich are not close to any point in the other set. Our
goal is to define and minimize over a set of transformatioredevant distance between these two point sets. To aid
in this, we define a matching function: D — M, which unless defined otherwise or given as a parameter)ysimp
matches each point dp to the closest point id/.

Definition 2.1. [RMSD ] The root mean squared distance ®KsD) between two point set®, M c R¢, for a
given matching: : D — M is the square root of the average squared distance betwe&hethpoints:

RMSD(D, M, 1) = ¢ﬁ S llp— pp)I 2

peD

When convenient we sometimes wrik@1sD(D, M), letting . match every point irD to the closest point id/.

Problem 2.1. [minimizing RMSD ] Given a model point se¥/ and an input data point sep whereD, M C R¢,
compute the transformatidfi € 7 to minimizeRMSD(T'(D), M):

mln \/‘D’ZHT p)||%.

peD



Problen{Z1L is algorithmically difficult because’BEwvaries, so does the optimal matchingAlso, RMSD is quite
susceptible to outliers because the squared distance a@jilaege weight to outliers. To counteract this, a specific
fraction f € [0, 1] of points from D can be used in the alignment and in the distance measure dretive point
sets. Thes¢|D| points can be chosen to solve Problen 2.1 by selecting téspehich have the smallest residual
distancer = ||p— u(p)||. LetDy = {p € D | |Dy| = | f|D|] andrRMSD(D¢, M) is minimized. But what fraction
of points should be used? We can always mRkesD(D, M) = 0 by settingf = 1/|D| and aligning any single
point exactly to another point. SavsD by itself is no longer a viable measure. For this reason, wpgse a new
distance measure.

Definition 2.2. [FRMSD ] The fractional root mean squared distance ®MmsD) is defined as follows:

FRMSD(D, M, f, 1) = Z lp — u(p)]|?
pED

We will empirically and mathematically justify a value afin Sectio’Z1 and Sectidn 6. Again, it is sometimes
convenient to leERMSD(D, M, f) = FRMSD(D, M, f, 1) becauseu can still be determined by and M. This
leads to a new, more relevant problem.

Problem 2.2. [minimize FRMSD ] Given a model point se¥ and an input data point séd whereD, M c R?,
compute the transformatidii € 7 and fractionf € [0, 1] to minimizeFRMSD(T'(D), M, f):

min -5 Z 1T (p) )%
TeT f ’D\peDf

felon]

Intuitively, the -L term serves to balance tiresD term. fA goes toco as f goes to0, while therMSD goes to
0 as f goes to0. FRMSD, unlike RMSD over any fraction of the data points, cannot equainless some fraction
of points align exactly. Of course, one point can alwaysraéigactly to another point in the other subset, so in the
implementation we restrict thgt > 1/|D|, although this case is degenerate and almost never happeractice.
Some arbitrary nonzero minimum value ptan be set as desired.

3 Algorithms

In this section we describe algorithms to solve ProHlerh 2.2.

3.1 Trimmed ICP

The Trimmed ICP algorithri—3.1 assumgso be given and computes a transformatiore 7 of a point setD to
minimize RMSD betweenD; and a model point se¥/. When f = 1, this is the ICP algorithmi[1]. The algorithm
iterates between computing the optimal matchinand the optimal transforri’ over thef|D| closest points. This
algorithm has been showil [4] to converge to a local minimumn$p(D, M) over all rotations, translations, and
matchings.

In practice, the comparison on line 8 of AlgoritHmI3(L; = w;—1), can be replaced by checking whether the
RMSD(D, M) value decreases by less than some threshold at each st€p, idwever, does not completely solve
ProblemTZPFrRMSD(D, M) is not minimized with respect té. It has been suggested [4] to run TrICP for several
values off. In fact, those same authors hypothesize thatthesp(D, M, f) values returned from TrIG®, M, f)
are convex inf, allowing them to perform a golden ratio search techniquavtid checking all values of. This



Algorithm 3.1: TrICR D, M, f)

1: Computeuy = arg min RMSD(D, M, ).
wo:D—M
2: 7+ 0.
3: repeat
4: 7 +— 1+ 1.
5. ComputeD s minimizing RMSD(D, M) such thatDy C D and|Dy¢| = | f|D|].
6:  Computel’ € 7 minimizing RMSD(D, M). D — T (D).
7. Computeu; : D — M minimizing RMSD(D, M).
8: until (/Ll = Nz’—l)

hypothesis is easily shown to be false. Also this technigilse fo guarantee that the solution is a local minimum
in the space of all transformations, matchings, and frastioThe value attained by TrICP depends on the initial
position of D and M. Thus, for the transformatioli calculated by TrICP, potentially another fractigrcan give a
smaller value oRMSD(Dy, M) or of FRMSD(D, M, f).

3.2 Fractional ICP

A simple modification of TrICP, shown in Algorithin3.2, wilttually provide the desired local minimum. We refer
to this algorithm as Fractional ICP or FICP.

Algorithm 3.2: FICRD, M)
Computeuy = arg min RMSD(D, M, pp).
Ko

=

:D—M
2: Computefy € [0, 1] minimizing FRMSD(D, M, fo, jio)-
3.4« 0.
4: repeat
5 4«1+ 1.
6:  ComputeD; minimizing RMSD(Ds, M) such thatDy C D and|D¢| = | f|D|].
7. Computel” € 7 minimizing RMSD(Dy, M). D — T (D).
8: Computey; : D — M minimizing RMSD(D, M, ;).
9:  Computef; € [0, 1] minimizing FRMSD(D, M, f;, ;).

[En
o

- until (uz = U;—1 andfz- = fi—l)

Again, in practice, the comparison on line 10 of Algorithid 8an be replaced be checking whethemrtk&sp(D, M, f)
value decreases by less than some threshold at each step.

3.3 Implementation

To implement TrICP we need 3 operations: computing the nireg¢cltomputing the subsé?;, and computing the
transformation. To implement FICP we need the additiorey) sf computing the fraction.

3.3.1 Computing the Matching

For each poinp € D we need to find its closest point € M. SinceM is fixed through the algorithm, we can
precompute a hierarchical data structure which can quickdyrn the nearest neighbor. We implementeklida
tree, at a one-time, initial cost @#(|M |log |M|). The nearest neighbor can be returnediftog | M |) time. This
operation is required for each point|i|. So the matching can be computed|D|log|M|). This is in general
the most time consuming step of the algorithm.



We could replace théd-tree with ad>-tree [15], or when appropriate use point to surface matchimin [3] or
[20], but we would loose our guarantee of convergence.

3.3.2 Computing the Subset D

The setD; = {p € D | |Dy| = |f|D|],RMSD(Dy, M) is minimized is defined by thg f|D|| points with the
smallest residual distances= ||p — u(p)||. This observation implies the following algorithm. Comguaind sort all
residual distances and I&t; be thef|D| points with the smallest residual distances. The runtinb®isided by the
sorting which take® (| D|log | D|) time.

3.3.3 Computing the Transformation

The set of allowable transformatiorig, may include rotations, translations, and scalings. Oray fine as general
as all affine transformations. When we consider rotatioasstations, and scalings, ProblEm| 2.1 is written:

1
min — sR - 2,
Qo wD'peZD” )+t - ulo)]|

t € R4
seR

For a fixed matching, this is known as the absolute orientation problem, and essolved exactly[14] itD (n?)
time. Whend < 3, this can be solved i®(n) time [24]. There are actually 4 distinct algorithms—onengsi
rotation matrices and the SVID J[13], one using rotation magiand the eigenvalue decomposition [21], one using
unit quaternions[]8], and one using dual number quaterri@fls—but all are in practice approximately equivalent
in run time [6]. We use the simplest techniqliel[13] which hithe solution to computing an SVD.

WhenT is the set of all affine transformations, Problend 2.1 is emitt

in ¢ﬁ ST 11A®) - u)]2.

peD

whereA is an affine transformation. This reduces to a generic lepstres problem that can be solved with a matrix
inversion.

3.3.4 Computing the Fraction

There are onlyD| fractions which we need to consider. Consider the sortedrafthe point seD by each point’s
residual distance = ||p— u(p)||. Each prefix of this ordering represents a distinct fractlbwe maintain the value
ZpeDf |lp — p(p)|)? for eachD we can computerRMsD(D, M, f) in constant time for a given fractiof. We can
also updateD to a point set of sizéD| + 1 in constant time by adding the next point in the sorted orddb . If
theith prefix yields the smallest value BRMSD, thenf is set toi /| D|. So this computation take&s(|D|) time.

4 Convergence of Algorithm

In this section we show that Algorithln™B.2 converges to allaoaimum of FRMSD(D, M, f) over the space of all
transformations, matchings, and fractions of points usdtlé matching. This is a local minimum in a sense that if
all but one of transformations, matchings, or fractionsxedi then the value of the remaining variable cannot be
changed to decrease the valueaivsp(D, M, f).

Theorem 4.1. For any two points set®, M € R, Algorithm32 converges to a local minimunreMsp(T (D), M, f, 1)
over(f,T,p) €10,1] x T x {D — M}.



Proof. Algorithm [3:2 only changes the value ¢f, T, 1) when computing the optimal transformatid@h(line 7),
computing the optimal matching (line 8), or computing the optimal fractioffi (line 9). None of these steps
can increase the value 6RMSD(D, M, f;, u;), because staying at the current value would retain the vaflue
FRMSD(D, M, f, u), but each can potentially decrease it. (When two possibileesaof( f, i, T') degenerately pro-
duce the same value 6RmMsD(D, M, f, 1), we consistently choose the smaller one according to somsistent,
but arbitrary ordering.)

FICP terminates only whem; = ;1 and f; = f;_1. The optimal transformation computed at iteratidffine 7)
is a function of the matching of the points_; and which points are included, which is determinedfhy;. Thus,
the transformation will only change in iteratior- 1 if u; or f; change fromu,_q or f;_1, respectively. Wu; = p;—1
and f; = f;_1 then FICP will terminate, andf;, T, 11;) will be a local minimum. If it were not, then eithegf or .
would have changed in the last iteration, awMsD(D, M, u, f) would have decreased or stayed the same in the
ith iteration.

Furthermore, FICP terminates in a finite number of iteratidmecause there af®| possible values of and
\M]|D| possible values of,, and the algorithm can never be at any of these locationgiwic O

In practice the convergence is much faster than the upperdboliD| - ]MUD‘ steps. ICP has recentlyl[7] been
shown to require(|D U M|log |D U M]) iterations for certain adversarial inputs; however, thesely occur
in practice. Furthermore, Pottmamt al. [19], have shown that ICP has linear convergence when itoisecto
the optimal solution and a point-to-point matching is useldwever, ICP has quadratic convergence when using
a point-to-surface or other similar matching criterion asatibed in[[1R] or[[18]. The lower bounds clearly hold
for TriICP. The upper bounds, in terms of convergence ratggitively hold, but the reduction seems a little more
complicated. Such a proof is outside the scope of this paper.

5 Data Generation Model

In order to formalize the expected mathematical propedfdbe FRMSD measure and the FICP algorithm, we now
state some fairly general assumptions about the input detadata on which FICP is used need not these exact
properties, but we hope that these properties are genesabbrthat whatever differences exist in the alternative
data will not significantly affect the following analysisdthe resulting conclusions.

Since data come from a measurement process that might ¢eseraious measurements as well as miss valid
ones, we do not require every data point to have a corresppmdodel point, or viceversa. Specifically, we assume
that data points are generated from model points by thedollp abstract procedure:

1. Generate a sét/; of model points that will have corresponding data pointe @hbscript stands for “inlier”).

2. For every model pointr € My, let
p=T"(m+n)

be the corresponding data point, whéres a transformation in the s&t andn is isotropic Gaussian noise
with standard deviation. The set of data poings corresponding td/; is denoted a®;.

3. Generate a random sBt, of data outliers.
4. Generate a random skfp of model outliers out of a spatial Poisson process.

We letD = Dy U Dp andM = M; U Mp. Letp; be the fraction of data inliers relative to all data pointhieT
detailed spatial statistics of data outliers are irrelétarour analysis. The Poisson process for model outliers is a
minimally informative prior. We let the density of this pexs beuv points per unit volume.

The probability density of the squared magnitude ||n||? of the correspondence noise is a chi square density in

d dimensions:
»d/2-1

z

9¢%) = gapgariay ¢




where

ro) = 0
ra) = 1
I'(n) = (n—1)! forintegern > 1
I'(1/2) VT~ 1.77245
Ln+1/2) = \/E1'3'5""'(2n_1) for integern > 0.

27L

The expected number of model outliers in a region of spade waitumeV is equal tawV .
Suppose now that the correct geometric transformafien7 is applied to data point to obtain the transformed
data point
q=T(p)=m+n

(see stepl2 in the data generation model above).

If ¢ andm correspond, their distance statistics are chi squakgatfdm do not correspond, the situation is more
complex: Either point (or both) could be an outlier, or theyld be non-corresponding inliers. We do not know the
distance statistics for model inliers. In the remaindehd section, we assume that the probability that a datarinlie
is nearest to a non-corresponding model inlier is negkgilnder this assumption, the probability density of the
distancer from q to the nearest outlier, given that model outliers are frorpatial Poisson process with density
points per unit volume, can be shown to be

w(r) = wS(d) ri—t e 5@ " forr >0

where 4
27
9= T
is the surface of the unit spheredrdimensions and'(-) is the gamma function. The functian(r) is known as the
Weibull density with shape parameté(equal to the dimension of space) and scale parameter

1 I'(d/2
s(d, w) = — a/ 1Td/2) (d/ )
Vd 2w
So far we have not specified the units of measure. Sinisea distance and is a distance raised to powerd
(density per unit volume), the parameter!/? is dimensionless. As long asandw are properly scaled to each
other, the analysis that follows is independent of

6 The Value of )\

In this Section we justify a particular choice for the valde)loused in the definition of the fractional root mean
squared distanc&RMSD).

As shown in Sectioh-3.3.4, the FICP algorithm selects aifract of data-model matches in increasing order of
their residual distances= ||p — u(p)|| between data poingsand their nearest model poinigp). Because of this,
choosing a fractiory is equivalent to choosing a maximum allowed vaitigfor the residual distance. Since we
would like the FICP algorithm to favor inliers over outlieirsmakes sense to requiré to be defined in such a way
that data points that are away from a model point are equally likely to be inliers asythee to be outliers. Let us



call such a value of* thecritical distance We then ask the following questiots there a value ok in the definition
of theFrRMsSD for which the value of chosen by the FICP algorithm corresponds to the criticatatise?

To answer this question, we first expre$sas a function of the model parameters (Sedfioh 6.1), andrdite the
function that relates an arbitrary distancto the corresponding fractiofi (Sectior 6.2). We then write an estimate
of the FRMSD under an ergodicity assumption (Sectionl 6.3). This esénsitself a function off, and therefore of
r. The FICP algorithm maximizes tleMSD with respect tof, that is, finds a zero for the derivative of thRemsD
with respect tof. Setting the value of where this zero is achieved f@r*) yields an equation fok, whose solution
set justifies our choice for this parameter (Secfiah 6.4).

Our analysis holds for outlier densitiesthat are below a certain valug, .., which is inversely proportional to
the standard deviatiom of the noise that affects the data points. If outliers exabeddensity, then matching data
and model points based on minimum distance is too unreliabjeeld good results.

6.1 The Critical Distance

Definer* so that a data and a model point at distantérom each other are equally likely to correspond to each
other as they are not to. This section derives an expression*fas a function of the standard deviatienof
the correspondence noise, the densitpf the spatial Poisson process that generates unmatchet$,pand the
dimensiond of space.

The volume of a sphere of radiusn d dimensions is

Vi(r) = @rd
whereS(d) was defined in Sectidd 5. The volume of the shell between raatiidr + Jr is
3y = it 50~ i) = 5D [yt 1] w0 0

This approximation is asymptotically exact@s— 0.
The probability mass in the same shell for an isotropic Gangiistribution with zero mean and standard deviation
ois

S(d ryd-1 1(r\2
0Gs =2r 9X2(d)(7“2) or = (27‘(')(7(”)20' (;) e 2 (%) or
asér — 0 (the term2r derives from the Jacobian of the transformatios: 2, since they? density is defined for
the square of a distance) .
Assume that the center of the shell above is at the transtbdat poiny; defined in Sectiofl5. As explained in
Sectior®, ify andm correspond, their distance statistics are chi squaredtheniikelihood of a particular radius
is 0G4 /dr. Otherwise, the distance statistics are approximatelgribesl by a spatial Poisson process with density
w. Then, the critical distance is determined by the equation

woVs = G

that is,

wS(d)rd_lér = (25)(75/)20_ (g)d_l e_%(§)25r

which can be simplified to the following:
6_%(5)2 = wo’d (27‘(‘)d/2 . (61)
The left-hand side of equatiof{6.1) is strictly positivelanonotonically decreasing inand the right-hand side
is constant, so the equation admits a solution if and only if

1
(V2mo)d

0<w<wnpax =



If the outliers exceed this maximum density, ., the critical distance shrinks to zero: any model point atbany
given data point is more likely to be an outlier than it is to be the model poimtresponding tg. Of course, when
there are no model outliers) (= 0) the concept of critical distance loses its significance.

Equation[[&]1) can be solved ferto yield the desired value of* as a function of the model parameters:

- \/—2 log, (V27 0)dw) = 4 /2 log, wr:ax .

g

The critical distance normalized layand expressed as a function®@f= w/wyax IS

pla) = ) =+/—2log, .
This function is independent of all model parameters andbitigal in FiguredL.
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Figure 1: Critical distance normalized by noise standardadien, plotted versus model outlier density normalized
by maximum density.

6.2 Relationship between f and r

As explained earlier, to every fractiohof data points considered by the FICP algorithm there cpaeds a max-
imum distancer, in the sense that|D| data-model point pairs have distance at mosConsider a particular data
point p and its transformed versiopn= 7'(p). If the data generation process is ergodic, the fracfi@quals the
probability that the nearest model pointto a pointg selected at random from the transformed dat&$é?) is at
mostr away.

With probability p;, the data pointy has a corresponding model point (inlier). In this event;ifs the distance
from this model point ando is the distance from the nearest model outlier point, theggement of the cumulative
probability function of the distanceto the nearest model point (either inlier or outlier) is

1—F(r)=1—Plmin(r;,ro) < r] = P[min(r;,ro) > r]
= Plrr>r Nro>r|=Plr; >r|Plro >7]
= (1=Plr<7]) 1="Plro <r]) = (1 - F(r)) (1 - Fo(r))
whereF;(r) and Fp(r) are respectively the probability that the matching modéhtoand the nearest model outlier
are at most- units away fromy. From Sectiofil5, these probabilities are as follows:

2

Fi(r) = /07" 9y2(a)(€) dC



and .
Folr) = [ wlp)dp.
Then, if¢ has a corresponding model point, the density of its distéore the nearest model point is

ooty = T L)

= 2rge(r?) (1 - Fo(r) + (1—Fi(r)w(r).

With probability po = 1 — py, the data poiny is instead an outlier. Then, it has no corresponding modet po
so the probability that the nearest model point is at mastits away is simplyF(r). In summary, the probability
density of the distance between a data pgiahd its nearest model poip{q) is

@(r) = pr ¢pe(r) + po w(r)

and the average fraction of model points withiaonits from a data point is

— [ oo =1 [ 6o dp+po Folr).
0 0

The derivative off with respect ta- is ¢(r).

6.3 Ergodic Estimate of the frmsd

An estimate of the fractional root mean squared distare@ D) can be obtained by assuming ergodically that the
sample moment included in the definitionrEMSD is close to the corresponding statistical moment:

f,D‘ > lp = w®)I? ~ Epep,llp — n@)?] -
pEDf

This assumption requires both ergodicity and a sufficiemblver f| D| of data points that are close enough to the
model points. We can then write

|
FRMSD*(D, M, f) = = ,D‘Z lp — p(p)|?
pED

1 r
~ faEmmNp—M)H] FA/if¢@Mp.
6.4 Stationary Point of the frmsd Estimate

At the minimum ofFRMSD(D, M, f), the derivative oFRMSD?(D, M, f) with respect tof is zero. Differentiation
of the expression at the end of Section 6.3 yields

d —92)\ r 2 d
gFFRMISD (D, M, f) = T /0 P> d(p)dp + 2 o(r) 5

df -
e~V df
(E) “dar o(r)

Since

the last addend simplifies i/ f?*, and

iFRMSDQ(D,M,f) -2 P> o(p)dp + 17
0

2\
T 7

10



Zeroing this derivative and setting= r* and f = f(r*) yields the following equation fok:

2 [T p26(p)dp

Figure[2 plots the values of in two and three dimensions as a function of the relative oddgier density
w/wmax and for various values of the data inlier fractipn

L () Jy ole)dp
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Figure 2: Theoretical value of in the definition of therRMSD in two (upper bundle) and three (lower bundle)
dimensions as a function of the relative model outlier dgnsi/w,.x and for various values of the data inlier
fraction p;. Curves in each bundle correspondvto= {0.5,0.6,0.7,0.8,0.9} from the bottom up. Dependency on
pr is weak.

Since the noise standard deviatieracts merely as an overall scale factor, these plots do nandepno. It is
apparent from the figure thatdepends weakly on the fractign of data inliers. The knees of the plots are at about
A = 1.3and) = 0.95 for d = 2 andd = 3 dimensions, respectively, correspondin@ut@u,.x = 0.2. These knee
values are selected as general-purpose values for thetidefiof FRMSD in two and three dimensions.

7 Experiments

The main advantage of FICP over other variants of ICP is tlzattomatically determines the outlier set via a fraction
f and reaches a optimum in terms of the correspondence, tiedremation, and the fraction of outliers. In doing
S0, it takes less time than algorithms which have no guagantiespite searching a larger parameter space. We also
demonstrate that the radius of convergence for FICP is elquhas compared to TrICP.

Finally, we deal empirically with the issue of the parametarsed in the definition ofRMSD. We observe that
FRMSD is robust to the choice ok within a broad range. However the radius of convergence #ialeacy of
FICP is improved when is set to a slightly higher values than those determinedr@dtior identifying outliers in
Section[®. Intuitively, a smaller value ofis more likely to classify correct correspondences as ensthivhen the
alignment is not close, and thus get stuck in local minimumr. ligher values of these types of local minimum
seem less prevalent. So for all performance studies wg seB3, unless otherwise specified. For this value FICP
has an expanded radius of convergence and tends to find weitgrsalignments as wheh is set according to the
analysis in Sectiohl6. After converging, we recommendregti= 1.3 for d = 2 or A = .95 for d = 3 to identify
outliers more agressively. This final phase should take fexyadditional iterations of the algorithm, since, as we
demonstrate, moderately modifying the value\dfas small effects on threrRMSD and f values returned.
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7.1 Data Sets

We perform many tests on the SQUID fish contour datakiase [@8] the University of Surrey, UK. This database
has 1100 2D contours of fish and each contour has 500 to 30@&pdhe size of this data set allows us to average
results over a very large set of experiments. We do not knoangf3D database even close to this size, and it has
been previously used to evaluate TrICP [4].

We also perform some experiments on a limited number of 3Datsodn particular we use theunnyand the
happy Buddhalata set from the Stanford 3D Scanning Repository.

We synthetically introduce outliers into the data sets indysv We always begin by creating two copidsand
D, to represent the model and the input data, of the particiaita set. A parametey fraction of the final seD are
left undisturbed as data inliers.

e Occlusion: We randomly choose a balt and remove all of the points frof/ within B. This test represents
cases where the model set is only partially observed beaduseclusions, where there are two overlapping
views of the same object that do not exactly align, or wheeeiput dataD has grown since the model was
formed. An example is shown in Figurk 3.

e Deformation: We randomly choose a balt and shift randomly the point® N B. This represents the case
whereD is deformed slightly between time steps. See Fi@lire 4.

e New data: We add a set of points tB. These points are placed uniformly at random within a baumdiox
of D. This represents outliers caused by some sort of datavatneise or from spurious or new data. See
Figure[®.

Finally, we always introduce some further noise in the madebr each poing € D, we create a random vectar
distributed according to a Gaussian distribution with dead deviations, and we add: to p.

&

L

Figure 3: SQUID example witli/ in blue suffering fromOcclusionnoise (left), andD in red (right).p; = .75

We perform many tests on synthetic data because we then Kradva tgood match exists and it is thus easy to
quantify the performance on our algorithm.

Additionally, we perform tests on real scanned data. Wenagdirs of scanned images of tHeagonmodel from
the Stanford 3D Scanning Repository from viedS or 48° apart. Because the different views observe different
portions of the model, there are many points which have na gdignment in both the model and data set. These
are outliers.

7.2 Performance

For each synthetic data set and type of outliers describeeakve perform the following set of tests. We first rotate
D by 6 degrees wheré is from the set{5°,10°,25° 50°}. The axis of rotation is chosen randomly for the 3D
data. We then run ICP, TrICP searching fowith the golden rectangle search, and FICP, minimizing alleigid
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Figure 4: SQUID example with/ in blue superimposed of in red with Deformationnoise addedp; = .75

motions. We report the total number of iterations of each,rtin time, and the final values esMsD, FRMSD, and
f. We vary the input so that; is either{.75,.88,.95}. We expect that optimally should be neap; since in our
datac is small compared t@/wn.x. All experiments were performed on a 3 GHz Pentium IV processth 1 Gb
SD-RAM.

We show in Tablé€ll the average performance of all algorithmshe entire SQUID data set where points are
removed fromM, giving D occlusion outliers withp; = {.75,.88,.95}. Table[2 shows the same whefeis
given deformation outliers withp; = {.75,.88,.95}. Table[3 shows wher® is given new data outliers with
pr = {.75,.88,.95}. TrICP and FICP return similar values Rf1sD andFRMSD on average while also determining
reasonable values fgt. However, FICP is aboutx faster than TrICP using the golden ratio search.

Algorithm | p; | time (S) | # iterations| RMSD | FRMSD f

ICP | .75| 0.335 24.5 9.454 | 9.454 | 1.000
TrICP | .75 | 1.356 117.9 0.217 | 0.541 | 0.744
FICP| .75| 0.178 13.6 0.178 | 0.424 | 0.749

ICP| .88| 0.21 21.4 4.079 | 4.079 | 1.000
TrICP | .88 | 1.032 107.5 0.218 | 0.364 | 0.784
FICP| .88 | 0.136 12.3 0.175| 0.258 | 0.878

ICP| .95| 0.137 15.9 1.338 | 1.338 | 1.000
TrICP | .95| 0.913 102.4 0.197 | 0.261 | 0.904
FICP| .95| 0.123 12.0 0.175| 0.205 | 0.949

Table 1: SQUID data witl©cclusionoutliers, rotated°

The f values when deformation outliers are introduced are ralbigelarger tharp; because some of the shifted
points happen to lie very near model points when the two ddtaase properly aligned. These points might as well
be inliers. This phenomenon is less common for the otherstgpsynthetically generated outliers.

We also ran the same experiments with the same algorithmbeohunny (35,947 points) and happy Buddha
(144,647 points) data from the Stanford 3D scanning repsitVe report the results on the bunny data set in Table
M and for the happy Buddha data set in Tdble 5 where deformatitiers are applied t® and thenD is randomly
rotated by5°. The numbers are the the results of averages tiveandom rotations.

Observe in Figur€l6 how in the alignment of the bunny datatbBetnon-deformed points (red points on back
side, blue points are not visible because they lie exacthiroethe red points) are aligned almost exactly by the
FICP algorithm while the deformed points (shifted from biei blue points in front) are ignored. Such an align-
ment allows one to easily identify the portion of the dataahhihas been deformed, and by how much it has been
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Figure 5: SQUID example witli/ in blue (top), andD with New Datanoise added in red (bottonyp; = .75

deformed. Without a proper registration to the model thdignad points have no point of comparison to gauge
their deformation. The alignment is skewed when ICP is uselitzis not helpful in determining which points are
deformed.

7.3 Funnel of Convergence

We calculate the percentage of cases from the SQUID dathatetdnverge to arRRMSD value within.01 and f
value within.01 of the alignment between the same sets with no initial ratatTabld® shows the results when New
Data outliers withp; = .88 are added to the data sBt The results for the other types of noise are simlar. For 3D
data sets we chose proportionally smaller, so these convergence rates astigtlitly larger. Note that FICP with
A = 3 performs much better than when= 1.3.

ICP has a larger radius of convergence than FICP, becausardtges a much smaller parameter space. FICP has
a larger radius of convergence than TrICP even though thegls¢he same parameter space.

7.4 Validating \

We empirically justify thaFRMSD is not sensitive to the choice af We run FICP with\ set to{1,1.3,2,3,4,5}.

We plot the averaged results on the SQUID data set when Qaglosise is added with; = .75 and D is initially
rotated0® and5° in Table[T and TablEl 8, respectively. Alteringloes not dramatically affect the converged solution,
but can affect the radius of convergence. The output isairfol different types of noise. On 3D data, FICP performs
slightly better than 2D data for smallar
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Algorithm | p; | time (S) | # iterations| RMSD | FRMSD f

ICP | .75| 0.263 28.9 1.074| 1.074 | 1.000
TrICP | .75 | 1.103 114.8 0.213| 0.404 | 0.803
FICP| .75| 0.191 18.1 0.231| 0.402 | 0.810

ICP| .88 | 0.215 24.4 0.829 | 0.829 | 1.000
TrICP | .88 | 1.065 112.8 0.213| 0.335 | 0.827
FICP| .88 | 0.148 14.2 0.178 | 0.241 | 0.903

ICP| .95| 0.168 19.6 0.569 | 0.569 | 1.000
TrICP | .95| 1.020 111.6 0.203 | 0.281 | 0.900
FICP| .95| 0.138 13.3 0.174 | 0.197 | 0.959

Table 2: SQUID data witlbeformationoutliers, rotated°

Algorithm | p; | time (S) | # iterations| RMSD | FRMSD f

ICP | .75| 0.461 26.7 5.820 | 5.820 | 1.000
TrICP | .75 | 1.578 92.9 0.176 | 0.399 | 0.768
FICP| .75| 0.264 13.7 0.175| 0.388 | 0.766

ICP| .88 | 0.286 23.7 4.061 | 4.061 | 1.000
TriICP | .88 | 1.351 108.0 0.202 | 0.309 | 0.831
FICP| .88 | 0.183 13.1 0.172 | 0.246 | 0.888

ICP| .95| 0.192 19.5 2.626 | 2.626 | 1.000
TrICP | .95| 1.135 108.3 0.205| 0.295 | 0.893
FICP| .95| 0.148 12.6 0.171| 0.197 | 0.953

Table 3: SQUID data wittNew Dataoutliers, rotated°

Algorithm | p; | time (S) | # iterations| RMSD | FRMSD f

ICP|.75| 60.1 78.8 0.66682| 0.66682| 1.000
TrICP | .75 | 136.5 172.2 0.00523| 0.01239| 0.750
FICP| .75| 16.5 17.3 0.00522| 0.01237| 0.750
ICP| .88| 29.6 48.0 0.45303| 0.45303| 1.000
TriICP | .88 | 147.1 224.3 0.00522| 0.00767| 0.880
FICP| .88 | 13.7 15.9 0.00522| 0.00767| 0.880
ICP| .95| 13.8 31.3 0.37207| 0.37207| 1.000
TrICP | .95| 77.6 162.8 0.00523| 0.00610| 0.950
FICP| .95 8.0 14.2 0.00523| 0.00610| 0.950

Table 4: bunny wittDeformationoutliers, rotated°

7.5 Aligning Scanned Model Data

Finally, we perform experiments aligning real scanned eamgps from 3D models. We consider aligning two scans
from the Stanford 3D scanning repository of the dragon mod# take scans from thdragonStandRightlata set
and we align consecutive scard{ apart), as seen in Tale 9, and next-to-consecutive s¢dhgpart), as seen in
Table[ID. We first rotate the later scanday or 48° to bring the scans into the approximately correct alignméfe
then align them with ICP, TrICP, and FICP.

For most alignments both FICP and TrICP realize an alignmatht a much lowerrrMsD value than ICP. And
occasionally, FICP noticeably outperforms TrICP in thiganel as well. FICP is usually about as fast as ICP, and is
consistently aboui to 10 times faster than TrICP. Notice how as the solution for FI@R fhapproachl, then FICP
gracefully approaches the result of ICP with very littleiceéble overhead.
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es ofwith D rotated0°.

Algorithm | p; | time (S) | # iterations| RMSD | FRMSD f
ICP | .75 | 430.8 66.6 0.56145| 0.56146| 1.000
TrICP | .75 | 727.3 101.0 0.00123| 0.00291| 0.750
FICP| .75 | 139.7 15.6 0.00119| 0.00282| 0.750
ICP | .88 | 109.2 28.2 0.29745| 0.29745| 1.000
TriICP | .88 | 485.4 120.5 0.00120| 0.00177| 0.880
FICP| .88| 814 15.7 0.00119| 0.00174| 0.880
ICP| .95| 126.1 45.4 0.29351| 0.29351| 1.000
TrICP | .95| 405.2 123.7 0.00120| 0.00141| 0.950
FICP| .95| 66.3 14.6 0.00119| 0.00139| 0.950
Table 5: Buddha witlbeformationoutliers, rotated°
Algorithm | A 5° 10° 25° 50°
ICP| - ] 0.999| 0.997| 0.994| 0.962
TrICP| 3 | 0.875| 0.870| 0.853| 0.816
FICP| 3 | 0.952| 0.945| 0.909| 0.875
FICP| 1.3 | 0.857| 0.473| 0.141| 0.060
Table 6: Percentage of SQUID data sets converging perlinitiation.
Algorithm | X\ | time (S) | # iterations| RMSD | FRMSD f
FICP| 1| 0.142 10.38 0.158 | 0.225 | 0.701
FICP| 1.3 | 0.069 3.81 0.170| 0.248 | 0.749
FICP| 2| 0.059 3.06 0.170| 0.303 | 0.750
FICP| 3| 0.061 3.17 0.170| 0.404 | 0.750
FICP| 4| 0.062 3.21 0.171| 0.538 | 0.751
FICP| 5| 0.063 3.30 0.172| 0.717 | 0.751
Table 7: FICP for different valu
Algorithm | X\ | time (S) | # iterations| RMSD | FRMSD f
FICP| 1| 0.733 37.23 0.298 | 1.503 | 0.274
FICP| 1.3 | 0.488 36.44 0.219| 0.563 | 0.660
FICP| 2| 0.244 17.00 0.176 | 0.329 | 0.740
FICP| 3| 0.198 13.59 0.178 | 0.424 | 0.749
FICP| 4| 0.194 13.28 0.184 | 0.570 | 0.751
FICP| 5| 0.200 13.66 0.299 | 0.875 | 0.756

Figure[T shows the alignment of the scarDataligned with the scan at’8° using ICP and FICP. Notice how
when the scans are aligned with ICP, the points in the dragait’are slightly misaligned, whereas with FICP, the

Table 8: FICP for different values of with D rotated5°.

alignment is much better. This is confirmed in Tdble 10.

8 Conclusion

In considering the common problem of aligning two points setder a set of transformations, we specifically handle
the problem of outliers. We formalize the distance measenesD (a generalization oRMsD), and we provide an
algorithm, FICP, to efficiently solve for a local minimum img¢ distance under a set of transformations, all possible
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Figure 6: Stanford bunny with/ in blue (top left) andD in red (top right) withDeformationnoise withp; = .75.
Registered using FICP (bottom left) and ICP (bottom right).

matchings, and the set of outliers. We prove that FICP cgegeto a local minimum, and that under reasonable
assumptions on the data, this minimum chooses a set ofdrdigeh that each point selected is more likely to be
an inlier than an outlier, and each point not selected is rlikety to be an outlier than an inlier. On a variety
of synthetic data and real scanned range maps we show th& ¢d@pares favorably to alternative algorithms
which are guaranteed to converge—ICP and TrICP. Becausaltforithm is a very simple modification of the quite
popular ICP algorithm and it is compatible with most othererg improvements, we expect that these ideas will be
integrated into many modern systems.
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Algorithm | anglel| angle2| time (s) | # iterations| RMSD FRMSD f
ICP| 336 0 40.88 62 0.001150| 0.001150| 1.000
TrICP | 336 0 316.33 535 0.000193| 0.000303| 0.860
FICP| 336 0 35.03 53 0.000193| 0.000303| 0.862
ICP 0 24 22.55 44 0.001059| 0.001059| 1.000
TrICP 0 24 337.09 709 0.000186| 0.000251| 0.904
FICP 0 24 28.22 54 0.000186| 0.000251| 0.905
ICP| 24 48 36.70 49 0.003207| 0.003207| 1.000
TrICP | 24 48 346.56 761 0.000197| 0.000292| 0.877
FICP| 24 48 42.41 90 0.000198| 0.000291| 0.879
ICP| 48 72 80.37 50 0.004003| 0.004003| 1.000
TriICP | 48 72 771.72 519 0.000206| 0.000894| 0.613
FICP| 48 72 84.39 54 0.000208| 0.000894| 0.615
ICP| 72 96 229.48 66 0.007456| 0.007456| 1.000
TrICP | 72 96 915.01 485 0.000204| 0.000786| 0.638
FICP| 72 96 140.79 69 0.000205| 0.000786| 0.639
ICP| 96 120 | 132.56 47 0.003806| 0.003806| 1.000
TrICP | 96 120 | 1444.58 506 0.000190| 0.000926| 0.590
FICP| 96 120 | 206.06 66 0.000190| 0.000926| 0.589
ICP| 120 144 | 194.36 60 0.003915| 0.003915| 1.000
TrICP | 120 144 | 2066.43 836 0.000192| 0.000453| 0.751
FICP| 120 144 | 182.97 70 0.000192| 0.000453| 0.752
ICP| 144 168 59.90 67 0.001185| 0.001185| 1.000
TrICP | 144 168 | 525.75 633 0.000189| 0.000296| 0.862
FICP| 144 168 74.77 84 0.000189| 0.000296| 0.862
ICP| 168 192 46.56 64 0.000605| 0.000605| 1.000
TriICP | 168 192 | 580.48 967 0.000188| 0.000251| 0.908
FICP| 168 192 61.57 88 0.000188| 0.000251| 0.909
ICP| 192 216 | 101.19 74 0.002759| 0.002759| 1.000
TrICP | 192 216 | 1049.67 1297 0.000177| 0.000247| 0.895
FICP| 192 216 82.98 91 0.000176| 0.000246| 0.895
ICP| 216 240 41.64 79 0.000860| 0.000860| 1.000
TrICP | 216 240 | 459.49 758 0.000194| 0.000317| 0.849
FICP| 216 240 46.33 73 0.000195| 0.000317| 0.845
ICP | 240 264 85.09 52 0.004253| 0.004253| 1.000
TrICP | 240 264 | 687.99 577 0.000202| 0.000442| 0.770
FICP| 240 264 87.90 73 0.000202| 0.000441| 0.771
ICP| 264 288 | 568.15 100 0.011210| 0.011210| 1.000
TrICP | 264 288 | 3486.41 627 0.000181| 0.001517| 0.492
FICP| 264 288 | 342.03 57 0.000185| 0.001511| 0.496
ICP| 288 312 | 14253 45 0.003097| 0.003097| 1.000
TriICP | 288 312 | 1559.13 528 0.000195| 0.001032| 0.574
FICP| 288 312 | 170.86 53 0.000207| 0.001056| 0.581
ICP| 312 336 42.65 43 0.000967| 0.000967| 1.000
TrICP | 312 336 | 640.96 713 0.000197| 0.000338| 0.835
FICP| 312 336 52.42 49 0.000197| 0.000338| 0.836

Table 9: Alignment of dragon scans off By° with ICP, TrICP, and FICP.
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Algorithm | anglel| angle2| time (s) | # iterations| RMSD FRMSD f
ICP| 312 0 112.69 50 0.002191| 0.002191| 1.000
TrICP | 312 0 1681.35 803 0.000221| 0.000759| 0.663
FICP| 312 0 188.44 84 0.000217| 0.000759| 0.659
ICP| 336 24 83.43 71 0.002067| 0.002067| 1.000
TrICP | 336 24 617.85 629 0.000207| 0.000507| 0.742
FICP| 336 24 88.85 87 0.000208| 0.000507| 0.743
ICP 0 48 54.37 53 0.003417| 0.003417| 1.000
TrICP 0 48 804.91 1087 0.000205| 0.000480| 0.753
FICP 0 48 77.74 101 0.000206| 0.000479| 0.755
ICP| 24 72 164.46 65 0.005940| 0.005940| 1.000
TrICP | 24 72 1384.2 680 0.004822| 0.005814| 0.940
FICP| 24 72 223.19 86 0.005788| 0.005896| 0.994
ICP| 48 96 386.95 156 0.005776| 0.005776| 1.000
TriICP | 48 96 | 3167.94 1273 0.005601| 0.005756| 0.991
FICP| 48 96 439.68 173 0.005599| 0.005756| 0.991
ICP| 72 120 | 763.38 76 0.012262| 0.012262| 1.000
TrICP | 72 120 | 2929.36 311 0.000525| 0.008209| 0.400
FICP| 72 120 721.8 67 0.010804| 0.012084| 0.963
ICP| 96 144 | 338.17 54 0.006428| 0.006428| 1.000
TrICP | 96 144 | 2512.57 400 0.000241| 0.003770| 0.400
FICP| 96 144 | 480.89 77 0.002191| 0.005132| 0.753
ICP| 120 168 | 495.54 91 0.004723| 0.004723| 1.000
TrICP | 120 168 | 3824.02 838 0.000209| 0.001108| 0.573
FICP| 120 168 525.3 110 0.000208| 0.001108| 0.573
ICP| 144 192 | 156.29 77 0.001936| 0.001936| 1.000
TrICP | 144 192 | 2167.88 1415 0.000210| 0.000574| 0.715
FICP| 144 192 | 243.71 149 0.000210| 0.000574| 0.716
ICP| 168 216 | 205.34 88 0.003037| 0.003037| 1.000
TriICP | 168 216 | 2830.94 1428 0.000197| 0.000396| 0.793
FICP| 168 216 | 297.73 136 0.000198| 0.000396| 0.794
ICP| 192 240 | 271.59 115 0.004515| 0.004515| 1.000
TrICP | 192 240 | 2459.96 762 0.000193| 0.000720| 0.645
FICP| 192 240 | 225.21 114 0.000194| 0.000720| 0.646
ICP| 216 264 | 344.86 138 0.005295| 0.005295| 1.000
TrICP | 216 264 | 2488.24 664 0.002994| 0.006536| 0.771
FICP| 216 264 | 491.86 212 0.000238| 0.001304| 0.568
ICP | 240 288 | 181.26 49 0.006412| 0.006412| 1.000
TrICP | 240 288 | 2488.24 731 0.005687| 0.006262| 0.968
FICP| 240 288 | 168.24 47 0.005719| 0.006262| 0.970
ICP| 264 312 | 1093.75 79 0.013483| 0.013483| 1.000
TrICP | 264 312 | 4417.08 675 0.013477| 0.013483| 1.000
FICP| 264 312 | 1115.72 79 0.013483| 0.013483| 1.000
ICP| 288 336 | 193.36 39 0.003856| 0.003856| 1.000
TriICP | 288 336 | 2324.38 511 0.000236| 0.003080| 0.425
FICP| 288 336 | 295.88 61 0.002842| 0.003617| 0.923

Table 10: Alignment of dragon scans off kg° with ICP, TrICP, and FICP.
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